The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems

Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization methods & software Ročník 27; číslo 6; s. 1001 - 1024
Hlavní autoři: Birgin, Ernesto G., Fernández, Damián, Martínez, J. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.12.2012
Taylor & Francis Ltd
Témata:
ISSN:1055-6788, 1029-4937
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
AbstractList Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented. [PUBLICATION ABSTRACT]
Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem with simple constraints, whose objective function depends on updated Lagrange multipliers and penalty parameters, is approximately solved. When the penalty parameter becomes very large, solving the subproblem becomes difficult; therefore, the effectiveness of this approach is associated with the boundedness of the penalty parameters. In this paper, it is proved that under more natural assumptions than the ones employed until now, penalty parameters are bounded. For proving the new boundedness result, the original algorithm has been slightly modified. Numerical consequences of the modifications are discussed and computational experiments are presented.
Author Birgin, Ernesto G.
Fernández, Damián
Martínez, J. M.
Author_xml – sequence: 1
  givenname: Ernesto G.
  surname: Birgin
  fullname: Birgin, Ernesto G.
  email: egbirgin@ime.usp.br
  organization: Department of Computer Science , Institute of Mathematics and Statistics, University of São Paulo
– sequence: 2
  givenname: Damián
  surname: Fernández
  fullname: Fernández, Damián
  organization: Department of Applied Mathematics , Institute of Mathematics, Statistics and Scientific Computing, University of Campinas
– sequence: 3
  givenname: J. M.
  surname: Martínez
  fullname: Martínez, J. M.
  organization: Department of Applied Mathematics , Institute of Mathematics, Statistics and Scientific Computing, University of Campinas
BookMark eNqFkUFv3CAQhVGVSk3S_oMekHrJxRuwwdi5RFGUNpVW6iU9o7EZdols2AJWtP--WNteckgkJAb0vYF574Kc-eCRkK-cbTjr2DVnUraq6zY143xT6rYRH8g5Z3Vfib5RZ2stZbUyn8hFSs-MMcFFe07M0x7pEBZv0HhMiQZLD-hhykd6gAgzZoyJOk-hrGU3o89o6BZ2EfzOlctC7IOhLy7v6Rh8yhGcL0hahkMMw4Rz-kw-WpgSfvm3X5Lf3x-e7h-r7a8fP-_vttVYPpMroRrDW-hlI0yLHVpmZTuqvoZyYmaQQtpBtYNShnV9z1tupZIgxNg3gD00l-Tq1Lc8_GfBlPXs0ojTBB7DkjSvu0axmtesoN9eoc9hiWXuQnFZrCnGikLdnKgxhpQiWj26DNkFv045ac70GoD-H4BeA9CnAIpYvBIfopshHt-T3Z5kztsQZ3gJcTI6w3EK0RbTR5d082aHv7HjnpM
CitedBy_id crossref_primary_10_1007_s10589_017_9937_2
crossref_primary_10_1287_opre_2016_1521
crossref_primary_10_1007_s10589_014_9685_5
crossref_primary_10_1007_s10589_015_9783_z
crossref_primary_10_1007_s12597_019_00366_3
crossref_primary_10_1007_s10898_014_0242_7
crossref_primary_10_1007_s10898_013_0039_0
crossref_primary_10_1007_s40314_015_0226_3
crossref_primary_10_1016_j_cam_2017_03_015
crossref_primary_10_1007_s10957_024_02532_0
crossref_primary_10_1137_22M1539678
crossref_primary_10_1007_s10589_012_9502_y
crossref_primary_10_1007_s10107_012_0528_9
crossref_primary_10_1080_03081087_2014_918118
crossref_primary_10_1134_S0965542512110073
crossref_primary_10_1137_120868359
crossref_primary_10_1007_s10957_015_0735_7
crossref_primary_10_1007_s10589_017_9963_0
crossref_primary_10_1080_10556788_2020_1746962
crossref_primary_10_1109_JSTSP_2017_2726979
crossref_primary_10_1007_s10107_015_0973_3
crossref_primary_10_1016_j_cirpj_2025_06_008
crossref_primary_10_1137_17M1146518
crossref_primary_10_1016_j_ejor_2021_11_027
crossref_primary_10_1007_s10915_022_01815_w
Cites_doi 10.1023/A:1018665102534
10.1007/BFb0121177
10.1002/jcc.10216
10.1093/imanum/6.3.357
10.1007/s10589-007-9050-z
10.1007/s101070100263
10.1016/0022-247X(67)90163-1
10.1007/s10107-009-0264-y
10.1007/s10107-002-0364-4
10.1023/A:1019928808826
10.1007/s10898-009-9419-x
10.1007/s10589-009-9240-y
10.1007/s10589-007-9159-0
10.1007/s10589-005-1066-7
10.1023/A:1022686919295
10.1137/1.9780898719857
10.1080/10556780802124648
10.1137/060667086
10.1080/02331930500100270
10.1007/BFb0120989
10.1007/s101070050051
10.1007/BF00927673
10.1137/S1052623497326629
10.1007/BF01580138
10.1137/060654797
10.1002/jcc.21224
10.1007/s10107-004-0559-y
10.1007/s10957-004-1861-9
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor and Francis Group, LLC
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor and Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2011.556634
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 1024
ExternalDocumentID 2814342841
10_1080_10556788_2011_556634
556634
Genre Feature
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
ACTCW
AEUMN
AGCQS
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
EJD
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c414t-473d16a9534d6e8ef0f56c792a6e80db545fb76b77d0899161f575a44c93ae9a3
IEDL.DBID TFW
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000306841500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1055-6788
IngestDate Sun Nov 09 13:03:23 EST 2025
Wed Aug 13 09:50:24 EDT 2025
Sat Nov 29 02:36:04 EST 2025
Tue Nov 18 22:14:43 EST 2025
Mon Oct 20 23:44:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-473d16a9534d6e8ef0f56c792a6e80db545fb76b77d0899161f575a44c93ae9a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://dx.doi.org/ 10.1080/10556788.2011.556634
PQID 1151461084
PQPubID 186278
PageCount 24
ParticipantIDs informaworld_taylorfrancis_310_1080_10556788_2011_556634
proquest_miscellaneous_1283702120
crossref_citationtrail_10_1080_10556788_2011_556634
crossref_primary_10_1080_10556788_2011_556634
proquest_journals_1151461084
PublicationCentury 2000
PublicationDate 2012-12-01
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: 2012-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2012
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
Bertsekas D. P. (CIT0006) 1999
CIT0031
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0028
CIT0009
CIT0008
Powell M. J.D. (CIT0027) 1969
References_xml – ident: CIT0032
  doi: 10.1023/A:1018665102534
– ident: CIT0005
  doi: 10.1007/BFb0121177
– ident: CIT0024
  doi: 10.1002/jcc.10216
– ident: CIT0017
  doi: 10.1093/imanum/6.3.357
– ident: CIT0011
– ident: CIT0010
  doi: 10.1007/s10589-007-9050-z
– volume-title: Nonlinear Programming
  year: 1999
  ident: CIT0006
– ident: CIT0013
  doi: 10.1007/s101070100263
– ident: CIT0023
  doi: 10.1016/0022-247X(67)90163-1
– ident: CIT0008
  doi: 10.1007/s10107-009-0264-y
– ident: CIT0015
  doi: 10.1007/s10107-002-0364-4
– ident: CIT0009
  doi: 10.1023/A:1019928808826
– ident: CIT0022
  doi: 10.1007/s10898-009-9419-x
– ident: CIT0002
  doi: 10.1007/s10589-009-9240-y
– ident: CIT0014
  doi: 10.1007/s10589-007-9159-0
– ident: CIT0007
  doi: 10.1007/s10589-005-1066-7
– ident: CIT0025
  doi: 10.1023/A:1022686919295
– ident: CIT0016
– start-page: 283
  volume-title: Optimization
  year: 1969
  ident: CIT0027
– ident: CIT0012
  doi: 10.1137/1.9780898719857
– ident: CIT0021
  doi: 10.1080/10556780802124648
– ident: CIT0020
  doi: 10.1137/060667086
– ident: CIT0004
  doi: 10.1080/02331930500100270
– ident: CIT0029
  doi: 10.1007/BFb0120989
– ident: CIT0018
  doi: 10.1007/s101070050051
– ident: CIT0019
  doi: 10.1007/BF00927673
– ident: CIT0028
  doi: 10.1137/S1052623497326629
– ident: CIT0030
  doi: 10.1007/BF01580138
– ident: CIT0001
  doi: 10.1137/060654797
– ident: CIT0026
  doi: 10.1002/jcc.21224
– ident: CIT0031
  doi: 10.1007/s10107-004-0559-y
– ident: CIT0003
  doi: 10.1007/s10957-004-1861-9
SSID ssj0004146
Score 2.1323454
Snippet Augmented Lagrangian methods are effective tools for solving large-scale nonlinear programming problems. At each outer iteration, a minimization subproblem...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1001
SubjectTerms Algorithms
augmented Lagrangian methods
Computer programs
Fines & penalties
Lagrange multipliers
Mathematical analysis
Mathematical models
Nonlinear programming
numerical experiments
Optimization
penalty parameters
Software
Studies
Title The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556634
https://www.proquest.com/docview/1151461084
https://www.proquest.com/docview/1283702120
Volume 27
WOSCitedRecordID wos000306841500005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: TFW
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPOjBb3E6JYLXYtu0SXoUcXiQ4WHibiVpkjHQbqyd4H_ve_2YG6KCQg8NyWtD8pK8JO_9foRcxcyXOgi0B8aqQ1DtxFOB9L3IxQms1yJTianIJsRgIEej5HElih_dKnEP7WqgiGquxsGtdNF6xF1XnI6wdasBOOGdMwQEBcMeffqG_efPwMgmvAgEPJRoY-e--cja2rSGXPplpq6Wn_7u_yu-R3Ya05Pe1LqyTzZsfkC2VwAJD4kBraEamZaswTmQTh2dWZAq3ymChL-i80xBJzlV8CzGFaKnoQ9qDEveGDSN1ozUFI93aYa2J1JQQJFioRvumuKIPPXvhrf3XsPD4GXQgKUXCWYCrpKYRYZbaZ3vYp6JJFSQ8o0GI8xpwbUQBi8RwYZ0YASqKMoSpmyi2DHp5NPcnhAaIgCikVzzWEfSCMmt4zIyoVA2dEx1CWt7IM0akHKs6EsaNFimbRum2IZp3YZd4i2lZjVIxy_l5WrnpmV1OOJqJpOU_SzaaxUhbUZ7AbuoGOnRfQnZl8tsGKd4-aJyO11AmQpmCAwF__Tvfz8jW5AKa3eaHumU84U9J5vZWzkp5heV7n8AKvT-9Q
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZdW9j2sK7dRn9Pg76a2pYtyY-jNLQ0DX1Iad6EZEkh0Dmhdgb773tny23D6AZj4Acb6WxxPkl30un7CDnJWSxNkpgInFWPoNpFpBMZR5nPC5ivRakL25JNiNFITibFTcgmrENaJcbQvgOKaMdq7Ny4GN2nxJ22pI4Qu3UInHDPWfaGbCA5HcZf48Hd89HIcMAIJCIU6U_PvfKWldlpBbv0t7G6nYAGW_-h6R_Jh-B90u-duWyTNVftkPcvMAk_EQuGQw2SLTmLwyCde7pwINX8oogT_gPzZ2o6q6iGazltQT0tHeopzHpTMDbakVJTXOGlJbqfyEIBVeqlCfQ19WdyOzgfn11EgYohKkGDTZQJZhOui5xlljvpfOxzXooi1fAUWwN-mDeCGyEs7iOCG-nBD9RZVhZMu0KzL2S9mldul9AUMRCt5IbnJpNWSO48l5lNhXapZ3qPsP4XqDLglGND71US4Ex7HSrUoep0uEeiJ6lFh9Pxl_ry5d9VTbs-4jsyE8X-LHrYW4IKHb6GQCpHhvRYQvG3p2Loqrj_ois3X0KdFmkIfIV4_9-__pW8vRhfD9XwcnR1QN5BSdpl1xyS9eZh6Y7IZvmzmdUPx21HeAQ-7QMn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6-ED34Ft9G8FpsmzZJj6IuisuyB0VvJWmSRdDuYruC_96ZPnRFVFDooSWZNkxnkkky-T5CjmPmSx0E2oNg1SGoduKpQPpe5OIExmuRqcRUZBOi15P390l_4hQ_plXiHNrVQBFVX43OPTKuzYg7qTgdYepWA3DCPWfRNJmFyDlGu77p3H2cjGzOF4GEhyLt4blv3vJpcPoEXfqlq67Gn87y_1u-Qpaa2JOe1saySqZsvkYWJxAJ14kBs6EaqZaswU6QDh0dWZAqXymihD9h9kxBH3Kq4BoPKkhPQ7tqAGPeAEyN1pTUFNd3aYbBJ3JQQJVirBvymmKD3HYubs4uvYaIwctAgaUXCWYCrpKYRYZbaZ3vYp6JJFTw5BsNUZjTgmshDO4iQhDpIApUUZQlTNlEsU0ykw9zu0VoiAiIRnLNYx1JIyS3jsvIhELZ0DG1TVj7B9KsQSnHhj6mQQNm2uowRR2mtQ63ifcuNapROn6pLyd_blpWqyOupjJJ2c-ie60hpI27FzCNipEf3ZdQfPReDI6Kuy8qt8Mx1KlwhiBS8Hf-_vVDMt8_76Tdq971LlmAgrBOrdkjM-Xz2O6TueylfCieDyo3eAModAHZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+boundedness+of+penalty+parameters+in+an+augmented+Lagrangian+method+with+constrained+subproblems&rft.jtitle=Optimization+methods+%26+software&rft.au=Birgin%2C+Ernesto+G&rft.au=Fernandez%2C+Damian&rft.au=Martinez%2C+J+M&rft.date=2012-12-01&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=27&rft.issue=6&rft.spage=1001&rft.epage=1024&rft_id=info:doi/10.1080%2F10556788.2011.556634&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon