Combined prediction of rockburst based on multiple factors and stacking ensemble algorithm
Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Th...
Gespeichert in:
| Veröffentlicht in: | Underground space (Beijing) Jg. 13; S. 241 - 261 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2023
KeAi Communications Co., Ltd |
| Schlagworte: | |
| ISSN: | 2467-9674, 2467-9674 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Therefore, it is of great significance to study the tendency of rockburst in the early stage of tunnel survey, design and construction. At present, there is no unified method and selected parameters for rockburst prediction. In view of the large difference of different rockburst criteria and the imbalance of rockburst database categories, this paper presents a two-step rockburst prediction method based on multiple factors and the stacking ensemble algorithm. Considering the influence of rock physical and mechanical parameters, tunnel face conditions and excavation disturbance, multiple rockburst criteria are predicted by integrating multiple machine learning algorithms. A combined prediction model of rockburst criteria is established, and the results of each rockburst criterion index are weighted and combined, with the weight updated using the field rockburst record. The dynamic weight is combined with the cloud model to comprehensively evaluate the regional rockburst risk. Field results from applying the model in the Grand Canyon tunnel show that the rockburst prediction method proposed in this paper has better applicability and higher accuracy than the single rockburst criterion. |
|---|---|
| AbstractList | Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Therefore, it is of great significance to study the tendency of rockburst in the early stage of tunnel survey, design and construction. At present, there is no unified method and selected parameters for rockburst prediction. In view of the large difference of different rockburst criteria and the imbalance of rockburst database categories, this paper presents a two-step rockburst prediction method based on multiple factors and the stacking ensemble algorithm. Considering the influence of rock physical and mechanical parameters, tunnel face conditions and excavation disturbance, multiple rockburst criteria are predicted by integrating multiple machine learning algorithms. A combined prediction model of rockburst criteria is established, and the results of each rockburst criterion index are weighted and combined, with the weight updated using the field rockburst record. The dynamic weight is combined with the cloud model to comprehensively evaluate the regional rockburst risk. Field results from applying the model in the Grand Canyon tunnel show that the rockburst prediction method proposed in this paper has better applicability and higher accuracy than the single rockburst criterion. |
| Author | Luo, Hu Yao, Zhigang Wang, Yubo Liao, Hang Fang, Yong Wang, Jianfeng Yu, Tao |
| Author_xml | – sequence: 1 givenname: Hu orcidid: 0000-0002-4193-6927 surname: Luo fullname: Luo, Hu – sequence: 2 givenname: Yong orcidid: 0000-0002-2367-170X surname: Fang fullname: Fang, Yong – sequence: 3 givenname: Jianfeng orcidid: 0000-0003-2299-4723 surname: Wang fullname: Wang, Jianfeng – sequence: 4 givenname: Yubo surname: Wang fullname: Wang, Yubo – sequence: 5 givenname: Hang surname: Liao fullname: Liao, Hang – sequence: 6 givenname: Tao surname: Yu fullname: Yu, Tao – sequence: 7 givenname: Zhigang orcidid: 0000-0001-8993-2805 surname: Yao fullname: Yao, Zhigang email: bk20110739@my.swjtu.edu.cn |
| BookMark | eNqFkc-KFDEQh4Os4LruE3jpF5i2Mun86YMHGdRdWPCiFy8hXamMme1OhiQj-Pb27IiIBz1VUcX3g_rqJbtKORFjrzn0HLh6c-hPyddjv4Wt6EH2AOIZu94OSm9GpYerP_oX7LbWAwBswWij5TX7usvLFBP57ljIR2wxpy6HrmR8nE6ltm5ydd2u0-U0t3icqQsOWy61c8l3tTl8jGnfUaq0TOvWzftcYvu2vGLPg5sr3f6qN-zLh_efd3ebh08f73fvHjY48KFtpJakR8EF95Pmo_CD9FIOQfHRE6IRQaEZJg6GDBdCKWPURAGCcBgmFcQNu7_k-uwO9lji4soPm120T4Nc9taVFnEmqzXCpAE1FzgQB2f86FCCIy5BKblmiUsWllxrofA7j4M927YH-2Tbnm1bkHa1vVLjXxTG5s4qW3Fx_g_79sLSquh7pGIrRkq4PqMQtvWG-E_-J0hen3A |
| CitedBy_id | crossref_primary_10_1007_s00521_023_09189_2 crossref_primary_10_1038_s41598_024_72998_5 crossref_primary_10_1007_s11053_024_10412_7 crossref_primary_10_1007_s11771_024_5810_5 crossref_primary_10_1007_s10462_025_11261_3 crossref_primary_10_1016_j_tust_2024_106350 crossref_primary_10_1007_s12303_025_00052_1 crossref_primary_10_1016_j_tust_2024_106021 crossref_primary_10_1057_s41300_024_00222_7 crossref_primary_10_1016_j_undsp_2023_09_001 crossref_primary_10_1177_00405175241227633 crossref_primary_10_1007_s42461_024_00933_3 crossref_primary_10_1016_j_compgeo_2024_106440 crossref_primary_10_1016_j_undsp_2025_04_010 crossref_primary_10_3389_feart_2024_1514591 crossref_primary_10_1002_dug2_70021 crossref_primary_10_1016_j_compgeo_2024_106805 crossref_primary_10_1016_j_undsp_2024_04_008 crossref_primary_10_1007_s40996_025_01980_6 crossref_primary_10_3389_fpls_2025_1539068 crossref_primary_10_1038_s41598_025_99744_9 |
| Cites_doi | 10.1007/BF01239496 10.1016/j.jrmge.2021.12.015 10.1016/j.ipm.2022.103235 10.1016/j.artint.2022.103788 10.1007/s00603-021-02614-9 10.1016/j.jocs.2022.101587 10.1016/j.jrmge.2021.05.004 10.1007/s11053-020-09787-0 10.1016/j.iswa.2022.200165 10.1007/s11069-013-0635-9 10.1016/0148-9062(81)91194-3 10.1016/j.engfailanal.2022.106634 10.1016/j.undsp.2021.11.008 10.1016/j.ijmst.2019.06.009 10.4028/www.scientific.net/AMM.256-259.1161 10.1016/j.cma.2019.112790 10.1016/j.cor.2021.105456 10.1016/j.tust.2019.04.019 10.1016/j.cie.2022.108611 10.1016/j.tust.2010.04.004 10.1016/j.eswa.2021.115293 10.1016/j.eswa.2019.112918 10.1061/(ASCE)GM.1943-5622.0001221 10.4236/ojsst.2015.54013 |
| ContentType | Journal Article |
| Copyright | 2023 Tongji University |
| Copyright_xml | – notice: 2023 Tongji University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.undsp.2023.05.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Architecture |
| EISSN | 2467-9674 |
| EndPage | 261 |
| ExternalDocumentID | oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665 10_1016_j_undsp_2023_05_003 S2467967423000843 |
| GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABDBF ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX ABJCF ACVFH ADCNI ADVLN AEUPX AFFHD AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PIMPY PQGLB PTHSS |
| ID | FETCH-LOGICAL-c414t-575e793131db7193d45d554f619decc83f6c84b108e813366886bef0f3acfb6f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2467-9674 |
| IngestDate | Fri Oct 03 12:51:48 EDT 2025 Tue Nov 18 22:42:28 EST 2025 Thu Nov 13 04:34:19 EST 2025 Sat Aug 05 16:01:01 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stacking ensemble algorithm Rockburst Combined prediction Cloud model |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-575e793131db7193d45d554f619decc83f6c84b108e813366886bef0f3acfb6f3 |
| ORCID | 0000-0002-2367-170X 0000-0002-4193-6927 0000-0003-2299-4723 0000-0001-8993-2805 |
| OpenAccessLink | https://doaj.org/article/77c0b70c713c4e10a8d9ac50ae150665 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665 crossref_primary_10_1016_j_undsp_2023_05_003 crossref_citationtrail_10_1016_j_undsp_2023_05_003 elsevier_sciencedirect_doi_10_1016_j_undsp_2023_05_003 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Underground space (Beijing) |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Wang (b0200) 2021; 41 Liu, Shao, Xu, Meng (b0125) 2013; 68 Shokrzade, Ramezani, Akhlaghian Tab, Abdulla Mohammad (b0160) 2021; 183 Tang, Xu (b0190) 2020; 39 Kunwar, Choudhary (b0100) 2023; 17 Wong, Seng, Wong (b0205) 2020; 141 Yu, Geng, Tong, Zhao, Diao, Huang (b0230) 2018; 18 Zhang, Deng, Li, Chen, Qu (b0240) 2022; 18 Blanco, Japón, Puerto (b0020) 2022; 172 Gong, Luo, Jiang, Xu (b0060) 2022; 14 Yang, Zhou, Lu, Zhang, Hu (b0210) 2015; 34 Pu, Apel, Xu (b0140) 2019; 90 Hou, F., Liu, X., & Wang, M. (1992). Discussion on rockburst origin and degree. In Sun, Wu, Zhang, Zhang, Wang (b0170) 2022; 59 He, Wang, Liu, Guo, Fan (b0075) 2021; 43 Kidybiński (b0095) 1981; 18 Zhu, Li, Zhu, Tang (b0250) 2010; 25 Yin, Liu, Pan, Huang, Wu, Wang (b0225) 2021; 30 Han, Ming, Ai (b0070) 2010; 27 Zheng, Abi (b0245) 2022; 59 Gao, Xu, Zhou (b0055) 2022; 313 Li, Wang, Liu, Liu, Liu, Lv (b0105) 2021; 3 Zhang, Zeng, Ma, Fang, Ma, Yao, Chen (b0235) 2021; 54 Liu, Ma, Wang, Dong (b0120) 2022; 47 Pu, Apel, Liu, Mitri (b0135) 2019; 29 Ding, Sun, Wang, Huang, Shen, Cui (b0050) 2023; 60 Barton, Lien, Lunde (b0015) 1974; 6 Askaripour, Saeidi, Rouleau, Mercier-Langevin (b0005) 2022; 7 Tan, Ye, Hu, Wu, Huang (b0175) 2021; 40 Russenes, B.F. (1974) Analysis of rock spalling for tunnels in steep valley sides (in Norwegian). Master’s Thesis, Norwegian Institute of Technology, Department of Geology, Norway, 247. Yao, Fang, Yu, Pu, Luo, Cui, Wang (b0220) 2022; 141 Wuhan, China (pp. 8–14). (in Chinese) Yang, Pei, Cheng, Hou, Lv (b0215) 2021; 40 Hou, Liu, Yang (b0085) 2022; 14 Bao, Wu, Zhang, Li, Guo, Li (b0010) 2022; 43 Wang, Li, Shao, Zhang, Xu, Wang (b0195) 2021; 46 ARMA-66-0167. Tao (b0185) 1988 Guo, Zhou, Ru (b0065) 2012; 256–259 Kabwe, Wang (b0090) 2015; 5 (pp. 3107–3111). Chen, Yu, Shi (b0035) 2016; 53 Radhimeenakshi, S. (2016). Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network. In Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Rabczuk (b0155) 2020; 362 Song, Pang, Li, Jiang, Qi (b0165) 2022; 18 Cook, N.G.W. (1966). The design of underground excavations. In Tan, Hu, Ye, Wu, Huang, Wang (b0180) 2022; 41 Ma, Li, Li, Ma, Li, Zhang (b0130) 2020; 28 Liu, Xu, Liu, Deng (b0115) 2021; 52 Brown, Hoek (b0030) 1980 Dai, Wu, Li, Yuan (b0045) 2020; 28 Liu, Dai, Zuo, Shang, Chen, Guo (b0110) 2022; 41 Blanquero, Carrizosa, Ramírez-Cobo, Sillero-Denamiel (b0025) 2021; 135 Song (10.1016/j.undsp.2023.05.003_b0165) 2022; 18 Tan (10.1016/j.undsp.2023.05.003_b0180) 2022; 41 Bao (10.1016/j.undsp.2023.05.003_b0010) 2022; 43 Dai (10.1016/j.undsp.2023.05.003_b0045) 2020; 28 Kidybiński (10.1016/j.undsp.2023.05.003_b0095) 1981; 18 Zhu (10.1016/j.undsp.2023.05.003_b0250) 2010; 25 Shokrzade (10.1016/j.undsp.2023.05.003_b0160) 2021; 183 Gao (10.1016/j.undsp.2023.05.003_b0055) 2022; 313 Blanco (10.1016/j.undsp.2023.05.003_b0020) 2022; 172 Zheng (10.1016/j.undsp.2023.05.003_b0245) 2022; 59 Yang (10.1016/j.undsp.2023.05.003_b0210) 2015; 34 Sun (10.1016/j.undsp.2023.05.003_b0170) 2022; 59 10.1016/j.undsp.2023.05.003_b0145 Blanquero (10.1016/j.undsp.2023.05.003_b0025) 2021; 135 Liu (10.1016/j.undsp.2023.05.003_b0115) 2021; 52 Liu (10.1016/j.undsp.2023.05.003_b0125) 2013; 68 Wang (10.1016/j.undsp.2023.05.003_b0200) 2021; 41 Yu (10.1016/j.undsp.2023.05.003_b0230) 2018; 18 Yin (10.1016/j.undsp.2023.05.003_b0225) 2021; 30 Wang (10.1016/j.undsp.2023.05.003_b0195) 2021; 46 Pu (10.1016/j.undsp.2023.05.003_b0140) 2019; 90 Tan (10.1016/j.undsp.2023.05.003_b0175) 2021; 40 Yang (10.1016/j.undsp.2023.05.003_b0215) 2021; 40 He (10.1016/j.undsp.2023.05.003_b0075) 2021; 43 Barton (10.1016/j.undsp.2023.05.003_b0015) 1974; 6 Brown (10.1016/j.undsp.2023.05.003_b0030) 1980 10.1016/j.undsp.2023.05.003_b0150 Ma (10.1016/j.undsp.2023.05.003_b0130) 2020; 28 Guo (10.1016/j.undsp.2023.05.003_b0065) 2012; 256–259 Liu (10.1016/j.undsp.2023.05.003_b0120) 2022; 47 Pu (10.1016/j.undsp.2023.05.003_b0135) 2019; 29 Samaniego (10.1016/j.undsp.2023.05.003_b0155) 2020; 362 Tao (10.1016/j.undsp.2023.05.003_b0185) 1988 Askaripour (10.1016/j.undsp.2023.05.003_b0005) 2022; 7 Chen (10.1016/j.undsp.2023.05.003_b0035) 2016; 53 10.1016/j.undsp.2023.05.003_b0080 Han (10.1016/j.undsp.2023.05.003_b0070) 2010; 27 Gong (10.1016/j.undsp.2023.05.003_b0060) 2022; 14 Wong (10.1016/j.undsp.2023.05.003_b0205) 2020; 141 Zhang (10.1016/j.undsp.2023.05.003_b0235) 2021; 54 Liu (10.1016/j.undsp.2023.05.003_b0110) 2022; 41 Ding (10.1016/j.undsp.2023.05.003_b0050) 2023; 60 Kabwe (10.1016/j.undsp.2023.05.003_b0090) 2015; 5 Tang (10.1016/j.undsp.2023.05.003_b0190) 2020; 39 Yao (10.1016/j.undsp.2023.05.003_b0220) 2022; 141 Kunwar (10.1016/j.undsp.2023.05.003_b0100) 2023; 17 10.1016/j.undsp.2023.05.003_b0040 Li (10.1016/j.undsp.2023.05.003_b0105) 2021; 3 Zhang (10.1016/j.undsp.2023.05.003_b0240) 2022; 18 Hou (10.1016/j.undsp.2023.05.003_b0085) 2022; 14 |
| References_xml | – volume: 362 year: 2020 ident: b0155 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 6 start-page: 189 year: 1974 end-page: 236 ident: b0015 article-title: Engineering classification of rock masses for the design of tunnel publication-title: Rock Mechanics – volume: 41 start-page: 212 year: 2021 end-page: 224 ident: b0200 article-title: Overview of state-of-art of rockburst prediction and prevention techniques for deep-buried tunnels publication-title: Tunnel Construction – volume: 18 start-page: 39 year: 2022 end-page: 46 ident: b0165 article-title: Research on rockburst prediction based on anti-weighting and MBCT – SR multi-dimensional cloud model algorithm publication-title: Journal of Safety Science and Technology – volume: 18 start-page: 305 year: 2022 end-page: 311 ident: b0240 article-title: Prediction of rockburst dangerousness based on elastic strain energy characteristic publication-title: Chinese Journal of Underground Space and Engineering – reference: . ARMA-66-0167. – volume: 68 start-page: 549 year: 2013 end-page: 568 ident: b0125 article-title: Prediction of rock burst classification using the technique of cloud models with attribution weight publication-title: Natural Hazards – volume: 141 year: 2020 ident: b0205 article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain publication-title: Expert Systems with Applications – volume: 17 year: 2023 ident: b0100 article-title: A stacked ensemble model for automatic stroke prediction using only raw electrocardiogram publication-title: Intelligent Systems with Applications – volume: 47 start-page: 43 year: 2022 end-page: 52 ident: b0120 article-title: Cloud model evaluation of poisoning and suffocation accidents in underground mines based on combined weighting publication-title: Journal of Kunming University of Science and Technology (Natural Science) – volume: 39 start-page: 773 year: 2020 end-page: 781 ident: b0190 article-title: Rockburst prediction based on nine machine learning algorithms publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 18 start-page: 295 year: 1981 end-page: 304 ident: b0095 article-title: Bursting liability indices of coal publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts – volume: 5 start-page: 104 year: 2015 end-page: 121 ident: b0090 article-title: Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines publication-title: Open Journal of Safety Science and Technology – volume: 7 start-page: 577 year: 2022 end-page: 607 ident: b0005 article-title: Rockburst in underground excavations: A review of mechanism, classification, and prediction methods publication-title: Underground Space – reference: Hou, F., Liu, X., & Wang, M. (1992). Discussion on rockburst origin and degree. In – volume: 3 start-page: 171 year: 2021 end-page: 175 ident: b0105 article-title: Research on dynamic classification of surrounding rock in mountain tunnel publication-title: Subgrade Engineering – reference: , Wuhan, China (pp. 8–14). (in Chinese) – volume: 34 start-page: 2706 year: 2015 end-page: 2714 ident: b0210 article-title: An energy criterion in process of rockburst publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 172 year: 2022 ident: b0020 article-title: A mathematical programming approach to SVM-based classification with label noise publication-title: Computers & Industrial Engineering – volume: 90 start-page: 12 year: 2019 end-page: 18 ident: b0140 article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier publication-title: Tunnelling and Underground Space Technology – volume: 59 year: 2022 ident: b0170 article-title: Based on multi-algorithm hybrid method to predict the slope safety factor – Stacking ensemble learning with Bayesian optimization publication-title: Journal of Computational Science – volume: 43 start-page: 104 year: 2022 end-page: 116 ident: b0010 article-title: Net load forecasting method based on feature-weighted stacking ensemble learning publication-title: Electric Power Construction – volume: 53 start-page: 38 year: 2016 end-page: 44 ident: b0035 article-title: A combined prediction method for rock bursts based on a data fusion algorithm publication-title: Modern Tunneling Technology – reference: Cook, N.G.W. (1966). The design of underground excavations. In – volume: 28 start-page: 1415 year: 2020 end-page: 1424 ident: b0130 article-title: KNN method for intelligent observational classification of rock mass quality in tunnel publication-title: Journal of Engineering Geology – volume: 60 year: 2023 ident: b0050 article-title: RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification publication-title: Information Processing & Management – volume: 135 year: 2021 ident: b0025 article-title: Variable selection for Naïve Bayes classification publication-title: Computers & Operations Research – volume: 14 start-page: 123 year: 2022 end-page: 143 ident: b0085 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: Journal of Rock Mechanics and Geotechnical Engineering – volume: 41 start-page: 2915 year: 2022 end-page: 2926 ident: b0110 article-title: Research on rockburst grade prediction based on stacking integrated algorithm publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 40 start-page: 2708 year: 2021 end-page: 2715 ident: b0215 article-title: Prediction method of rockburst intensity grade based on SOFM neural network model publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 52 start-page: 659 year: 2021 end-page: 670 ident: b0115 article-title: Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM publication-title: Journal of Central South University (Science and Technology) – volume: 141 year: 2022 ident: b0220 article-title: Dynamic failure mechanism of tunnel under rapid unloading in jointed rockmass: A case study publication-title: Engineering Failure Analysis – year: 1988 ident: b0185 article-title: Support Design of Tunnels Subjected to Rockbursting publication-title: ISRM International Symposium. – volume: 29 start-page: 565 year: 2019 end-page: 570 ident: b0135 article-title: Machine learning methods for rockburst prediction-state-of-the-art review publication-title: International Journal of Mining Science and Technology – volume: 30 start-page: 1795 year: 2021 end-page: 1815 ident: b0225 article-title: Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models publication-title: Natural Resources Research – volume: 14 start-page: 1737 year: 2022 end-page: 1746 ident: b0060 article-title: Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law publication-title: Journal of Rock Mechanics and Geotechnical Engineering – year: 1980 ident: b0030 article-title: Underground excavations in rock – reference: Russenes, B.F. (1974) Analysis of rock spalling for tunnels in steep valley sides (in Norwegian). Master’s Thesis, Norwegian Institute of Technology, Department of Geology, Norway, 247. – volume: 28 year: 2020 ident: b0045 article-title: Incorporating feature selection in the improved stacking algorithm for online learning analysis and prediction publication-title: Engineering Letters – volume: 41 start-page: 3250 year: 2022 end-page: 3259 ident: b0180 article-title: Rockburst intensity classification prediction based on four ensemble learning publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 25 start-page: 587 year: 2010 end-page: 599 ident: b0250 article-title: Numerical simulation on rockburst of underground opening triggered by dynamic disturbance publication-title: Tunnelling and Underground Space Technology – volume: 256–259 start-page: 1161 year: 2012 end-page: 1166 ident: b0065 article-title: Underground engineering rock burst review of research publication-title: Applied Mechanics and Materials – volume: 54 start-page: 6299 year: 2021 end-page: 6321 ident: b0235 article-title: Time series prediction of microseismic multi-parameter related to rockburst based on deep learning publication-title: Rock Mechanics & Rock Engineering – volume: 43 start-page: 71 year: 2021 end-page: 78 ident: b0075 article-title: Research progress on in-situ stress distribution and testing technology of deep rock mass publication-title: Protective Engineering – volume: 46 start-page: 32 year: 2021 end-page: 37 ident: b0195 article-title: BP neural network model optimization for rockburst prediction based on nine unconstrained optimization algorithms publication-title: Journal of Kunming University of Science and Technology (Natural Sciences) – reference: , (pp. 3107–3111). – volume: 18 start-page: 06018016 year: 2018 ident: b0230 article-title: Time fractal behavior of microseismic events for different intensities of immediate rock bursts publication-title: International Journal of Geomechanics – volume: 59 start-page: 1 year: 2022 end-page: 13 ident: b0245 article-title: On stability analysis and classification of surrounding rocks in rock tunnels publication-title: Modern Tunnelling Technology – volume: 40 start-page: 1186 year: 2021 end-page: 1194 ident: b0175 article-title: Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 313 year: 2022 ident: b0055 article-title: Towards convergence rate analysis of random forests for classification publication-title: Artificial Intelligence – volume: 27 start-page: 36 year: 2010 end-page: 41 ident: b0070 article-title: Evaluation on commonly used method of in-situ stress testing technique publication-title: Journal of Yangtze River Scientific Research Institute – reference: Radhimeenakshi, S. (2016). Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network. In – volume: 183 year: 2021 ident: b0160 article-title: A novel extreme learning machine based kNN classification method for dealing with big data publication-title: Expert Systems with Applications – ident: 10.1016/j.undsp.2023.05.003_b0080 – volume: 28 issue: 4 year: 2020 ident: 10.1016/j.undsp.2023.05.003_b0045 article-title: Incorporating feature selection in the improved stacking algorithm for online learning analysis and prediction publication-title: Engineering Letters – volume: 6 start-page: 189 issue: 4 year: 1974 ident: 10.1016/j.undsp.2023.05.003_b0015 article-title: Engineering classification of rock masses for the design of tunnel publication-title: Rock Mechanics doi: 10.1007/BF01239496 – volume: 27 start-page: 36 issue: 12 year: 2010 ident: 10.1016/j.undsp.2023.05.003_b0070 article-title: Evaluation on commonly used method of in-situ stress testing technique publication-title: Journal of Yangtze River Scientific Research Institute – volume: 43 start-page: 104 issue: 9 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0010 article-title: Net load forecasting method based on feature-weighted stacking ensemble learning publication-title: Electric Power Construction – volume: 59 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0245 article-title: On stability analysis and classification of surrounding rocks in rock tunnels publication-title: Modern Tunnelling Technology – volume: 43 start-page: 71 issue: 4 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0075 article-title: Research progress on in-situ stress distribution and testing technology of deep rock mass publication-title: Protective Engineering – volume: 14 start-page: 1737 issue: 6 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0060 article-title: Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2021.12.015 – volume: 34 start-page: 2706 issue: S1 year: 2015 ident: 10.1016/j.undsp.2023.05.003_b0210 article-title: An energy criterion in process of rockburst publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 60 issue: 2 year: 2023 ident: 10.1016/j.undsp.2023.05.003_b0050 article-title: RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification publication-title: Information Processing & Management doi: 10.1016/j.ipm.2022.103235 – volume: 28 start-page: 1415 issue: 6 year: 2020 ident: 10.1016/j.undsp.2023.05.003_b0130 article-title: KNN method for intelligent observational classification of rock mass quality in tunnel publication-title: Journal of Engineering Geology – volume: 18 start-page: 305 issue: S1 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0240 article-title: Prediction of rockburst dangerousness based on elastic strain energy characteristic publication-title: Chinese Journal of Underground Space and Engineering – year: 1988 ident: 10.1016/j.undsp.2023.05.003_b0185 article-title: Support Design of Tunnels Subjected to Rockbursting publication-title: ISRM International Symposium. – volume: 313 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0055 article-title: Towards convergence rate analysis of random forests for classification publication-title: Artificial Intelligence doi: 10.1016/j.artint.2022.103788 – volume: 53 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.undsp.2023.05.003_b0035 article-title: A combined prediction method for rock bursts based on a data fusion algorithm publication-title: Modern Tunneling Technology – volume: 54 start-page: 6299 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0235 article-title: Time series prediction of microseismic multi-parameter related to rockburst based on deep learning publication-title: Rock Mechanics & Rock Engineering doi: 10.1007/s00603-021-02614-9 – volume: 59 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0170 article-title: Based on multi-algorithm hybrid method to predict the slope safety factor – Stacking ensemble learning with Bayesian optimization publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2022.101587 – volume: 14 start-page: 123 issue: 1 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0085 article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning publication-title: Journal of Rock Mechanics and Geotechnical Engineering doi: 10.1016/j.jrmge.2021.05.004 – volume: 46 start-page: 32 issue: 5 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0195 article-title: BP neural network model optimization for rockburst prediction based on nine unconstrained optimization algorithms publication-title: Journal of Kunming University of Science and Technology (Natural Sciences) – volume: 30 start-page: 1795 issue: 2 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0225 article-title: Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models publication-title: Natural Resources Research doi: 10.1007/s11053-020-09787-0 – volume: 39 start-page: 773 issue: 4 year: 2020 ident: 10.1016/j.undsp.2023.05.003_b0190 article-title: Rockburst prediction based on nine machine learning algorithms publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 17 year: 2023 ident: 10.1016/j.undsp.2023.05.003_b0100 article-title: A stacked ensemble model for automatic stroke prediction using only raw electrocardiogram publication-title: Intelligent Systems with Applications doi: 10.1016/j.iswa.2022.200165 – ident: 10.1016/j.undsp.2023.05.003_b0150 – volume: 18 start-page: 39 issue: 3 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0165 article-title: Research on rockburst prediction based on anti-weighting and MBCT – SR multi-dimensional cloud model algorithm publication-title: Journal of Safety Science and Technology – volume: 68 start-page: 549 issue: 2 year: 2013 ident: 10.1016/j.undsp.2023.05.003_b0125 article-title: Prediction of rock burst classification using the technique of cloud models with attribution weight publication-title: Natural Hazards doi: 10.1007/s11069-013-0635-9 – volume: 18 start-page: 295 issue: 4 year: 1981 ident: 10.1016/j.undsp.2023.05.003_b0095 article-title: Bursting liability indices of coal publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts doi: 10.1016/0148-9062(81)91194-3 – volume: 141 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0220 article-title: Dynamic failure mechanism of tunnel under rapid unloading in jointed rockmass: A case study publication-title: Engineering Failure Analysis doi: 10.1016/j.engfailanal.2022.106634 – volume: 7 start-page: 577 issue: 4 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0005 article-title: Rockburst in underground excavations: A review of mechanism, classification, and prediction methods publication-title: Underground Space doi: 10.1016/j.undsp.2021.11.008 – volume: 3 start-page: 171 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0105 article-title: Research on dynamic classification of surrounding rock in mountain tunnel publication-title: Subgrade Engineering – year: 1980 ident: 10.1016/j.undsp.2023.05.003_b0030 – ident: 10.1016/j.undsp.2023.05.003_b0040 – volume: 52 start-page: 659 issue: 3 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0115 article-title: Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM publication-title: Journal of Central South University (Science and Technology) – volume: 40 start-page: 2708 issue: S1 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0215 article-title: Prediction method of rockburst intensity grade based on SOFM neural network model publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 29 start-page: 565 issue: 4 year: 2019 ident: 10.1016/j.undsp.2023.05.003_b0135 article-title: Machine learning methods for rockburst prediction-state-of-the-art review publication-title: International Journal of Mining Science and Technology doi: 10.1016/j.ijmst.2019.06.009 – volume: 256–259 start-page: 1161 year: 2012 ident: 10.1016/j.undsp.2023.05.003_b0065 article-title: Underground engineering rock burst review of research publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.256-259.1161 – volume: 41 start-page: 3250 issue: S2 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0180 article-title: Rockburst intensity classification prediction based on four ensemble learning publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 362 year: 2020 ident: 10.1016/j.undsp.2023.05.003_b0155 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2019.112790 – volume: 40 start-page: 1186 issue: 6 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0175 article-title: Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 47 start-page: 43 issue: 6 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0120 article-title: Cloud model evaluation of poisoning and suffocation accidents in underground mines based on combined weighting publication-title: Journal of Kunming University of Science and Technology (Natural Science) – volume: 135 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0025 article-title: Variable selection for Naïve Bayes classification publication-title: Computers & Operations Research doi: 10.1016/j.cor.2021.105456 – volume: 90 start-page: 12 year: 2019 ident: 10.1016/j.undsp.2023.05.003_b0140 article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2019.04.019 – volume: 172 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0020 article-title: A mathematical programming approach to SVM-based classification with label noise publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2022.108611 – volume: 25 start-page: 587 issue: 5 year: 2010 ident: 10.1016/j.undsp.2023.05.003_b0250 article-title: Numerical simulation on rockburst of underground opening triggered by dynamic disturbance publication-title: Tunnelling and Underground Space Technology doi: 10.1016/j.tust.2010.04.004 – volume: 183 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0160 article-title: A novel extreme learning machine based kNN classification method for dealing with big data publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115293 – volume: 41 start-page: 212 issue: 2 year: 2021 ident: 10.1016/j.undsp.2023.05.003_b0200 article-title: Overview of state-of-art of rockburst prediction and prevention techniques for deep-buried tunnels publication-title: Tunnel Construction – volume: 141 year: 2020 ident: 10.1016/j.undsp.2023.05.003_b0205 article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112918 – volume: 41 start-page: 2915 issue: S1 year: 2022 ident: 10.1016/j.undsp.2023.05.003_b0110 article-title: Research on rockburst grade prediction based on stacking integrated algorithm publication-title: Chinese Journal of Rock Mechanics and Engineering – volume: 18 start-page: 06018016 issue: 7 year: 2018 ident: 10.1016/j.undsp.2023.05.003_b0230 article-title: Time fractal behavior of microseismic events for different intensities of immediate rock bursts publication-title: International Journal of Geomechanics doi: 10.1061/(ASCE)GM.1943-5622.0001221 – ident: 10.1016/j.undsp.2023.05.003_b0145 – volume: 5 start-page: 104 issue: 4 year: 2015 ident: 10.1016/j.undsp.2023.05.003_b0090 article-title: Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines publication-title: Open Journal of Safety Science and Technology doi: 10.4236/ojsst.2015.54013 |
| SSID | ssj0002087875 |
| Score | 2.3691928 |
| Snippet | Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 241 |
| SubjectTerms | Cloud model Combined prediction Rockburst Stacking ensemble algorithm |
| Title | Combined prediction of rockburst based on multiple factors and stacking ensemble algorithm |
| URI | https://dx.doi.org/10.1016/j.undsp.2023.05.003 https://doaj.org/article/77c0b70c713c4e10a8d9ac50ae150665 |
| Volume | 13 |
| WOSCitedRecordID | wos001034597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2467-9674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002087875 issn: 2467-9674 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxYCQEE9RXvLASETc2I4zFkTFVDGAVLFEfkJLm1Zpyu_n7CQoU1lYE8eO7s6677NP3yF0mynriBT-Wt2JiDpFI8lhP7IBN4pooZ0UodlEOh6LySR76bT68jVhtTxwbbj7NNWxSmMNZEpTS2IpTCY1i6X12ng8qJfGadYhU7NwvSYgElkrMxQKujaFWXuFykEStDrbNllNKgqK_Z2M1Mkyo0N00MBDPKx_6wjt2OIY7Q87p_0n6B32MPBZa_Cq9Ncs3rR46TCkoi8w0brCPjUZDE_bckHctNXBsjAY8KD2B-QYGKxdKHgr5x_Lclp9Lk7R2-jp9fE5alokRJoSWkUAtizsMJIQo1LAYoYyAwDBAS0y4ByROK4FVSQWVgAb5VwIDt6JXSK1U9wlZ6hXLAt7jrBOGUuMY46LjGZGZlRKT2BJApMxTfpo0For141-uG9jMc_bQrFZHkycexPnMfOyo3109_vRqpbP2D78wbvhd6jXvg4PICLyJiLyvyKij3jrxLyBETU8gKmm21a_-I_VL9Gen7KueLlCvarc2Gu0q7-r6bq8CVH6A10G7Rg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+prediction+of+rockburst+based+on+multiple+factors+and+stacking+ensemble+algorithm&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Hu+Luo&rft.au=Yong+Fang&rft.au=Jianfeng+Wang&rft.au=Yubo+Wang&rft.date=2023-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2467-9674&rft.volume=13&rft.spage=241&rft.epage=261&rft_id=info:doi/10.1016%2Fj.undsp.2023.05.003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon |