The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 27; číslo 6; s. 1001 - 1024
Hlavní autoři: Birgin, Ernesto G., Fernández, Damián, Martínez, J. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.12.2012
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1055-6788
1029-4937
DOI:10.1080/10556788.2011.556634