Anomaly detection using unsupervised machine learning algorithms: A simulation study
This study presents a comprehensive evaluation of five prominent unsupervised machine learning anomaly detection algorithms: One-Class Support Vector Machine (One-Class SVM), One-Class SVM with Stochastic Gradient Descent (SGD), Isolation Forest (iForest), Local Outlier Factor (LOF), and Robust Cova...
Uloženo v:
| Vydáno v: | Scientific African Ročník 26; s. e02386 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2024
Elsevier |
| Témata: | |
| ISSN: | 2468-2276, 2468-2276 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!