The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When...
Uloženo v:
| Vydáno v: | Optimization methods & software Ročník 27; číslo 6; s. 1001 - 1024 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Abingdon
Taylor & Francis
01.12.2012
Taylor & Francis Ltd |
| Témata: | |
| ISSN: | 1055-6788, 1029-4937 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. |
|---|---|
| AbstractList | Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. [PUBLICATION ABSTRACT] Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. |
| Author | Birgin, Ernesto G. Fernández, Damián Martínez, J. M. |
| Author_xml | – sequence: 1 givenname: Ernesto G. surname: Birgin fullname: Birgin, Ernesto G. email: egbirgin@ime.usp.br organization: Department of Computer Science , Institute of Mathematics and Statistics, University of São Paulo – sequence: 2 givenname: Damián surname: Fernández fullname: Fernández, Damián organization: Department of Applied Mathematics , Institute of Mathematics, Statistics and Scientific Computing, University of Campinas – sequence: 3 givenname: J. M. surname: Martínez fullname: Martínez, J. M. organization: Department of Applied Mathematics , Institute of Mathematics, Statistics and Scientific Computing, University of Campinas |
| BookMark | eNqFkUFv3CAQhVGVSk3S_oMekHrJxRuwwdi5RFGUNpVW6iU9o7EZdols2AJWtP--WNteckgkJAb0vYF574Kc-eCRkK-cbTjr2DVnUraq6zY143xT6rYRH8g5Z3Vfib5RZ2stZbUyn8hFSs-MMcFFe07M0x7pEBZv0HhMiQZLD-hhykd6gAgzZoyJOk-hrGU3o89o6BZ2EfzOlctC7IOhLy7v6Rh8yhGcL0hahkMMw4Rz-kw-WpgSfvm3X5Lf3x-e7h-r7a8fP-_vttVYPpMroRrDW-hlI0yLHVpmZTuqvoZyYmaQQtpBtYNShnV9z1tupZIgxNg3gD00l-Tq1Lc8_GfBlPXs0ojTBB7DkjSvu0axmtesoN9eoc9hiWXuQnFZrCnGikLdnKgxhpQiWj26DNkFv045ac70GoD-H4BeA9CnAIpYvBIfopshHt-T3Z5kztsQZ3gJcTI6w3EK0RbTR5d082aHv7HjnpM |
| CitedBy_id | crossref_primary_10_1007_s10589_017_9937_2 crossref_primary_10_1287_opre_2016_1521 crossref_primary_10_1007_s10589_014_9685_5 crossref_primary_10_1007_s10589_015_9783_z crossref_primary_10_1007_s12597_019_00366_3 crossref_primary_10_1007_s10898_014_0242_7 crossref_primary_10_1007_s10898_013_0039_0 crossref_primary_10_1007_s40314_015_0226_3 crossref_primary_10_1016_j_cam_2017_03_015 crossref_primary_10_1007_s10957_024_02532_0 crossref_primary_10_1137_22M1539678 crossref_primary_10_1007_s10589_012_9502_y crossref_primary_10_1007_s10107_012_0528_9 crossref_primary_10_1080_03081087_2014_918118 crossref_primary_10_1134_S0965542512110073 crossref_primary_10_1137_120868359 crossref_primary_10_1007_s10957_015_0735_7 crossref_primary_10_1007_s10589_017_9963_0 crossref_primary_10_1080_10556788_2020_1746962 crossref_primary_10_1109_JSTSP_2017_2726979 crossref_primary_10_1007_s10107_015_0973_3 crossref_primary_10_1016_j_cirpj_2025_06_008 crossref_primary_10_1137_17M1146518 crossref_primary_10_1016_j_ejor_2021_11_027 crossref_primary_10_1007_s10915_022_01815_w |
| Cites_doi | 10.1023/A:1018665102534 10.1007/BFb0121177 10.1002/jcc.10216 10.1093/imanum/6.3.357 10.1007/s10589-007-9050-z 10.1007/s101070100263 10.1016/0022-247X(67)90163-1 10.1007/s10107-009-0264-y 10.1007/s10107-002-0364-4 10.1023/A:1019928808826 10.1007/s10898-009-9419-x 10.1007/s10589-009-9240-y 10.1007/s10589-007-9159-0 10.1007/s10589-005-1066-7 10.1023/A:1022686919295 10.1137/1.9780898719857 10.1080/10556780802124648 10.1137/060667086 10.1080/02331930500100270 10.1007/BFb0120989 10.1007/s101070050051 10.1007/BF00927673 10.1137/S1052623497326629 10.1007/BF01580138 10.1137/060654797 10.1002/jcc.21224 10.1007/s10107-004-0559-y 10.1007/s10957-004-1861-9 |
| ContentType | Journal Article |
| Copyright | Copyright Taylor & Francis Group, LLC 2012 Copyright Taylor and Francis Group, LLC |
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2012 – notice: Copyright Taylor and Francis Group, LLC |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2011.556634 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 1024 |
| ExternalDocumentID | 2814342841 10_1080_10556788_2011_556634 556634 |
| Genre | Feature |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ 07G 1TA AAIKQ AAKBW AAYXX ACAGQ ACGEE ACTCW AEUMN AGCQS AGLEN AGROQ AHMOU ALCKM AMEWO AMXXU BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK EJD IVXBP LJTGL NUSFT QCRFL TAQ TFMCV TOXWX UB9 UU8 V3K V4Q 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c414t-473d16a9534d6e8ef0f56c792a6e80db545fb76b77d0899161f575a44c93ae9a3 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306841500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1055-6788 |
| IngestDate | Sun Nov 09 13:03:23 EST 2025 Wed Aug 13 09:50:24 EDT 2025 Sat Nov 29 02:36:04 EST 2025 Tue Nov 18 22:14:43 EST 2025 Mon Oct 20 23:44:43 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-473d16a9534d6e8ef0f56c792a6e80db545fb76b77d0899161f575a44c93ae9a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
| OpenAccessLink | http://dx.doi.org/ 10.1080/10556788.2011.556634 |
| PQID | 1151461084 |
| PQPubID | 186278 |
| PageCount | 24 |
| ParticipantIDs | informaworld_taylorfrancis_310_1080_10556788_2011_556634 proquest_miscellaneous_1283702120 crossref_citationtrail_10_1080_10556788_2011_556634 crossref_primary_10_1080_10556788_2011_556634 proquest_journals_1151461084 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-12-01 |
| PublicationDateYYYYMMDD | 2012-12-01 |
| PublicationDate_xml | – month: 12 year: 2012 text: 2012-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2012 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 Bertsekas D. P. (CIT0006) 1999 CIT0031 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0028 CIT0009 CIT0008 Powell M. J.D. (CIT0027) 1969 |
| References_xml | – ident: CIT0032 doi: 10.1023/A:1018665102534 – ident: CIT0005 doi: 10.1007/BFb0121177 – ident: CIT0024 doi: 10.1002/jcc.10216 – ident: CIT0017 doi: 10.1093/imanum/6.3.357 – ident: CIT0011 – ident: CIT0010 doi: 10.1007/s10589-007-9050-z – volume-title: Nonlinear Programming year: 1999 ident: CIT0006 – ident: CIT0013 doi: 10.1007/s101070100263 – ident: CIT0023 doi: 10.1016/0022-247X(67)90163-1 – ident: CIT0008 doi: 10.1007/s10107-009-0264-y – ident: CIT0015 doi: 10.1007/s10107-002-0364-4 – ident: CIT0009 doi: 10.1023/A:1019928808826 – ident: CIT0022 doi: 10.1007/s10898-009-9419-x – ident: CIT0002 doi: 10.1007/s10589-009-9240-y – ident: CIT0014 doi: 10.1007/s10589-007-9159-0 – ident: CIT0007 doi: 10.1007/s10589-005-1066-7 – ident: CIT0025 doi: 10.1023/A:1022686919295 – ident: CIT0016 – start-page: 283 volume-title: Optimization year: 1969 ident: CIT0027 – ident: CIT0012 doi: 10.1137/1.9780898719857 – ident: CIT0021 doi: 10.1080/10556780802124648 – ident: CIT0020 doi: 10.1137/060667086 – ident: CIT0004 doi: 10.1080/02331930500100270 – ident: CIT0029 doi: 10.1007/BFb0120989 – ident: CIT0018 doi: 10.1007/s101070050051 – ident: CIT0019 doi: 10.1007/BF00927673 – ident: CIT0028 doi: 10.1137/S1052623497326629 – ident: CIT0030 doi: 10.1007/BF01580138 – ident: CIT0001 doi: 10.1137/060654797 – ident: CIT0026 doi: 10.1002/jcc.21224 – ident: CIT0031 doi: 10.1007/s10107-004-0559-y – ident: CIT0003 doi: 10.1007/s10957-004-1861-9 |
| SSID | ssj0004146 |
| Score | 2.1323454 |
| Snippet | Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1001 |
| SubjectTerms | Algorithms augmented Lagrangian methods Computer programs Fines & penalties Lagrange multipliers Mathematical analysis Mathematical models Nonlinear programming numerical experiments Optimization penalty parameters Software Studies |
| Title | The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556634 https://www.proquest.com/docview/1151461084 https://www.proquest.com/docview/1283702120 |
| Volume | 27 |
| WOSCitedRecordID | wos000306841500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: TFW dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPOjBb3E6JYLXYtu0SXoUcXiQ4WHibiVpkjHQbqyd4H_ve_2YG6KCQg8NyWtD8pK8JO_9foRcxcyXOgi0B8aqQ1DtxFOB9L3IxQms1yJTianIJsRgIEej5HElih_dKnEP7WqgiGquxsGtdNF6xF1XnI6wdasBOOGdMwQEBcMeffqG_efPwMgmvAgEPJRoY-e--cja2rSGXPplpq6Wn_7u_yu-R3Ya05Pe1LqyTzZsfkC2VwAJD4kBraEamZaswTmQTh2dWZAq3ymChL-i80xBJzlV8CzGFaKnoQ9qDEveGDSN1ozUFI93aYa2J1JQQJFioRvumuKIPPXvhrf3XsPD4GXQgKUXCWYCrpKYRYZbaZ3vYp6JJFSQ8o0GI8xpwbUQBi8RwYZ0YASqKMoSpmyi2DHp5NPcnhAaIgCikVzzWEfSCMmt4zIyoVA2dEx1CWt7IM0akHKs6EsaNFimbRum2IZp3YZd4i2lZjVIxy_l5WrnpmV1OOJqJpOU_SzaaxUhbUZ7AbuoGOnRfQnZl8tsGKd4-aJyO11AmQpmCAwF__Tvfz8jW5AKa3eaHumU84U9J5vZWzkp5heV7n8AKvT-9Q |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZdW9j2sK7dRn9Pg76a2pYtyY-jNLQ0DX1Iad6EZEkh0Dmhdgb773tny23D6AZj4Acb6WxxPkl30un7CDnJWSxNkpgInFWPoNpFpBMZR5nPC5ivRakL25JNiNFITibFTcgmrENaJcbQvgOKaMdq7Ny4GN2nxJ22pI4Qu3UInHDPWfaGbCA5HcZf48Hd89HIcMAIJCIU6U_PvfKWldlpBbv0t7G6nYAGW_-h6R_Jh-B90u-duWyTNVftkPcvMAk_EQuGQw2SLTmLwyCde7pwINX8oogT_gPzZ2o6q6iGazltQT0tHeopzHpTMDbakVJTXOGlJbqfyEIBVeqlCfQ19WdyOzgfn11EgYohKkGDTZQJZhOui5xlljvpfOxzXooi1fAUWwN-mDeCGyEs7iOCG-nBD9RZVhZMu0KzL2S9mldul9AUMRCt5IbnJpNWSO48l5lNhXapZ3qPsP4XqDLglGND71US4Ex7HSrUoep0uEeiJ6lFh9Pxl_ry5d9VTbs-4jsyE8X-LHrYW4IKHb6GQCpHhvRYQvG3p2Loqrj_ois3X0KdFmkIfIV4_9-__pW8vRhfD9XwcnR1QN5BSdpl1xyS9eZh6Y7IZvmzmdUPx21HeAQ-7QMn |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-ED34Ft9G8FpsmzZJj6IuisuyB0VvJWmSRdDuYruC_96ZPnRFVFDooSWZNkxnkkky-T5CjmPmSx0E2oNg1SGoduKpQPpe5OIExmuRqcRUZBOi15P390l_4hQ_plXiHNrVQBFVX43OPTKuzYg7qTgdYepWA3DCPWfRNJmFyDlGu77p3H2cjGzOF4GEhyLt4blv3vJpcPoEXfqlq67Gn87y_1u-Qpaa2JOe1saySqZsvkYWJxAJ14kBs6EaqZaswU6QDh0dWZAqXymihD9h9kxBH3Kq4BoPKkhPQ7tqAGPeAEyN1pTUFNd3aYbBJ3JQQJVirBvymmKD3HYubs4uvYaIwctAgaUXCWYCrpKYRYZbaZ3vYp6JJFTw5BsNUZjTgmshDO4iQhDpIApUUZQlTNlEsU0ykw9zu0VoiAiIRnLNYx1JIyS3jsvIhELZ0DG1TVj7B9KsQSnHhj6mQQNm2uowRR2mtQ63ifcuNapROn6pLyd_blpWqyOupjJJ2c-ie60hpI27FzCNipEf3ZdQfPReDI6Kuy8qt8Mx1KlwhiBS8Hf-_vVDMt8_76Tdq971LlmAgrBOrdkjM-Xz2O6TueylfCieDyo3eAModAHZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+boundedness+of+penalty+parameters+in+an+augmented+Lagrangian+method+with+constrained+subproblems&rft.jtitle=Optimization+methods+%26+software&rft.au=Birgin%2C+Ernesto+G&rft.au=Fernandez%2C+Damian&rft.au=Martinez%2C+J+M&rft.date=2012-12-01&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=27&rft.issue=6&rft.spage=1001&rft.epage=1024&rft_id=info:doi/10.1080%2F10556788.2011.556634&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |