DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome

Understanding the functional consequence of genetic variants, especially the non-coding ones, is important but particularly challenging. Genome-wide association studies (GWAS) or quantitative trait locus analyses may be subject to limited statistical power and linkage disequilibrium, and thus are le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics (Oxford, England) Ročník 38; číslo 24; s. 5340 - 5351
Hlavní autoři: Wang, Ye, Chen, Li
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 13.12.2022
Témata:
ISSN:1367-4803, 1367-4811, 1367-4811
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Understanding the functional consequence of genetic variants, especially the non-coding ones, is important but particularly challenging. Genome-wide association studies (GWAS) or quantitative trait locus analyses may be subject to limited statistical power and linkage disequilibrium, and thus are less optimal to pinpoint the causal variants. Moreover, most existing machine-learning approaches, which exploit the functional annotations to interpret and prioritize putative causal variants, cannot accommodate the heterogeneity of personal genetic variations and traits in a population study, targeting a specific disease. By leveraging paired whole-genome sequencing data and epigenetic functional assays in a population study, we propose a multi-modal deep learning framework to predict genome-wide quantitative epigenetic signals by considering both personal genetic variations and traits. The proposed approach can further evaluate the functional consequence of non-coding variants on an individual level by quantifying the allelic difference of predicted epigenetic signals. By applying the approach to the ROSMAP cohort studying Alzheimer's disease (AD), we demonstrate that the proposed approach can accurately predict quantitative genome-wide epigenetic signals and in key genomic regions of AD causal genes, learn canonical motifs reported to regulate gene expression of AD causal genes, improve the partitioning heritability analysis and prioritize putative causal variants in a GWAS risk locus. Finally, we release the proposed deep learning model as a stand-alone Python toolkit and a web server. https://github.com/lichen-lab/DeepPerVar. Supplementary data are available at Bioinformatics online.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1367-4811
DOI:10.1093/bioinformatics/btac696