Embedded real-time speed limit sign recognition using image processing and machine learning techniques

The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safe...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications Vol. 28; no. Suppl 1; pp. 573 - 584
Main Authors: Gomes, Samuel L., Rebouças, Elizângela de S., Neto, Edson Cavalcanti, Papa, João P., Albuquerque, Victor H. C. de, Rebouças Filho, Pedro P., Tavares, João Manuel R. S.
Format: Journal Article
Language:English
Published: London Springer London 01.12.2017
Springer Nature B.V
Subjects:
ISSN:0941-0643, 1433-3058
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87  μ s to recognize a sign, while kNN took 11,721  μ s and SVM 12,595  μ s. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.
AbstractList The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87  μ s to recognize a sign, while kNN took 11,721  μ s and SVM 12,595  μ s. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.
The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of vehicles on the roads increasing rapidly, these problems will tend to worsen. Consequently, huge investments in resources to increase road safety will be required. The vertical R-19 system for optical character recognition of regulatory traffic signs (maximum speed limits) according to Brazilian Standards developed in this work uses a camera positioned at the front of the vehicle, facing forward. This is so that images of traffic signs can be captured, enabling the use of image processing and analysis techniques for sign detection. This paper proposes the detection and recognition of speed limit signs based on a cascade of boosted classifiers working with haar-like features. The recognition of the sign detected is achieved based on the optimum-path forest classifier (OPF), support vector machines (SVM), multilayer perceptron, k-nearest neighbor (kNN), extreme learning machine, least mean squares, and least squares machine learning techniques. The SVM, OPF and kNN classifiers had average accuracies higher than 99.5 %; the OPF classifier with a linear kernel took an average time of 87 μs to recognize a sign, while kNN took 11,721 μs and SVM 12,595 μs. This sign detection approach found and recognized successfully 11,320 road signs from a set of 12,520 images, leading to an overall accuracy of 90.41 %. Analyzing the system globally recognition accuracy was 89.19 %, as 11,167 road signs from a database with 12,520 signs were correctly recognized. The processing speed of the embedded system varied between 20 and 30 frames per second. Therefore, based on these results, the proposed system can be considered a promising tool with high commercial potential.
Author Rebouças, Elizângela de S.
Papa, João P.
Rebouças Filho, Pedro P.
Albuquerque, Victor H. C. de
Gomes, Samuel L.
Neto, Edson Cavalcanti
Tavares, João Manuel R. S.
Author_xml – sequence: 1
  givenname: Samuel L.
  surname: Gomes
  fullname: Gomes, Samuel L.
  organization: Laboratório de Processamento Digital de Imagens e Simulação Computacional, Instituto Federal de Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
– sequence: 2
  givenname: Elizângela de S.
  surname: Rebouças
  fullname: Rebouças, Elizângela de S.
  organization: Laboratório de Processamento Digital de Imagens e Simulação Computacional, Instituto Federal de Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
– sequence: 3
  givenname: Edson Cavalcanti
  surname: Neto
  fullname: Neto, Edson Cavalcanti
  organization: Laboratório de Processamento Digital de Imagens e Simulação Computacional, Instituto Federal de Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
– sequence: 4
  givenname: João P.
  surname: Papa
  fullname: Papa, João P.
  organization: Departamento de Ciência da Computação, Universidade Estadual Paulista
– sequence: 5
  givenname: Victor H. C. de
  surname: Albuquerque
  fullname: Albuquerque, Victor H. C. de
  organization: Programa de Pós-Graduação em Informática Aplicada, Laboratório de Bioinformática, Universidade de Fortaleza
– sequence: 6
  givenname: Pedro P.
  orcidid: 0000-0002-1878-5489
  surname: Rebouças Filho
  fullname: Rebouças Filho, Pedro P.
  email: pedrosarf@ifce.edu.br
  organization: Laboratório de Processamento Digital de Imagens e Simulação Computacional, Instituto Federal de Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
– sequence: 7
  givenname: João Manuel R. S.
  surname: Tavares
  fullname: Tavares, João Manuel R. S.
  organization: Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto
BookMark eNp9kD1PwzAQhi0EEm3hB7BFYg6c7Xw4I6rKh1SJBWbLsS-pq8Qpdjrw73EIA0Kik3V37-M7PUty7gaHhNxQuKMA5X0AyBlNgRYp40Kk_IwsaMZ5yiEX52QBVRanRcYvyTKEPQBkhcgXpNn0NRqDJvGounS0PSbhgLHubG_HJNjWxZEeWmdHO7jkGKxrE9urFpODHzSG74ZyJumV3lmHSYfKu6k5ot45-3HEcEUuGtUFvP55V-T9cfO2fk63r08v64dtqjOajWluOFKhQIEuC4EINWClcsFrSqFuDFYVZQaY0UwoZhqmRV42NYhC1bVSgq_I7fxvPG3aO8r9cPQurpScQcFYXrLiVIpWRZlllJY8pso5pf0QgsdGajuqScLole0kBTmpl7N6GdXLSb2cSPqHPPhozH-eZNjMhJh1LfpfN_0LfQHvaJjP
CitedBy_id crossref_primary_10_1002_tee_23215
crossref_primary_10_1007_s00521_020_04956_x
crossref_primary_10_3390_su132212722
crossref_primary_10_1007_s11554_016_0662_3
crossref_primary_10_1007_s00521_017_3048_y
crossref_primary_10_1109_ACCESS_2020_2976513
crossref_primary_10_1007_s10489_018_1199_x
crossref_primary_10_1016_j_compeleceng_2019_04_001
crossref_primary_10_1155_2018_7613282
crossref_primary_10_1007_s00521_018_3931_1
crossref_primary_10_1109_TITS_2019_2897990
crossref_primary_10_1016_j_micpro_2024_105101
crossref_primary_10_3390_s19092093
crossref_primary_10_1088_1757_899X_850_1_012027
crossref_primary_10_1007_s00500_018_3491_4
crossref_primary_10_1016_j_future_2019_05_074
crossref_primary_10_1016_j_trpro_2021_01_070
crossref_primary_10_1007_s11042_021_11369_y
crossref_primary_10_1007_s00521_018_3736_2
crossref_primary_10_1111_exsy_12550
crossref_primary_10_1007_s00521_021_06081_9
crossref_primary_10_7717_peerj_cs_883
crossref_primary_10_1186_s40537_020_00324_7
crossref_primary_10_59176_kjcs_v1i1_2180
crossref_primary_10_1007_s00521_018_03994_w
crossref_primary_10_3390_bdcc7020076
crossref_primary_10_3390_jimaging9100207
crossref_primary_10_1088_1742_6596_1577_1_012009
Cites_doi 10.1111/j.1365-2818.2010.03384.x
10.1016/j.physa.2015.01.064
10.3390/ma8073864
10.1002/ima.20188
10.1006/cgip.1993.1040
10.1109/72.80266
10.1145/361237.361242
10.1016/0262-8856(89)90017-6
10.1007/s13042-011-0019-y
10.1007/s00521-011-0748-6
10.1109/TPAMI.1986.4767851
10.4322/rbeb.2013.041
10.1016/j.eswa.2015.09.025
10.1016/j.patcog.2011.07.013
10.3390/s150612474
10.1109/72.788640
10.1016/j.eswa.2014.07.013
10.1109/ICNN.1993.298625
10.1016/j.procs.2010.12.169
10.1007/978-3-642-88163-3
10.1016/j.measurement.2015.03.039
10.1109/ICNN.1993.298623
10.1109/TLA.2015.7040658
10.1007/s10044-011-0265-3
10.1023/A:1009715923555
10.1016/j.tre.2013.12.011
10.1016/j.compeleceng.2015.01.002
10.1109/TNN.2006.875977
10.1016/j.neucom.2011.12.045
10.1109/2.29
10.1016/j.compeleceng.2013.03.020
10.1109/5.58323
10.1109/TPAMI.2004.1261076
10.1016/j.neucom.2005.12.126
10.1145/1961189.1961199
10.1007/978-3-319-19665-7_5
10.1007/978-3-540-88636-5_90
10.1109/ISBI.2013.6556694
10.1016/B978-0-12-397041-1.00009-1
10.1109/ICIP.2002.1038171
10.1007/978-3-642-53842-1_26
10.1109/CVPR.2014.126
10.1109/IVS.2012.6232222
10.1109/ICCIC.2012.6510256
10.1007/978-3-319-18833-1_19
ContentType Journal Article
Copyright The Natural Computing Applications Forum 2016
Copyright Springer Science & Business Media 2017
Copyright Springer Nature B.V. Dec 2017
Copyright_xml – notice: The Natural Computing Applications Forum 2016
– notice: Copyright Springer Science & Business Media 2017
– notice: Copyright Springer Nature B.V. Dec 2017
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-016-2388-3
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central - New (Subscription)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: P5Z
  name: ProQuest advanced technologies & aerospace journals
  url: https://search.proquest.com/hightechjournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 584
ExternalDocumentID 10_1007_s00521_016_2388_3
GrantInformation_xml – fundername: CNPq
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c414t-5d3e18a0a0c768ee0b0e9a583b110bfde9912d02dc28a2df2c857fb086abbaa83
IEDL.DBID RSV
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000417319700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-0643
IngestDate Wed Nov 05 08:47:48 EST 2025
Tue Nov 04 16:34:44 EST 2025
Tue Nov 18 21:55:47 EST 2025
Sat Nov 29 02:59:02 EST 2025
Fri Feb 21 02:34:23 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords Cascade haar-like features
Computer vision
Pattern recognition
Automotive applications
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-5d3e18a0a0c768ee0b0e9a583b110bfde9912d02dc28a2df2c857fb086abbaa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1878-5489
OpenAccessLink http://hdl.handle.net/11449/165920
PQID 3206225726
PQPubID 2043988
PageCount 12
ParticipantIDs proquest_journals_3206225726
proquest_journals_1967441173
crossref_citationtrail_10_1007_s00521_016_2388_3
crossref_primary_10_1007_s00521_016_2388_3
springer_journals_10_1007_s00521_016_2388_3
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Burges (CR10) 1998; 2
Yu, Shi (CR61) 2015; 428
CR38
Wu, Huang, Chen, Chen, Chang, Chen (CR59) 2013; 39
CR33
Vapnik (CR55) 1999; 10
CR31
CR30
Rebouças Filho, Moreira, de Lima Xavier, Gomes, Santos, Freitas, Freitas (CR45) 2015; 8
Chang, Lin (CR13) 2011; 2
Neto, Rebouças, Moraes, Gomes, Rebouças Filho (CR37) 2015; 13
Schimidt (CR51) 1993; 1
Widrow (CR57) 1990; 78
Albuquerque, Rebouças Filho, da Silveira Cavalcanti, Tavares (CR2) 2010; 240
Widrow, Winter (CR58) 1988; 21
Canny (CR11) 1986; 6
Papa, Falcão, de Albuquerque, Tavares (CR39) 2012; 45
Rebouças Filho, Cortez, Félix, Cavalcante, Holanda (CR46) 2013; 29
CR3
CR5
CR8
CR7
Minsky, Papert (CR34) 1969
CR9
Huang, Zhu, Siew (CR27) 2006; 70
Glasbey (CR20) 1993; 55
CR47
CR43
CR42
Papa, Falcão, Suzuki (CR41) 2009; 19
Moreira, Kleinberg, Arruda, Freitas, Parente, de Albuquerque, Rebouças Filho (CR35) 2016; 45
Medeiros, Barreto (CR32) 2013; 22
Schölkopf, Smola (CR52) 2002
Carrese, Mantovani, Nigro (CR12) 2014; 65
Barreto, Frota (CR6) 2013; 16
CR19
Russell, Norvig (CR50) 2009
Huang, Chen, Siew (CR25) 2006; 17
CR17
CR16
Duda, Hart (CR15) 1972; 15
Haykin (CR22) 2008
Kohonen (CR29) 1989
Yuen, Illingworth, Kittler (CR62) 1989; 7
Neto, Gomes, Filho, de Albuquerque (CR36) 2015; 70
Albuquerque, Barbosa, Silva, Moura, Rebouças Filho, Papa, Tavares (CR1) 2015; 15
Viola, Jones (CR56) 2001; 1
Falcão, Stolfi, Lotufo (CR18) 2004; 26
Huang, Wang, Lan (CR26) 2011; 2
Rebouças Filho, Cortez, da Silva Barros, Albuquerque (CR44) 2014; 41
Riedmiller, Braun (CR48) 1993; 1
Cortes, Vapnik (CR14) 1995; 20
Gomes, Rebouças, Rebouças Filho (CR21) 2014; 9
CR23
Kocer, Cevik (CR28) 2011; 3
CR64
Yi, Chen, Chang (CR60) 2015; 42
CR63
Papa, Falcao, Suzuki (CR40) 2009; 19
Arbib (CR4) 2003
Tu, van Wyk, Hamam, Djouani, Du (CR54) 2013; 4
Horata, Chiewchanwattana, Sunat (CR24) 2013; 102
Ruck, Rogers, Kabrisky, Oxley, Suter (CR49) 1990; 1
Tavares, Rebouças Filho, Cavalcante, de Albuquerque (CR53) 2009; 38
SC Yi (2388_CR60) 2015; 42
GB Huang (2388_CR27) 2006; 70
P Horata (2388_CR24) 2013; 102
C Cortes (2388_CR14) 1995; 20
BF Wu (2388_CR59) 2013; 39
2388_CR30
2388_CR31
B Schölkopf (2388_CR52) 2002
VHC Albuquerque (2388_CR1) 2015; 15
2388_CR33
HE Kocer (2388_CR28) 2011; 3
C Medeiros (2388_CR32) 2013; 22
GB Huang (2388_CR26) 2011; 2
JP Papa (2388_CR39) 2012; 45
2388_CR38
C Tu (2388_CR54) 2013; 4
S Carrese (2388_CR12) 2014; 65
VHC Albuquerque (2388_CR2) 2010; 240
JMR Tavares (2388_CR53) 2009; 38
S Yu (2388_CR61) 2015; 428
W Schimidt (2388_CR51) 1993; 1
B Widrow (2388_CR58) 1988; 21
2388_CR42
2388_CR43
2388_CR47
GB Huang (2388_CR25) 2006; 17
VN Vapnik (2388_CR55) 1999; 10
2388_CR5
2388_CR8
T Kohonen (2388_CR29) 1989
2388_CR7
CA Glasbey (2388_CR20) 1993; 55
AX Falcão (2388_CR18) 2004; 26
2388_CR9
J Canny (2388_CR11) 1986; 6
SL Gomes (2388_CR21) 2014; 9
DW Ruck (2388_CR49) 1990; 1
RO Duda (2388_CR15) 1972; 15
2388_CR3
G Barreto (2388_CR6) 2013; 16
PP Rebouças Filho (2388_CR45) 2015; 8
2388_CR16
2388_CR17
SJ Russell (2388_CR50) 2009
2388_CR19
FDL Moreira (2388_CR35) 2016; 45
M Riedmiller (2388_CR48) 1993; 1
C Burges (2388_CR10) 1998; 2
JP Papa (2388_CR40) 2009; 19
SO Haykin (2388_CR22) 2008
JP Papa (2388_CR41) 2009; 19
CC Chang (2388_CR13) 2011; 2
2388_CR63
2388_CR64
PP Rebouças Filho (2388_CR46) 2013; 29
2388_CR23
EC Neto (2388_CR37) 2015; 13
MA Arbib (2388_CR4) 2003
P Viola (2388_CR56) 2001; 1
HK Yuen (2388_CR62) 1989; 7
EC Neto (2388_CR36) 2015; 70
PP Rebouças Filho (2388_CR44) 2014; 41
M Minsky (2388_CR34) 1969
B Widrow (2388_CR57) 1990; 78
References_xml – volume: 240
  start-page: 50
  issue: 1
  year: 2010
  end-page: 59
  ident: CR2
  article-title: New computational solution to quantify synthetic material porosity from optical microscopic images
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2010.03384.x
– volume: 428
  start-page: 206
  year: 2015
  end-page: 223
  ident: CR61
  article-title: The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2015.01.064
– volume: 8
  start-page: 3864
  issue: 7
  year: 2015
  ident: CR45
  article-title: New analysis method application in metallographic images through the construction of mosaics via speeded up robust features and scale invariant feature transform
  publication-title: Materials
  doi: 10.3390/ma8073864
– ident: CR16
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  end-page: 131
  ident: CR40
  article-title: Supervised pattern classification based on optimum-path forest
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume: 55
  start-page: 532
  year: 1993
  end-page: 537
  ident: CR20
  article-title: Analysis of histogram-based thresholding algorithms
  publication-title: CVGIP Graph Models Image Process
  doi: 10.1006/cgip.1993.1040
– volume: 1
  start-page: 296
  issue: 4
  year: 1990
  end-page: 298
  ident: CR49
  article-title: The multilayer perceptron as an approximation to a bayes optimal discriminant function
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80266
– volume: 15
  start-page: 11
  issue: 1
  year: 1972
  end-page: 15
  ident: CR15
  article-title: Use of the hough transformation to detect lines and curves in pictures
  publication-title: Commun ACM
  doi: 10.1145/361237.361242
– ident: CR8
– year: 2003
  ident: CR4
  publication-title: The handbook of brain theory and neural networks
– volume: 7
  start-page: 31
  issue: 1
  year: 1989
  end-page: 37
  ident: CR62
  article-title: Detecting partially occluded ellipses using the hough transform
  publication-title: Image Vis Comput
  doi: 10.1016/0262-8856(89)90017-6
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: CR26
  article-title: Extreme learning machines: a survey
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– ident: CR42
– ident: CR19
– year: 2008
  ident: CR22
  publication-title: Neural networks and learning machines
– year: 2009
  ident: CR50
  publication-title: Artificial intelligence: a modern approach
– volume: 22
  start-page: 71
  issue: 1
  year: 2013
  end-page: 84
  ident: CR32
  article-title: A novel weight pruning method for mlp classifiers based on the maxcore principle
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0748-6
– volume: 6
  start-page: 679
  year: 1986
  end-page: 698
  ident: CR11
  article-title: A computational approach to edge detection
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– volume: 29
  start-page: 363
  issue: 4
  year: 2013
  end-page: 376
  ident: CR46
  article-title: Adaptive 2d crisp active contour model applied to lung segmentation in ct images of the thorax of healthy volunteers and patients with pulmonary emphysema
  publication-title: Revista Brasileira de Engenharia Biomédica
  doi: 10.4322/rbeb.2013.041
– volume: 45
  start-page: 294
  year: 2016
  end-page: 306
  ident: CR35
  article-title: A novel vickers hardness measurement technique based on adaptive balloon active contour method
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.09.025
– volume: 45
  start-page: 512
  issue: 1
  year: 2012
  end-page: 520
  ident: CR39
  article-title: Efficient supervised optimum-path forest classification for large datasets
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.07.013
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  end-page: 131
  ident: CR41
  article-title: Supervised pattern classification based on optimum-path forest
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume: 15
  start-page: 12,474
  issue: 6
  year: 2015
  ident: CR1
  article-title: Ultrasonic sensor signals and optimum-path forest classifier for the microstructural characterization of thermally-aged inconel 625 alloy
  publication-title: Sensors
  doi: 10.3390/s150612474
– ident: CR9
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  end-page: 999
  ident: CR55
  article-title: An overview of statistical learning theory
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– volume: 41
  start-page: 7707
  issue: 17
  year: 2014
  end-page: 7721
  ident: CR44
  article-title: Novel adaptive balloon active contour method based on internal force for image segmentation - a systematic evaluation on synthetic and real images
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.07.013
– volume: 1
  start-page: 598
  year: 1993
  end-page: 604
  ident: CR51
  article-title: Initialization, backpropagation and generalization of feed-forward classifiers
  publication-title: IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1993.298625
– ident: CR5
– volume: 3
  start-page: 1033
  year: 2011
  end-page: 1037
  ident: CR28
  article-title: Artificial neural networks based vehicle license plate recognition
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2010.12.169
– year: 1989
  ident: CR29
  publication-title: Self-organization and associative memory
  doi: 10.1007/978-3-642-88163-3
– volume: 70
  start-page: 36
  year: 2015
  end-page: 46
  ident: CR36
  article-title: Brazilian vehicle identification using a new embedded plate recognition system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.039
– volume: 1
  start-page: 586
  year: 1993
  end-page: 591
  ident: CR48
  article-title: A direct adaptive method for faster backpropagation learning: the RPROP algorithm
  publication-title: IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1993.298623
– ident: CR64
– volume: 13
  start-page: 272
  year: 2015
  end-page: 276
  ident: CR37
  article-title: Development control parking access using techniques digital image processing and applied computational intelligence. IEEE Transactions on Latin
  publication-title: IEEE Trans Latin America
  doi: 10.1109/TLA.2015.7040658
– ident: CR43
– ident: CR47
– volume: 16
  start-page: 83
  issue: 1
  year: 2013
  end-page: 97
  ident: CR6
  article-title: A unifying methodology for the evaluation of neural network models on novelty detection tasks
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-011-0265-3
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: CR10
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 65
  start-page: 35
  year: 2014
  end-page: 49
  ident: CR12
  article-title: A security plan procedure for heavy goods vehicles parking areas: an application to the lazio region (Italy)
  publication-title: Transp Res E Logist Transp Rev
  doi: 10.1016/j.tre.2013.12.011
– ident: CR30
– volume: 42
  start-page: 23
  year: 2015
  end-page: 29
  ident: CR60
  article-title: A lane detection approach based on intelligent vision
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.01.002
– ident: CR33
– volume: 9
  start-page: 9
  year: 2014
  end-page: 12
  ident: CR21
  article-title: Reconhecimento Óptico de caracteres para reconhecimento das sinalizações verticais das vias de trânsito
  publication-title: Rev SODEBRAS
– year: 1969
  ident: CR34
  publication-title: Perceptrons
– volume: 17
  start-page: 879
  year: 2006
  end-page: 892
  ident: CR25
  article-title: Universal approximation using incremental constructive feedforward networks with random hidden nodes
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875977
– volume: 102
  start-page: 31
  year: 2013
  end-page: 44
  ident: CR24
  article-title: Robust extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.045
– ident: CR63
– ident: CR23
– volume: 21
  start-page: 25
  year: 1988
  end-page: 39
  ident: CR58
  article-title: Neural nets for adaptative filtering and adaptative pattern recognition
  publication-title: IEEE Comput
  doi: 10.1109/2.29
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR14
  article-title: Support vector networks
  publication-title: Mach Learn
– volume: 4
  start-page: 316
  year: 2013
  end-page: 322
  ident: CR54
  article-title: Vehicle position monitoring using hough transform
  publication-title: Int Conf Electron Eng Comput Sci (EECS 2013)
– ident: CR3
– ident: CR38
– volume: 39
  start-page: 846
  issue: 3
  year: 2013
  end-page: 862
  ident: CR59
  article-title: A vision-based blind spot warning system for daytime and nighttime driver assistance
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.03.020
– volume: 38
  start-page: 1
  issue: 1
  year: 2009
  end-page: 7
  ident: CR53
  article-title: Brinell and vickers hardness measurement using image processing and analysis techniques
  publication-title: J Test Eval
– ident: CR17
– ident: CR31
– volume: 1
  start-page: 511
  year: 2001
  end-page: 518
  ident: CR56
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: IEEE Comput Soc Conf Comput Vision Pattern Recognit
– volume: 78
  start-page: 1415
  year: 1990
  end-page: 1442
  ident: CR57
  article-title: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation
  publication-title: Proc IEEE
  doi: 10.1109/5.58323
– ident: CR7
– volume: 26
  start-page: 19
  issue: 1
  year: 2004
  end-page: 29
  ident: CR18
  article-title: The image foresting transform theory, algorithms, and applications
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1261076
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: CR27
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– year: 2002
  ident: CR52
  publication-title: Learning with kernels
– volume: 2
  start-page: 27:1
  issue: 3
  year: 2011
  end-page: 27:27
  ident: CR13
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume-title: Learning with kernels
  year: 2002
  ident: 2388_CR52
– volume: 38
  start-page: 1
  issue: 1
  year: 2009
  ident: 2388_CR53
  publication-title: J Test Eval
– volume: 70
  start-page: 489
  year: 2006
  ident: 2388_CR27
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 2
  start-page: 107
  year: 2011
  ident: 2388_CR26
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– volume: 1
  start-page: 598
  year: 1993
  ident: 2388_CR51
  publication-title: IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1993.298625
– volume: 1
  start-page: 511
  year: 2001
  ident: 2388_CR56
  publication-title: IEEE Comput Soc Conf Comput Vision Pattern Recognit
– volume: 6
  start-page: 679
  year: 1986
  ident: 2388_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1986.4767851
– volume: 13
  start-page: 272
  year: 2015
  ident: 2388_CR37
  publication-title: IEEE Trans Latin America
  doi: 10.1109/TLA.2015.7040658
– ident: 2388_CR23
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  ident: 2388_CR41
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume-title: Self-organization and associative memory
  year: 1989
  ident: 2388_CR29
  doi: 10.1007/978-3-642-88163-3
– volume: 9
  start-page: 9
  year: 2014
  ident: 2388_CR21
  publication-title: Rev SODEBRAS
– volume: 55
  start-page: 532
  year: 1993
  ident: 2388_CR20
  publication-title: CVGIP Graph Models Image Process
  doi: 10.1006/cgip.1993.1040
– ident: 2388_CR7
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2388_CR14
  publication-title: Mach Learn
– ident: 2388_CR64
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 2388_CR10
  publication-title: Data Mining Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 22
  start-page: 71
  issue: 1
  year: 2013
  ident: 2388_CR32
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-011-0748-6
– volume-title: Neural networks and learning machines
  year: 2008
  ident: 2388_CR22
– volume: 45
  start-page: 294
  year: 2016
  ident: 2388_CR35
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.09.025
– ident: 2388_CR17
  doi: 10.1007/978-3-319-19665-7_5
– volume: 70
  start-page: 36
  year: 2015
  ident: 2388_CR36
  publication-title: Measurement
  doi: 10.1016/j.measurement.2015.03.039
– volume-title: The handbook of brain theory and neural networks
  year: 2003
  ident: 2388_CR4
– volume: 21
  start-page: 25
  year: 1988
  ident: 2388_CR58
  publication-title: IEEE Comput
  doi: 10.1109/2.29
– volume: 42
  start-page: 23
  year: 2015
  ident: 2388_CR60
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2015.01.002
– volume: 7
  start-page: 31
  issue: 1
  year: 1989
  ident: 2388_CR62
  publication-title: Image Vis Comput
  doi: 10.1016/0262-8856(89)90017-6
– ident: 2388_CR16
  doi: 10.1007/978-3-540-88636-5_90
– ident: 2388_CR3
  doi: 10.1109/ISBI.2013.6556694
– ident: 2388_CR38
– ident: 2388_CR8
  doi: 10.1016/B978-0-12-397041-1.00009-1
– volume: 78
  start-page: 1415
  year: 1990
  ident: 2388_CR57
  publication-title: Proc IEEE
  doi: 10.1109/5.58323
– volume: 240
  start-page: 50
  issue: 1
  year: 2010
  ident: 2388_CR2
  publication-title: J Microsc
  doi: 10.1111/j.1365-2818.2010.03384.x
– volume: 26
  start-page: 19
  issue: 1
  year: 2004
  ident: 2388_CR18
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2004.1261076
– ident: 2388_CR30
  doi: 10.1109/ICIP.2002.1038171
– volume: 17
  start-page: 879
  year: 2006
  ident: 2388_CR25
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.875977
– ident: 2388_CR47
  doi: 10.1007/978-3-642-53842-1_26
– volume: 39
  start-page: 846
  issue: 3
  year: 2013
  ident: 2388_CR59
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.03.020
– volume: 102
  start-page: 31
  year: 2013
  ident: 2388_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.045
– volume: 29
  start-page: 363
  issue: 4
  year: 2013
  ident: 2388_CR46
  publication-title: Revista Brasileira de Engenharia Biomédica
  doi: 10.4322/rbeb.2013.041
– volume: 4
  start-page: 316
  year: 2013
  ident: 2388_CR54
  publication-title: Int Conf Electron Eng Comput Sci (EECS 2013)
– ident: 2388_CR63
  doi: 10.1109/CVPR.2014.126
– volume: 16
  start-page: 83
  issue: 1
  year: 2013
  ident: 2388_CR6
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-011-0265-3
– volume: 15
  start-page: 12,474
  issue: 6
  year: 2015
  ident: 2388_CR1
  publication-title: Sensors
  doi: 10.3390/s150612474
– ident: 2388_CR42
– volume-title: Artificial intelligence: a modern approach
  year: 2009
  ident: 2388_CR50
– volume: 1
  start-page: 296
  issue: 4
  year: 1990
  ident: 2388_CR49
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80266
– volume: 15
  start-page: 11
  issue: 1
  year: 1972
  ident: 2388_CR15
  publication-title: Commun ACM
  doi: 10.1145/361237.361242
– volume-title: Perceptrons
  year: 1969
  ident: 2388_CR34
– volume: 45
  start-page: 512
  issue: 1
  year: 2012
  ident: 2388_CR39
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2011.07.013
– volume: 10
  start-page: 988
  issue: 5
  year: 1999
  ident: 2388_CR55
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.788640
– volume: 2
  start-page: 27:1
  issue: 3
  year: 2011
  ident: 2388_CR13
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– ident: 2388_CR9
– ident: 2388_CR19
  doi: 10.1109/IVS.2012.6232222
– volume: 19
  start-page: 120
  issue: 2
  year: 2009
  ident: 2388_CR40
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.20188
– volume: 8
  start-page: 3864
  issue: 7
  year: 2015
  ident: 2388_CR45
  publication-title: Materials
  doi: 10.3390/ma8073864
– ident: 2388_CR5
– volume: 1
  start-page: 586
  year: 1993
  ident: 2388_CR48
  publication-title: IEEE Int Conf Neural Netw
  doi: 10.1109/ICNN.1993.298623
– volume: 65
  start-page: 35
  year: 2014
  ident: 2388_CR12
  publication-title: Transp Res E Logist Transp Rev
  doi: 10.1016/j.tre.2013.12.011
– ident: 2388_CR43
  doi: 10.1109/ICCIC.2012.6510256
– volume: 428
  start-page: 206
  year: 2015
  ident: 2388_CR61
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2015.01.064
– ident: 2388_CR31
– ident: 2388_CR33
  doi: 10.1007/978-3-319-18833-1_19
– volume: 41
  start-page: 7707
  issue: 17
  year: 2014
  ident: 2388_CR44
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.07.013
– volume: 3
  start-page: 1033
  year: 2011
  ident: 2388_CR28
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2010.12.169
SSID ssj0004685
Score 2.3231926
Snippet The number of traffic accidents in Brazil has reached alarming levels and is currently one of the leading causes of death in the country. With the number of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 573
SubjectTerms Artificial Intelligence
Classifiers
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Embedded systems
Feature recognition
Frames per second
Image detection
Image processing
Image Processing and Computer Vision
Kernel functions
Least mean squares
Least mean squares algorithm
Machine learning
Multilayer perceptrons
Object recognition
Optical character recognition
Original Article
Probability and Statistics in Computer Science
Real time
Roads & highways
Signs
Speed limits
Street signs
Support vector machines
Traffic accidents
Traffic accidents & safety
Traffic safety
Traffic signs
Traffic speed
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQkAcmkIVj5zkhhFoxVR1Aqlgiv1JVatPSFH4_Z9dpCwIW1iROIt357jv7830IXcuCZVoZTaLQCBImNCFCRxkxWaZDJo2VRnFiE0mvlw4GWd8vuFWeVlnHRBeo9VTZNfI7zmgMvpew-H72RqxqlN1d9RIa22jHdkmw0g396HXjXKST5IQKxrJ7Ql7valLXRBQSFxTSMYGklRL-NS-twea3_VGXdrrN__7wAdr3gBM_LD3kEG2Z8gg1azEH7Of2MSo6E2kgCmkMMHJMrOY8rmaQ2_DYnoHCluiBV3SjaYktY36IRxMISHi2PG5gL4hS44ljaBrsJSmGeNUptjpBL93O8-MT8SIMRIVBuCCR5iZIBRVUQWViDJXUZCJKuQTgIAsNRg2YpkwrlgqmC6bSKCkkVEpCSiFSfooa5bQ0ZwhnmeKJBB8wXIWcKhlBcI0AoYhYcpmqFqK1CXLlO5RboYxxvuqt7KyWW1aatVrOW-hmNWS2bM_x18Pt2lK5n6lVDhEoAUgYJD_fXluxhW5rV9gY_du3zv9-2QXaYxYfOF5MGzUW83dziXbVx2JUza-cF38C9V75TA
  priority: 102
  providerName: ProQuest
Title Embedded real-time speed limit sign recognition using image processing and machine learning techniques
URI https://link.springer.com/article/10.1007/s00521-016-2388-3
https://www.proquest.com/docview/1967441173
https://www.proquest.com/docview/3206225726
Volume 28
WOSCitedRecordID wos000417319700047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: P5Z
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1433-3058
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004685
  issn: 0941-0643
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5RYGDhjSiUygMTyJJrJ40zAipiqqryEGKJ_EpVqQ0VKfx-zmkSCgIkWBM7ie7se8Tf3QdwqlMeW-MsDQOnaBCxiCobxtTFsQ24dp4apSCbiPp9-fgYD8o67rxCu1dHkoWlrovd_B9Mn_p2KboZSUUD1tDbSc_XMLx9WCqGLHg4MW3xkJ5AVEeZ3z3iszP6iDC_HIoWvuZ6619fuQ2bZWhJLhZrYQdWXLYLWxVtAyl38R6kval2aG8swYBxQj27PMln6MXIxFc7EQ_pIDWw6DkjHhs_IuMpmh4yWxQW-Asqs2RaYDEdKcknRqTuCZvvw_117-7qhpZ0C9QEnWBOQytcRyqmmMEcxDmmmYtVKIXGEEGnFtXX4ZZxa7hU3KbcyDBKNeZESmulpDiA1ew5c4dA4tiISKO2nTCBYEaHaEZDjEVUVwstTRNYJffElL3IPSXGJKm7KBdyTDz-zMsxEU04q6fMFo04fhvcqpSZlHsyT9DWRBj8daLvbwvOumjcIt5twnml26XZP73r6E-jj2GD-8CgAMS0YHX-8upOYN28zcf5SxvWLnv9wbANjUH41C7W9TublfFA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB5RQGov5S2W8vABLiALr-1skkNVVTwEAlYcQEJcgl9BK-1mt2Rp1T_V39ixN1keAm4cuCax8_Dnmc_xzHwAmzrnqTXO0kg6RWXMYqpslFKXplZy7bw0ShCbiNvt5OoqPZ-Af3UujA-rrG1iMNS2b_w_8l3BWQuxF_PWj8Ev6lWj_O5qLaExgsWJ-_sHl2zl9-N9HN8tzg8PLvaOaKUqQI1syiGNrHDNRDHFDFJt55hmLlVRIjR6Qp1bfMomt4xbwxPFbc5NEsW5RuqvtFYqEdjvJ5iSkjM_i86j60d5mEECFFdMPppIinoXlYWipegoceHeougkEyqe-sEHcvtsPza4ucOZj_aBZuFrRajJz9EMmIMJV8zDTC1WQSrbtQD5QU87tLKWIE3u0mGn50g5QN9Nuj7Hi_hAFjIOp-oXxGcE3JJODw0uGYzSKfwBVVjSCxGojlSSG7dkXAm3XITLd3nbJZgs-oVbBpKmRsQaMe6EkYIZHaHziJCBqZYWOjENYPWQZ6aqwO6FQLrZuHZ0QEnmo-48SjLRgO1xk8Go_MhbF6_WyMgqS1RmaGFjpLzN-OXTD6hpwE4NvUetX7vXytudbcDno4uz0-z0uH3yDb5wz4VCDNAqTA7v7t0aTJvfw055tx5mEIGb90bkfzViWHc
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFfFiXbFaNQdPSjBNZj2KtihKKbjQ25BtSqGdlk7195vMZpUqiNeZZGbIS94y73vvAzgXMQ2V1Aq7jubY8YmPuXJDrMNQOVRoS42SkU343W7Q74e9guc0LdHuZUoyr2mwXZqS-dVUxVdV4Zv9m2nDYA8bkxNgtgprjsXR23D96XWhMDLj5DQhjIX3OKxMay57xFfD9OltfkuQZnanU__3F2_DVuFyout8j-zAik52oV7SOaDidO9B3B4LbfSQQsaRHGHLOo_SqbFuaGSroJCFeqAKcDRJkMXMD9BwbFQSmuYFB_YCTxQaZxhNjQpSigGqesWm-_DSaT_f3OGChgFLp-XMsauYbgWccCJNbKI1EUSH3A2YMK6DiJURa4sqQpWkAacqpjJw_ViYWIkLwXnADqCWTBJ9CCgMJfOF2QWaSYcRKVyjXl3jo3BPMBHIBpBSBpEsepRbqoxRVHVXztYxsrg0u44Ra8BFNWWaN-j4bXCzFGxUnNU0MjrIN05hy19-m1HiGaXnU68Bl6WcF2b_9K6jP40-g43ebSd6vO8-HMMmtb5DhplpQm0-e9MnsC7f58N0dppt8A_FFfpu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Embedded+real-time+speed+limit+sign+recognition+using+image+processing+and+machine+learning+techniques&rft.jtitle=Neural+computing+%26+applications&rft.au=Gomes%2C+Samuel+L&rft.au=Eliz%C3%A2ngela+de+S.+Rebou%C3%A7as&rft.au=Edson+Cavalcanti+Neto&rft.au=Papa%2C+Jo%C3%A3o+P&rft.date=2017-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=28&rft.issue=1&rft.spage=573&rft.epage=584&rft_id=info:doi/10.1007%2Fs00521-016-2388-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon