Combined prediction of rockburst based on multiple factors and stacking ensemble algorithm

Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Underground space (Beijing) Jg. 13; S. 241 - 261
Hauptverfasser: Luo, Hu, Fang, Yong, Wang, Jianfeng, Wang, Yubo, Liao, Hang, Yu, Tao, Yao, Zhigang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2023
KeAi Communications Co., Ltd
Schlagworte:
ISSN:2467-9674, 2467-9674
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Therefore, it is of great significance to study the tendency of rockburst in the early stage of tunnel survey, design and construction. At present, there is no unified method and selected parameters for rockburst prediction. In view of the large difference of different rockburst criteria and the imbalance of rockburst database categories, this paper presents a two-step rockburst prediction method based on multiple factors and the stacking ensemble algorithm. Considering the influence of rock physical and mechanical parameters, tunnel face conditions and excavation disturbance, multiple rockburst criteria are predicted by integrating multiple machine learning algorithms. A combined prediction model of rockburst criteria is established, and the results of each rockburst criterion index are weighted and combined, with the weight updated using the field rockburst record. The dynamic weight is combined with the cloud model to comprehensively evaluate the regional rockburst risk. Field results from applying the model in the Grand Canyon tunnel show that the rockburst prediction method proposed in this paper has better applicability and higher accuracy than the single rockburst criterion.
AbstractList Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random locations and times. These characteristics seriously affect tunnel construction and threaten the physical and mental health and safety of workers. Therefore, it is of great significance to study the tendency of rockburst in the early stage of tunnel survey, design and construction. At present, there is no unified method and selected parameters for rockburst prediction. In view of the large difference of different rockburst criteria and the imbalance of rockburst database categories, this paper presents a two-step rockburst prediction method based on multiple factors and the stacking ensemble algorithm. Considering the influence of rock physical and mechanical parameters, tunnel face conditions and excavation disturbance, multiple rockburst criteria are predicted by integrating multiple machine learning algorithms. A combined prediction model of rockburst criteria is established, and the results of each rockburst criterion index are weighted and combined, with the weight updated using the field rockburst record. The dynamic weight is combined with the cloud model to comprehensively evaluate the regional rockburst risk. Field results from applying the model in the Grand Canyon tunnel show that the rockburst prediction method proposed in this paper has better applicability and higher accuracy than the single rockburst criterion.
Author Luo, Hu
Yao, Zhigang
Wang, Yubo
Liao, Hang
Fang, Yong
Wang, Jianfeng
Yu, Tao
Author_xml – sequence: 1
  givenname: Hu
  orcidid: 0000-0002-4193-6927
  surname: Luo
  fullname: Luo, Hu
– sequence: 2
  givenname: Yong
  orcidid: 0000-0002-2367-170X
  surname: Fang
  fullname: Fang, Yong
– sequence: 3
  givenname: Jianfeng
  orcidid: 0000-0003-2299-4723
  surname: Wang
  fullname: Wang, Jianfeng
– sequence: 4
  givenname: Yubo
  surname: Wang
  fullname: Wang, Yubo
– sequence: 5
  givenname: Hang
  surname: Liao
  fullname: Liao, Hang
– sequence: 6
  givenname: Tao
  surname: Yu
  fullname: Yu, Tao
– sequence: 7
  givenname: Zhigang
  orcidid: 0000-0001-8993-2805
  surname: Yao
  fullname: Yao, Zhigang
  email: bk20110739@my.swjtu.edu.cn
BookMark eNqFkc-KFDEQh4Os4LruE3jpF5i2Mun86YMHGdRdWPCiFy8hXamMme1OhiQj-Pb27IiIBz1VUcX3g_rqJbtKORFjrzn0HLh6c-hPyddjv4Wt6EH2AOIZu94OSm9GpYerP_oX7LbWAwBswWij5TX7usvLFBP57ljIR2wxpy6HrmR8nE6ltm5ydd2u0-U0t3icqQsOWy61c8l3tTl8jGnfUaq0TOvWzftcYvu2vGLPg5sr3f6qN-zLh_efd3ebh08f73fvHjY48KFtpJakR8EF95Pmo_CD9FIOQfHRE6IRQaEZJg6GDBdCKWPURAGCcBgmFcQNu7_k-uwO9lji4soPm120T4Nc9taVFnEmqzXCpAE1FzgQB2f86FCCIy5BKblmiUsWllxrofA7j4M927YH-2Tbnm1bkHa1vVLjXxTG5s4qW3Fx_g_79sLSquh7pGIrRkq4PqMQtvWG-E_-J0hen3A
CitedBy_id crossref_primary_10_1007_s00521_023_09189_2
crossref_primary_10_1038_s41598_024_72998_5
crossref_primary_10_1007_s11053_024_10412_7
crossref_primary_10_1007_s11771_024_5810_5
crossref_primary_10_1007_s10462_025_11261_3
crossref_primary_10_1016_j_tust_2024_106350
crossref_primary_10_1007_s12303_025_00052_1
crossref_primary_10_1016_j_tust_2024_106021
crossref_primary_10_1057_s41300_024_00222_7
crossref_primary_10_1016_j_undsp_2023_09_001
crossref_primary_10_1177_00405175241227633
crossref_primary_10_1007_s42461_024_00933_3
crossref_primary_10_1016_j_compgeo_2024_106440
crossref_primary_10_1016_j_undsp_2025_04_010
crossref_primary_10_3389_feart_2024_1514591
crossref_primary_10_1002_dug2_70021
crossref_primary_10_1016_j_compgeo_2024_106805
crossref_primary_10_1016_j_undsp_2024_04_008
crossref_primary_10_1007_s40996_025_01980_6
crossref_primary_10_3389_fpls_2025_1539068
crossref_primary_10_1038_s41598_025_99744_9
Cites_doi 10.1007/BF01239496
10.1016/j.jrmge.2021.12.015
10.1016/j.ipm.2022.103235
10.1016/j.artint.2022.103788
10.1007/s00603-021-02614-9
10.1016/j.jocs.2022.101587
10.1016/j.jrmge.2021.05.004
10.1007/s11053-020-09787-0
10.1016/j.iswa.2022.200165
10.1007/s11069-013-0635-9
10.1016/0148-9062(81)91194-3
10.1016/j.engfailanal.2022.106634
10.1016/j.undsp.2021.11.008
10.1016/j.ijmst.2019.06.009
10.4028/www.scientific.net/AMM.256-259.1161
10.1016/j.cma.2019.112790
10.1016/j.cor.2021.105456
10.1016/j.tust.2019.04.019
10.1016/j.cie.2022.108611
10.1016/j.tust.2010.04.004
10.1016/j.eswa.2021.115293
10.1016/j.eswa.2019.112918
10.1061/(ASCE)GM.1943-5622.0001221
10.4236/ojsst.2015.54013
ContentType Journal Article
Copyright 2023 Tongji University
Copyright_xml – notice: 2023 Tongji University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.undsp.2023.05.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
EISSN 2467-9674
EndPage 261
ExternalDocumentID oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665
10_1016_j_undsp_2023_05_003
S2467967423000843
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABDBF
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADVLN
AEUPX
AFFHD
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
ID FETCH-LOGICAL-c414t-575e793131db7193d45d554f619decc83f6c84b108e813366886bef0f3acfb6f3
IEDL.DBID DOA
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001034597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2467-9674
IngestDate Fri Oct 03 12:51:48 EDT 2025
Tue Nov 18 22:42:28 EST 2025
Thu Nov 13 04:34:19 EST 2025
Sat Aug 05 16:01:01 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stacking ensemble algorithm
Rockburst
Combined prediction
Cloud model
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-575e793131db7193d45d554f619decc83f6c84b108e813366886bef0f3acfb6f3
ORCID 0000-0002-2367-170X
0000-0002-4193-6927
0000-0003-2299-4723
0000-0001-8993-2805
OpenAccessLink https://doaj.org/article/77c0b70c713c4e10a8d9ac50ae150665
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665
crossref_primary_10_1016_j_undsp_2023_05_003
crossref_citationtrail_10_1016_j_undsp_2023_05_003
elsevier_sciencedirect_doi_10_1016_j_undsp_2023_05_003
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Underground space (Beijing)
PublicationYear 2023
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Wang (b0200) 2021; 41
Liu, Shao, Xu, Meng (b0125) 2013; 68
Shokrzade, Ramezani, Akhlaghian Tab, Abdulla Mohammad (b0160) 2021; 183
Tang, Xu (b0190) 2020; 39
Kunwar, Choudhary (b0100) 2023; 17
Wong, Seng, Wong (b0205) 2020; 141
Yu, Geng, Tong, Zhao, Diao, Huang (b0230) 2018; 18
Zhang, Deng, Li, Chen, Qu (b0240) 2022; 18
Blanco, Japón, Puerto (b0020) 2022; 172
Gong, Luo, Jiang, Xu (b0060) 2022; 14
Yang, Zhou, Lu, Zhang, Hu (b0210) 2015; 34
Pu, Apel, Xu (b0140) 2019; 90
Hou, F., Liu, X., & Wang, M. (1992). Discussion on rockburst origin and degree. In
Sun, Wu, Zhang, Zhang, Wang (b0170) 2022; 59
He, Wang, Liu, Guo, Fan (b0075) 2021; 43
Kidybiński (b0095) 1981; 18
Zhu, Li, Zhu, Tang (b0250) 2010; 25
Yin, Liu, Pan, Huang, Wu, Wang (b0225) 2021; 30
Han, Ming, Ai (b0070) 2010; 27
Zheng, Abi (b0245) 2022; 59
Gao, Xu, Zhou (b0055) 2022; 313
Li, Wang, Liu, Liu, Liu, Lv (b0105) 2021; 3
Zhang, Zeng, Ma, Fang, Ma, Yao, Chen (b0235) 2021; 54
Liu, Ma, Wang, Dong (b0120) 2022; 47
Pu, Apel, Liu, Mitri (b0135) 2019; 29
Ding, Sun, Wang, Huang, Shen, Cui (b0050) 2023; 60
Barton, Lien, Lunde (b0015) 1974; 6
Askaripour, Saeidi, Rouleau, Mercier-Langevin (b0005) 2022; 7
Tan, Ye, Hu, Wu, Huang (b0175) 2021; 40
Russenes, B.F. (1974) Analysis of rock spalling for tunnels in steep valley sides (in Norwegian). Master’s Thesis, Norwegian Institute of Technology, Department of Geology, Norway, 247.
Yao, Fang, Yu, Pu, Luo, Cui, Wang (b0220) 2022; 141
Wuhan, China (pp. 8–14). (in Chinese)
Yang, Pei, Cheng, Hou, Lv (b0215) 2021; 40
Hou, Liu, Yang (b0085) 2022; 14
Bao, Wu, Zhang, Li, Guo, Li (b0010) 2022; 43
Wang, Li, Shao, Zhang, Xu, Wang (b0195) 2021; 46
ARMA-66-0167.
Tao (b0185) 1988
Guo, Zhou, Ru (b0065) 2012; 256–259
Kabwe, Wang (b0090) 2015; 5
(pp. 3107–3111).
Chen, Yu, Shi (b0035) 2016; 53
Radhimeenakshi, S. (2016). Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network. In
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Rabczuk (b0155) 2020; 362
Song, Pang, Li, Jiang, Qi (b0165) 2022; 18
Cook, N.G.W. (1966). The design of underground excavations. In
Tan, Hu, Ye, Wu, Huang, Wang (b0180) 2022; 41
Ma, Li, Li, Ma, Li, Zhang (b0130) 2020; 28
Liu, Xu, Liu, Deng (b0115) 2021; 52
Brown, Hoek (b0030) 1980
Dai, Wu, Li, Yuan (b0045) 2020; 28
Liu, Dai, Zuo, Shang, Chen, Guo (b0110) 2022; 41
Blanquero, Carrizosa, Ramírez-Cobo, Sillero-Denamiel (b0025) 2021; 135
Song (10.1016/j.undsp.2023.05.003_b0165) 2022; 18
Tan (10.1016/j.undsp.2023.05.003_b0180) 2022; 41
Bao (10.1016/j.undsp.2023.05.003_b0010) 2022; 43
Dai (10.1016/j.undsp.2023.05.003_b0045) 2020; 28
Kidybiński (10.1016/j.undsp.2023.05.003_b0095) 1981; 18
Zhu (10.1016/j.undsp.2023.05.003_b0250) 2010; 25
Shokrzade (10.1016/j.undsp.2023.05.003_b0160) 2021; 183
Gao (10.1016/j.undsp.2023.05.003_b0055) 2022; 313
Blanco (10.1016/j.undsp.2023.05.003_b0020) 2022; 172
Zheng (10.1016/j.undsp.2023.05.003_b0245) 2022; 59
Yang (10.1016/j.undsp.2023.05.003_b0210) 2015; 34
Sun (10.1016/j.undsp.2023.05.003_b0170) 2022; 59
10.1016/j.undsp.2023.05.003_b0145
Blanquero (10.1016/j.undsp.2023.05.003_b0025) 2021; 135
Liu (10.1016/j.undsp.2023.05.003_b0115) 2021; 52
Liu (10.1016/j.undsp.2023.05.003_b0125) 2013; 68
Wang (10.1016/j.undsp.2023.05.003_b0200) 2021; 41
Yu (10.1016/j.undsp.2023.05.003_b0230) 2018; 18
Yin (10.1016/j.undsp.2023.05.003_b0225) 2021; 30
Wang (10.1016/j.undsp.2023.05.003_b0195) 2021; 46
Pu (10.1016/j.undsp.2023.05.003_b0140) 2019; 90
Tan (10.1016/j.undsp.2023.05.003_b0175) 2021; 40
Yang (10.1016/j.undsp.2023.05.003_b0215) 2021; 40
He (10.1016/j.undsp.2023.05.003_b0075) 2021; 43
Barton (10.1016/j.undsp.2023.05.003_b0015) 1974; 6
Brown (10.1016/j.undsp.2023.05.003_b0030) 1980
10.1016/j.undsp.2023.05.003_b0150
Ma (10.1016/j.undsp.2023.05.003_b0130) 2020; 28
Guo (10.1016/j.undsp.2023.05.003_b0065) 2012; 256–259
Liu (10.1016/j.undsp.2023.05.003_b0120) 2022; 47
Pu (10.1016/j.undsp.2023.05.003_b0135) 2019; 29
Samaniego (10.1016/j.undsp.2023.05.003_b0155) 2020; 362
Tao (10.1016/j.undsp.2023.05.003_b0185) 1988
Askaripour (10.1016/j.undsp.2023.05.003_b0005) 2022; 7
Chen (10.1016/j.undsp.2023.05.003_b0035) 2016; 53
10.1016/j.undsp.2023.05.003_b0080
Han (10.1016/j.undsp.2023.05.003_b0070) 2010; 27
Gong (10.1016/j.undsp.2023.05.003_b0060) 2022; 14
Wong (10.1016/j.undsp.2023.05.003_b0205) 2020; 141
Zhang (10.1016/j.undsp.2023.05.003_b0235) 2021; 54
Liu (10.1016/j.undsp.2023.05.003_b0110) 2022; 41
Ding (10.1016/j.undsp.2023.05.003_b0050) 2023; 60
Kabwe (10.1016/j.undsp.2023.05.003_b0090) 2015; 5
Tang (10.1016/j.undsp.2023.05.003_b0190) 2020; 39
Yao (10.1016/j.undsp.2023.05.003_b0220) 2022; 141
Kunwar (10.1016/j.undsp.2023.05.003_b0100) 2023; 17
10.1016/j.undsp.2023.05.003_b0040
Li (10.1016/j.undsp.2023.05.003_b0105) 2021; 3
Zhang (10.1016/j.undsp.2023.05.003_b0240) 2022; 18
Hou (10.1016/j.undsp.2023.05.003_b0085) 2022; 14
References_xml – volume: 362
  year: 2020
  ident: b0155
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 6
  start-page: 189
  year: 1974
  end-page: 236
  ident: b0015
  article-title: Engineering classification of rock masses for the design of tunnel
  publication-title: Rock Mechanics
– volume: 41
  start-page: 212
  year: 2021
  end-page: 224
  ident: b0200
  article-title: Overview of state-of-art of rockburst prediction and prevention techniques for deep-buried tunnels
  publication-title: Tunnel Construction
– volume: 18
  start-page: 39
  year: 2022
  end-page: 46
  ident: b0165
  article-title: Research on rockburst prediction based on anti-weighting and MBCT – SR multi-dimensional cloud model algorithm
  publication-title: Journal of Safety Science and Technology
– volume: 18
  start-page: 305
  year: 2022
  end-page: 311
  ident: b0240
  article-title: Prediction of rockburst dangerousness based on elastic strain energy characteristic
  publication-title: Chinese Journal of Underground Space and Engineering
– reference: . ARMA-66-0167.
– volume: 68
  start-page: 549
  year: 2013
  end-page: 568
  ident: b0125
  article-title: Prediction of rock burst classification using the technique of cloud models with attribution weight
  publication-title: Natural Hazards
– volume: 141
  year: 2020
  ident: b0205
  article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain
  publication-title: Expert Systems with Applications
– volume: 17
  year: 2023
  ident: b0100
  article-title: A stacked ensemble model for automatic stroke prediction using only raw electrocardiogram
  publication-title: Intelligent Systems with Applications
– volume: 47
  start-page: 43
  year: 2022
  end-page: 52
  ident: b0120
  article-title: Cloud model evaluation of poisoning and suffocation accidents in underground mines based on combined weighting
  publication-title: Journal of Kunming University of Science and Technology (Natural Science)
– volume: 39
  start-page: 773
  year: 2020
  end-page: 781
  ident: b0190
  article-title: Rockburst prediction based on nine machine learning algorithms
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 18
  start-page: 295
  year: 1981
  end-page: 304
  ident: b0095
  article-title: Bursting liability indices of coal
  publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
– volume: 5
  start-page: 104
  year: 2015
  end-page: 121
  ident: b0090
  article-title: Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines
  publication-title: Open Journal of Safety Science and Technology
– volume: 7
  start-page: 577
  year: 2022
  end-page: 607
  ident: b0005
  article-title: Rockburst in underground excavations: A review of mechanism, classification, and prediction methods
  publication-title: Underground Space
– reference: Hou, F., Liu, X., & Wang, M. (1992). Discussion on rockburst origin and degree. In
– volume: 3
  start-page: 171
  year: 2021
  end-page: 175
  ident: b0105
  article-title: Research on dynamic classification of surrounding rock in mountain tunnel
  publication-title: Subgrade Engineering
– reference: , Wuhan, China (pp. 8–14). (in Chinese)
– volume: 34
  start-page: 2706
  year: 2015
  end-page: 2714
  ident: b0210
  article-title: An energy criterion in process of rockburst
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 172
  year: 2022
  ident: b0020
  article-title: A mathematical programming approach to SVM-based classification with label noise
  publication-title: Computers & Industrial Engineering
– volume: 90
  start-page: 12
  year: 2019
  end-page: 18
  ident: b0140
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunnelling and Underground Space Technology
– volume: 59
  year: 2022
  ident: b0170
  article-title: Based on multi-algorithm hybrid method to predict the slope safety factor – Stacking ensemble learning with Bayesian optimization
  publication-title: Journal of Computational Science
– volume: 43
  start-page: 104
  year: 2022
  end-page: 116
  ident: b0010
  article-title: Net load forecasting method based on feature-weighted stacking ensemble learning
  publication-title: Electric Power Construction
– volume: 53
  start-page: 38
  year: 2016
  end-page: 44
  ident: b0035
  article-title: A combined prediction method for rock bursts based on a data fusion algorithm
  publication-title: Modern Tunneling Technology
– reference: Cook, N.G.W. (1966). The design of underground excavations. In
– volume: 28
  start-page: 1415
  year: 2020
  end-page: 1424
  ident: b0130
  article-title: KNN method for intelligent observational classification of rock mass quality in tunnel
  publication-title: Journal of Engineering Geology
– volume: 60
  year: 2023
  ident: b0050
  article-title: RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification
  publication-title: Information Processing & Management
– volume: 135
  year: 2021
  ident: b0025
  article-title: Variable selection for Naïve Bayes classification
  publication-title: Computers & Operations Research
– volume: 14
  start-page: 123
  year: 2022
  end-page: 143
  ident: b0085
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– volume: 41
  start-page: 2915
  year: 2022
  end-page: 2926
  ident: b0110
  article-title: Research on rockburst grade prediction based on stacking integrated algorithm
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 40
  start-page: 2708
  year: 2021
  end-page: 2715
  ident: b0215
  article-title: Prediction method of rockburst intensity grade based on SOFM neural network model
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 52
  start-page: 659
  year: 2021
  end-page: 670
  ident: b0115
  article-title: Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM
  publication-title: Journal of Central South University (Science and Technology)
– volume: 141
  year: 2022
  ident: b0220
  article-title: Dynamic failure mechanism of tunnel under rapid unloading in jointed rockmass: A case study
  publication-title: Engineering Failure Analysis
– year: 1988
  ident: b0185
  article-title: Support Design of Tunnels Subjected to Rockbursting
  publication-title: ISRM International Symposium.
– volume: 29
  start-page: 565
  year: 2019
  end-page: 570
  ident: b0135
  article-title: Machine learning methods for rockburst prediction-state-of-the-art review
  publication-title: International Journal of Mining Science and Technology
– volume: 30
  start-page: 1795
  year: 2021
  end-page: 1815
  ident: b0225
  article-title: Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models
  publication-title: Natural Resources Research
– volume: 14
  start-page: 1737
  year: 2022
  end-page: 1746
  ident: b0060
  article-title: Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
– year: 1980
  ident: b0030
  article-title: Underground excavations in rock
– reference: Russenes, B.F. (1974) Analysis of rock spalling for tunnels in steep valley sides (in Norwegian). Master’s Thesis, Norwegian Institute of Technology, Department of Geology, Norway, 247.
– volume: 28
  year: 2020
  ident: b0045
  article-title: Incorporating feature selection in the improved stacking algorithm for online learning analysis and prediction
  publication-title: Engineering Letters
– volume: 41
  start-page: 3250
  year: 2022
  end-page: 3259
  ident: b0180
  article-title: Rockburst intensity classification prediction based on four ensemble learning
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 25
  start-page: 587
  year: 2010
  end-page: 599
  ident: b0250
  article-title: Numerical simulation on rockburst of underground opening triggered by dynamic disturbance
  publication-title: Tunnelling and Underground Space Technology
– volume: 256–259
  start-page: 1161
  year: 2012
  end-page: 1166
  ident: b0065
  article-title: Underground engineering rock burst review of research
  publication-title: Applied Mechanics and Materials
– volume: 54
  start-page: 6299
  year: 2021
  end-page: 6321
  ident: b0235
  article-title: Time series prediction of microseismic multi-parameter related to rockburst based on deep learning
  publication-title: Rock Mechanics & Rock Engineering
– volume: 43
  start-page: 71
  year: 2021
  end-page: 78
  ident: b0075
  article-title: Research progress on in-situ stress distribution and testing technology of deep rock mass
  publication-title: Protective Engineering
– volume: 46
  start-page: 32
  year: 2021
  end-page: 37
  ident: b0195
  article-title: BP neural network model optimization for rockburst prediction based on nine unconstrained optimization algorithms
  publication-title: Journal of Kunming University of Science and Technology (Natural Sciences)
– reference: , (pp. 3107–3111).
– volume: 18
  start-page: 06018016
  year: 2018
  ident: b0230
  article-title: Time fractal behavior of microseismic events for different intensities of immediate rock bursts
  publication-title: International Journal of Geomechanics
– volume: 59
  start-page: 1
  year: 2022
  end-page: 13
  ident: b0245
  article-title: On stability analysis and classification of surrounding rocks in rock tunnels
  publication-title: Modern Tunnelling Technology
– volume: 40
  start-page: 1186
  year: 2021
  end-page: 1194
  ident: b0175
  article-title: Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 313
  year: 2022
  ident: b0055
  article-title: Towards convergence rate analysis of random forests for classification
  publication-title: Artificial Intelligence
– volume: 27
  start-page: 36
  year: 2010
  end-page: 41
  ident: b0070
  article-title: Evaluation on commonly used method of in-situ stress testing technique
  publication-title: Journal of Yangtze River Scientific Research Institute
– reference: Radhimeenakshi, S. (2016). Classification and prediction of heart disease risk using data mining techniques of Support Vector Machine and Artificial Neural Network. In
– volume: 183
  year: 2021
  ident: b0160
  article-title: A novel extreme learning machine based kNN classification method for dealing with big data
  publication-title: Expert Systems with Applications
– ident: 10.1016/j.undsp.2023.05.003_b0080
– volume: 28
  issue: 4
  year: 2020
  ident: 10.1016/j.undsp.2023.05.003_b0045
  article-title: Incorporating feature selection in the improved stacking algorithm for online learning analysis and prediction
  publication-title: Engineering Letters
– volume: 6
  start-page: 189
  issue: 4
  year: 1974
  ident: 10.1016/j.undsp.2023.05.003_b0015
  article-title: Engineering classification of rock masses for the design of tunnel
  publication-title: Rock Mechanics
  doi: 10.1007/BF01239496
– volume: 27
  start-page: 36
  issue: 12
  year: 2010
  ident: 10.1016/j.undsp.2023.05.003_b0070
  article-title: Evaluation on commonly used method of in-situ stress testing technique
  publication-title: Journal of Yangtze River Scientific Research Institute
– volume: 43
  start-page: 104
  issue: 9
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0010
  article-title: Net load forecasting method based on feature-weighted stacking ensemble learning
  publication-title: Electric Power Construction
– volume: 59
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0245
  article-title: On stability analysis and classification of surrounding rocks in rock tunnels
  publication-title: Modern Tunnelling Technology
– volume: 43
  start-page: 71
  issue: 4
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0075
  article-title: Research progress on in-situ stress distribution and testing technology of deep rock mass
  publication-title: Protective Engineering
– volume: 14
  start-page: 1737
  issue: 6
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0060
  article-title: Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2021.12.015
– volume: 34
  start-page: 2706
  issue: S1
  year: 2015
  ident: 10.1016/j.undsp.2023.05.003_b0210
  article-title: An energy criterion in process of rockburst
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 60
  issue: 2
  year: 2023
  ident: 10.1016/j.undsp.2023.05.003_b0050
  article-title: RGAN-EL: A GAN and ensemble learning-based hybrid approach for imbalanced data classification
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2022.103235
– volume: 28
  start-page: 1415
  issue: 6
  year: 2020
  ident: 10.1016/j.undsp.2023.05.003_b0130
  article-title: KNN method for intelligent observational classification of rock mass quality in tunnel
  publication-title: Journal of Engineering Geology
– volume: 18
  start-page: 305
  issue: S1
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0240
  article-title: Prediction of rockburst dangerousness based on elastic strain energy characteristic
  publication-title: Chinese Journal of Underground Space and Engineering
– year: 1988
  ident: 10.1016/j.undsp.2023.05.003_b0185
  article-title: Support Design of Tunnels Subjected to Rockbursting
  publication-title: ISRM International Symposium.
– volume: 313
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0055
  article-title: Towards convergence rate analysis of random forests for classification
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2022.103788
– volume: 53
  start-page: 38
  issue: 1
  year: 2016
  ident: 10.1016/j.undsp.2023.05.003_b0035
  article-title: A combined prediction method for rock bursts based on a data fusion algorithm
  publication-title: Modern Tunneling Technology
– volume: 54
  start-page: 6299
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0235
  article-title: Time series prediction of microseismic multi-parameter related to rockburst based on deep learning
  publication-title: Rock Mechanics & Rock Engineering
  doi: 10.1007/s00603-021-02614-9
– volume: 59
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0170
  article-title: Based on multi-algorithm hybrid method to predict the slope safety factor – Stacking ensemble learning with Bayesian optimization
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2022.101587
– volume: 14
  start-page: 123
  issue: 1
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0085
  article-title: Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning
  publication-title: Journal of Rock Mechanics and Geotechnical Engineering
  doi: 10.1016/j.jrmge.2021.05.004
– volume: 46
  start-page: 32
  issue: 5
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0195
  article-title: BP neural network model optimization for rockburst prediction based on nine unconstrained optimization algorithms
  publication-title: Journal of Kunming University of Science and Technology (Natural Sciences)
– volume: 30
  start-page: 1795
  issue: 2
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0225
  article-title: Strength of stacking technique of ensemble learning in rockburst prediction with imbalanced data: Comparison of eight single and ensemble models
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09787-0
– volume: 39
  start-page: 773
  issue: 4
  year: 2020
  ident: 10.1016/j.undsp.2023.05.003_b0190
  article-title: Rockburst prediction based on nine machine learning algorithms
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 17
  year: 2023
  ident: 10.1016/j.undsp.2023.05.003_b0100
  article-title: A stacked ensemble model for automatic stroke prediction using only raw electrocardiogram
  publication-title: Intelligent Systems with Applications
  doi: 10.1016/j.iswa.2022.200165
– ident: 10.1016/j.undsp.2023.05.003_b0150
– volume: 18
  start-page: 39
  issue: 3
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0165
  article-title: Research on rockburst prediction based on anti-weighting and MBCT – SR multi-dimensional cloud model algorithm
  publication-title: Journal of Safety Science and Technology
– volume: 68
  start-page: 549
  issue: 2
  year: 2013
  ident: 10.1016/j.undsp.2023.05.003_b0125
  article-title: Prediction of rock burst classification using the technique of cloud models with attribution weight
  publication-title: Natural Hazards
  doi: 10.1007/s11069-013-0635-9
– volume: 18
  start-page: 295
  issue: 4
  year: 1981
  ident: 10.1016/j.undsp.2023.05.003_b0095
  article-title: Bursting liability indices of coal
  publication-title: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
  doi: 10.1016/0148-9062(81)91194-3
– volume: 141
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0220
  article-title: Dynamic failure mechanism of tunnel under rapid unloading in jointed rockmass: A case study
  publication-title: Engineering Failure Analysis
  doi: 10.1016/j.engfailanal.2022.106634
– volume: 7
  start-page: 577
  issue: 4
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0005
  article-title: Rockburst in underground excavations: A review of mechanism, classification, and prediction methods
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2021.11.008
– volume: 3
  start-page: 171
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0105
  article-title: Research on dynamic classification of surrounding rock in mountain tunnel
  publication-title: Subgrade Engineering
– year: 1980
  ident: 10.1016/j.undsp.2023.05.003_b0030
– ident: 10.1016/j.undsp.2023.05.003_b0040
– volume: 52
  start-page: 659
  issue: 3
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0115
  article-title: Time-series prediction method for risk level of rockburst disaster based on CNN-LSTM
  publication-title: Journal of Central South University (Science and Technology)
– volume: 40
  start-page: 2708
  issue: S1
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0215
  article-title: Prediction method of rockburst intensity grade based on SOFM neural network model
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 29
  start-page: 565
  issue: 4
  year: 2019
  ident: 10.1016/j.undsp.2023.05.003_b0135
  article-title: Machine learning methods for rockburst prediction-state-of-the-art review
  publication-title: International Journal of Mining Science and Technology
  doi: 10.1016/j.ijmst.2019.06.009
– volume: 256–259
  start-page: 1161
  year: 2012
  ident: 10.1016/j.undsp.2023.05.003_b0065
  article-title: Underground engineering rock burst review of research
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.256-259.1161
– volume: 41
  start-page: 3250
  issue: S2
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0180
  article-title: Rockburst intensity classification prediction based on four ensemble learning
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 362
  year: 2020
  ident: 10.1016/j.undsp.2023.05.003_b0155
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2019.112790
– volume: 40
  start-page: 1186
  issue: 6
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0175
  article-title: Severe rock burst prediction based on the combination of LOF and improved SMOTE algorithm
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 47
  start-page: 43
  issue: 6
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0120
  article-title: Cloud model evaluation of poisoning and suffocation accidents in underground mines based on combined weighting
  publication-title: Journal of Kunming University of Science and Technology (Natural Science)
– volume: 135
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0025
  article-title: Variable selection for Naïve Bayes classification
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2021.105456
– volume: 90
  start-page: 12
  year: 2019
  ident: 10.1016/j.undsp.2023.05.003_b0140
  article-title: Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2019.04.019
– volume: 172
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0020
  article-title: A mathematical programming approach to SVM-based classification with label noise
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2022.108611
– volume: 25
  start-page: 587
  issue: 5
  year: 2010
  ident: 10.1016/j.undsp.2023.05.003_b0250
  article-title: Numerical simulation on rockburst of underground opening triggered by dynamic disturbance
  publication-title: Tunnelling and Underground Space Technology
  doi: 10.1016/j.tust.2010.04.004
– volume: 183
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0160
  article-title: A novel extreme learning machine based kNN classification method for dealing with big data
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.115293
– volume: 41
  start-page: 212
  issue: 2
  year: 2021
  ident: 10.1016/j.undsp.2023.05.003_b0200
  article-title: Overview of state-of-art of rockburst prediction and prevention techniques for deep-buried tunnels
  publication-title: Tunnel Construction
– volume: 141
  year: 2020
  ident: 10.1016/j.undsp.2023.05.003_b0205
  article-title: Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112918
– volume: 41
  start-page: 2915
  issue: S1
  year: 2022
  ident: 10.1016/j.undsp.2023.05.003_b0110
  article-title: Research on rockburst grade prediction based on stacking integrated algorithm
  publication-title: Chinese Journal of Rock Mechanics and Engineering
– volume: 18
  start-page: 06018016
  issue: 7
  year: 2018
  ident: 10.1016/j.undsp.2023.05.003_b0230
  article-title: Time fractal behavior of microseismic events for different intensities of immediate rock bursts
  publication-title: International Journal of Geomechanics
  doi: 10.1061/(ASCE)GM.1943-5622.0001221
– ident: 10.1016/j.undsp.2023.05.003_b0145
– volume: 5
  start-page: 104
  issue: 4
  year: 2015
  ident: 10.1016/j.undsp.2023.05.003_b0090
  article-title: Review on Rockburst Theory and Types of Rock Support in Rockburst Prone Mines
  publication-title: Open Journal of Safety Science and Technology
  doi: 10.4236/ojsst.2015.54013
SSID ssj0002087875
Score 2.3691928
Snippet Rockburst is a kind of common geological disaster in deep tunnel engineering. It has the characteristics of causing great harm and occurring at random...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 241
SubjectTerms Cloud model
Combined prediction
Rockburst
Stacking ensemble algorithm
Title Combined prediction of rockburst based on multiple factors and stacking ensemble algorithm
URI https://dx.doi.org/10.1016/j.undsp.2023.05.003
https://doaj.org/article/77c0b70c713c4e10a8d9ac50ae150665
Volume 13
WOSCitedRecordID wos001034597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2467-9674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002087875
  issn: 2467-9674
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxYCQEE9RXvLASETc2I4zFkTFVDGAVLFEfkJLm1Zpyu_n7CQoU1lYE8eO7s6677NP3yF0mynriBT-Wt2JiDpFI8lhP7IBN4pooZ0UodlEOh6LySR76bT68jVhtTxwbbj7NNWxSmMNZEpTS2IpTCY1i6X12ng8qJfGadYhU7NwvSYgElkrMxQKujaFWXuFykEStDrbNllNKgqK_Z2M1Mkyo0N00MBDPKx_6wjt2OIY7Q87p_0n6B32MPBZa_Cq9Ncs3rR46TCkoi8w0brCPjUZDE_bckHctNXBsjAY8KD2B-QYGKxdKHgr5x_Lclp9Lk7R2-jp9fE5alokRJoSWkUAtizsMJIQo1LAYoYyAwDBAS0y4ByROK4FVSQWVgAb5VwIDt6JXSK1U9wlZ6hXLAt7jrBOGUuMY46LjGZGZlRKT2BJApMxTfpo0For141-uG9jMc_bQrFZHkycexPnMfOyo3109_vRqpbP2D78wbvhd6jXvg4PICLyJiLyvyKij3jrxLyBETU8gKmm21a_-I_VL9Gen7KueLlCvarc2Gu0q7-r6bq8CVH6A10G7Rg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+prediction+of+rockburst+based+on+multiple+factors+and+stacking+ensemble+algorithm&rft.jtitle=Underground+space+%28Beijing%29&rft.au=Hu+Luo&rft.au=Yong+Fang&rft.au=Jianfeng+Wang&rft.au=Yubo+Wang&rft.date=2023-12-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2467-9674&rft.volume=13&rft.spage=241&rft.epage=261&rft_id=info:doi/10.1016%2Fj.undsp.2023.05.003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_77c0b70c713c4e10a8d9ac50ae150665
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2467-9674&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2467-9674&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2467-9674&client=summon