Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series

Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective...

Full description

Saved in:
Bibliographic Details
Published in:Energy and AI Vol. 8; p. 100145
Main Authors: Miele, Eric Stefan, Bonacina, Fabrizio, Corsini, Alessandro
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.05.2022
Elsevier
Subjects:
ISSN:2666-5468, 2666-5468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies. In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor measurements together with the nonlinear correlations existing among signals. On this basis, we developed a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of operation of four wind turbines. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms by outperforming other two recent neural approaches. [Display omitted] •Deep Learning approach for early anomaly detection in wind turbines.•Architecture based on Autoencoders and Graph Convolutional Networks.•Unsupervised and data-driven approach.•Training on healthy operating conditions of wind turbines.•Troubleshooting and faulty component identification through model residuals.
AbstractList Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies. In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor measurements together with the nonlinear correlations existing among signals. On this basis, we developed a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of operation of four wind turbines. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms by outperforming other two recent neural approaches.
Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to a wide range of dynamic loads which can cause more frequent failures and downtime periods, leading to ever-increasing attention to effective Condition Monitoring strategies. In this paper, we propose a novel unsupervised deep anomaly detection framework to detect anomalies in wind turbines based on SCADA data. We introduce a promising neural architecture, namely a Graph Convolutional Autoencoder for Multivariate Time series, to model the sensor network as a dynamical functional graph. This structure improves the unsupervised learning capabilities of Autoencoders by considering individual sensor measurements together with the nonlinear correlations existing among signals. On this basis, we developed a deep anomaly detection framework that was validated on 12 failure events occurred during 20 months of operation of four wind turbines. The results show that the proposed framework successfully detects anomalies and anticipates SCADA alarms by outperforming other two recent neural approaches. [Display omitted] •Deep Learning approach for early anomaly detection in wind turbines.•Architecture based on Autoencoders and Graph Convolutional Networks.•Unsupervised and data-driven approach.•Training on healthy operating conditions of wind turbines.•Troubleshooting and faulty component identification through model residuals.
ArticleNumber 100145
Author Miele, Eric Stefan
Bonacina, Fabrizio
Corsini, Alessandro
Author_xml – sequence: 1
  givenname: Eric Stefan
  surname: Miele
  fullname: Miele, Eric Stefan
  email: ericstefan.miele@uniroma1.it
– sequence: 2
  givenname: Fabrizio
  surname: Bonacina
  fullname: Bonacina, Fabrizio
– sequence: 3
  givenname: Alessandro
  surname: Corsini
  fullname: Corsini, Alessandro
BookMark eNp9kc9uEzEQxleoSJTSJ-DiF0iwvd5_Bw5VgFKpqJdytsbecTrRxo5sb0rg5XEaKqEeehpr5N838833vjrzwWNVfRR8KbhoP22WuD4ALSWXsnS4UM2b6ly2bbtoVNuf_fd-V12mtOGcy0aIoevOqz9fEHcMfNjCdGAjZrSZgmfk2UOI9Dv4DBODX5TYI_mR5Tka8pjYnMiv2XWE3QNbBb8P03wEy-erOQf0NowYE3Mhsh_zlGkPkSAju6ctsoSRMH2o3jqYEl7-qxfVz29f71ffF7d31zerq9uFVULlheJK2Q5qB-iakUtXNoexxq5rW6kaOWA7WNd3g-iVsdwJIxpTzHUSVC96W19UNyfdMcBG7yJtIR50ANJPjRDXGmImO6GWyta9M7UxMCirOlOG9yisE7YRvZFFazhp2RhSiui0pQxH5zkCTVpwfQxFb_RTKPoYij6FUtj6Bfu8y-vU5xOF5UR7wqiTpXJfHCmWsIoHepX_Cwmpqys
CitedBy_id crossref_primary_10_1016_j_engfailanal_2024_108354
crossref_primary_10_3390_s23125695
crossref_primary_10_3390_s25144499
crossref_primary_10_3390_s22093288
crossref_primary_10_1016_j_compind_2024_104097
crossref_primary_10_3390_en16124678
crossref_primary_10_1109_TIM_2025_3565242
crossref_primary_10_1007_s12206_024_0616_9
crossref_primary_10_1016_j_engstruct_2024_118208
crossref_primary_10_1016_j_ress_2023_109846
crossref_primary_10_3390_en16020620
crossref_primary_10_3390_electronics12061313
crossref_primary_10_3390_en18143630
crossref_primary_10_1016_j_ins_2023_119682
crossref_primary_10_3390_s22186955
crossref_primary_10_1007_s10489_022_04337_y
crossref_primary_10_1002_eqe_4047
crossref_primary_10_1016_j_egyai_2024_100467
crossref_primary_10_1080_10589759_2025_2541053
crossref_primary_10_3390_machines12120894
crossref_primary_10_1088_1755_1315_1073_1_012005
crossref_primary_10_3390_s23146502
crossref_primary_10_3390_jsan14050089
crossref_primary_10_1016_j_jnca_2025_104116
crossref_primary_10_1109_ACCESS_2024_3350978
crossref_primary_10_1016_j_measurement_2025_118538
crossref_primary_10_3390_en16093719
crossref_primary_10_3390_ijtpp10030014
crossref_primary_10_1016_j_egyr_2024_10_041
crossref_primary_10_1109_TII_2022_3228691
crossref_primary_10_1080_15435075_2022_2117554
crossref_primary_10_1016_j_engappai_2024_108363
crossref_primary_10_1016_j_ress_2023_109258
crossref_primary_10_1016_j_measurement_2025_118664
crossref_primary_10_1088_1361_6501_ad6f33
crossref_primary_10_1016_j_ress_2025_110995
crossref_primary_10_1016_j_ymssp_2024_112175
Cites_doi 10.1016/S0167-6105(98)00034-8
10.1002/we.2404
10.3390/en13123132
10.1016/j.renene.2021.03.078
10.1016/j.renene.2020.04.148
10.1016/j.renene.2018.10.047
10.1016/j.measurement.2021.109094
10.1109/TIE.2010.2103910
10.1145/3439950
10.1109/ICCV.2019.00936
10.1109/TITS.2019.2910560
10.1016/j.rser.2007.05.008
10.3390/en13184702
10.1371/journal.pone.0087357
10.2514/8.5282
10.1016/j.isatra.2018.11.041
10.1016/j.renene.2019.09.041
10.1016/j.renene.2020.06.154
10.1145/3394486.3403118
10.1021/ac60214a047
10.3390/w9100796
10.1109/TPAS.1981.316586
10.1002/we.2628
10.1016/j.rser.2012.06.006
10.1186/s40649-019-0069-y
10.1016/j.renene.2019.07.033
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.egyai.2022.100145
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-5468
ExternalDocumentID oai_doaj_org_article_24c38fb3bba94c47b4048e1cf1c518b2
10_1016_j_egyai_2022_100145
S2666546822000076
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c414t-4044c7a3faef5d02f197ad3e776624529e69cf879184bc0f1b15b97772a4818c3
IEDL.DBID DOA
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001106796500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2666-5468
IngestDate Fri Oct 03 12:53:20 EDT 2025
Tue Nov 18 21:50:02 EST 2025
Thu Nov 20 00:50:32 EST 2025
Tue Jul 25 20:58:13 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Condition monitoring
Graph Convolutional Autoencoder
Deep anomaly detection
SCADA data
Early fault detection
Wind turbine
Multivariate Time series
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-4044c7a3faef5d02f197ad3e776624529e69cf879184bc0f1b15b97772a4818c3
OpenAccessLink https://doaj.org/article/24c38fb3bba94c47b4048e1cf1c518b2
ParticipantIDs doaj_primary_oai_doaj_org_article_24c38fb3bba94c47b4048e1cf1c518b2
crossref_citationtrail_10_1016_j_egyai_2022_100145
crossref_primary_10_1016_j_egyai_2022_100145
elsevier_sciencedirect_doi_10_1016_j_egyai_2022_100145
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle Energy and AI
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fung, Scheffler, Stolpe (b2) 1981; PAS-100
Chen, Li, Chen, Wang, Jiang (b22) 2020; 147
Zhang, Tong, Xu, Maciejewski (b28) 2019; 6
Xiang, Wang, Yang, Hu, Su (b18) 2021; 175
Wilkinson M, Harman K, Hendriks B, Spinato F, van Delft T, Garrad G, et al. Measuring wind turbine reliability-results of the reliawind project. In: EWEA conference. 2011, p. 1–8.
Prechelt (b39) 1998
Cui, Bangalore, Bertling Tjernberg (b14) 2021
Lepot, Aubin, Clemens (b37) 2017; 9
Stetco, Dinmohammadi, Zhao, Robu, Flynn, Barnes (b8) 2019; 133
Menezes, Mendes, Almeida, Farinha (b11) 2020; 13
Savitzky, Golay (b38) 1964; 36
Maldonado-Correa, Martín-Martínez, Artigao, Gómez-Lázaro (b13) 2020; 13
Kong, Tang, Deng, Liu, Han (b17) 2020; 146
Dao, Kazemtabrizi, Crabtree (b7) 2019; 22
Renström, Bangalore, Highcock (b21) 2020; 157
Chen, Liu, Chu, Liu, Xue (b23) 2021; 172
Yu, Gu (b25) 2019; 20
Yan, Ai, Yang, Tong (b27) 2020
Sesto, Casale (b3) 1998; 74
Liserre, Cardenas, Molinas, Rodriguez (b1) 2011; 58
EDP (b31) 2016
Madsen, Risø (b40) 2008
Kim, Parthasarathy, Uluyol, Foslien, Sheng, Fleming (b6) 2011; 54686
Lebranchu, Charbonnier, Bérenguer, Prévost (b10) 2019; 87
Ross (b35) 2014; 9
Hu, Qu, Work (b26) 2020
Kipf, Welling (b34) 2017
Wu, Pan, Chen, Long, Zhang, Philip (b30) 2020
Sahnoun M, Bagui F, Messaadia M. Failure analysis of onshore wind farms based on experimental data. In: Mediterranean conference on information & communication technologies’ 2015. 2015.
Pang, Shen, Cao, Hengel (b15) 2021; 54
Wee, Yang, Chou, Padilan (b4) 2012; 16
Chalapathy, Chawla (b24) 2019
Hameed, Hong, Cho, Ahn, Song (b5) 2009; 13
Kelley (b33) 1960; 30
Zaher, McArthur, Infield, Patel (b9) 2009; 12
Pang, He, Jiang, Xie (b16) 2020; 161
Ulmer, Jarlskog, Pizza, Manninen, Goren Huber (b12) 2020
Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020, p. 753–63.
Li G, Muller M, Thabet A, Ghanem B. Deepgcns: Can gcns go as deep as cnns?. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9267–76.
Yu, Yin, Zhu (b19) 2018
Arora, Basu, Mianjy, Mukherjee (b36) 2016
Baldi (b32) 2012
Zhang (10.1016/j.egyai.2022.100145_b28) 2019; 6
Pang (10.1016/j.egyai.2022.100145_b16) 2020; 161
Hameed (10.1016/j.egyai.2022.100145_b5) 2009; 13
Kelley (10.1016/j.egyai.2022.100145_b33) 1960; 30
Kim (10.1016/j.egyai.2022.100145_b6) 2011; 54686
Chalapathy (10.1016/j.egyai.2022.100145_b24) 2019
Zaher (10.1016/j.egyai.2022.100145_b9) 2009; 12
Wee (10.1016/j.egyai.2022.100145_b4) 2012; 16
Yu (10.1016/j.egyai.2022.100145_b19) 2018
Pang (10.1016/j.egyai.2022.100145_b15) 2021; 54
Yan (10.1016/j.egyai.2022.100145_b27) 2020
Dao (10.1016/j.egyai.2022.100145_b7) 2019; 22
Arora (10.1016/j.egyai.2022.100145_b36) 2016
Lepot (10.1016/j.egyai.2022.100145_b37) 2017; 9
Chen (10.1016/j.egyai.2022.100145_b22) 2020; 147
Kipf (10.1016/j.egyai.2022.100145_b34) 2017
Savitzky (10.1016/j.egyai.2022.100145_b38) 1964; 36
Liserre (10.1016/j.egyai.2022.100145_b1) 2011; 58
Chen (10.1016/j.egyai.2022.100145_b23) 2021; 172
Lebranchu (10.1016/j.egyai.2022.100145_b10) 2019; 87
Sesto (10.1016/j.egyai.2022.100145_b3) 1998; 74
Prechelt (10.1016/j.egyai.2022.100145_b39) 1998
Renström (10.1016/j.egyai.2022.100145_b21) 2020; 157
Maldonado-Correa (10.1016/j.egyai.2022.100145_b13) 2020; 13
Baldi (10.1016/j.egyai.2022.100145_b32) 2012
EDP (10.1016/j.egyai.2022.100145_b31) 2016
10.1016/j.egyai.2022.100145_b29
Hu (10.1016/j.egyai.2022.100145_b26) 2020
Madsen (10.1016/j.egyai.2022.100145_b40) 2008
Kong (10.1016/j.egyai.2022.100145_b17) 2020; 146
Yu (10.1016/j.egyai.2022.100145_b25) 2019; 20
Ulmer (10.1016/j.egyai.2022.100145_b12) 2020
Xiang (10.1016/j.egyai.2022.100145_b18) 2021; 175
Fung (10.1016/j.egyai.2022.100145_b2) 1981; PAS-100
Stetco (10.1016/j.egyai.2022.100145_b8) 2019; 133
Wu (10.1016/j.egyai.2022.100145_b30) 2020
Cui (10.1016/j.egyai.2022.100145_b14) 2021
10.1016/j.egyai.2022.100145_b41
Menezes (10.1016/j.egyai.2022.100145_b11) 2020; 13
10.1016/j.egyai.2022.100145_b20
Ross (10.1016/j.egyai.2022.100145_b35) 2014; 9
10.1016/j.egyai.2022.100145_b42
References_xml – volume: PAS-100
  start-page: 1176
  year: 1981
  end-page: 1182
  ident: b2
  article-title: Wind energy - a utility perspective
  publication-title: IEEE Trans Power Appar Syst
– reference: Wu Z, Pan S, Long G, Jiang J, Chang X, Zhang C. Connecting the dots: Multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020, p. 753–63.
– volume: 133
  start-page: 620
  year: 2019
  end-page: 635
  ident: b8
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew Energy
– year: 2020
  ident: b26
  article-title: Graph convolutional networks for traffic anomaly
– volume: 161
  start-page: 510
  year: 2020
  end-page: 524
  ident: b16
  article-title: Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data
  publication-title: Renew Energy
– volume: 87
  start-page: 272
  year: 2019
  end-page: 281
  ident: b10
  article-title: A combined mono-and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data
  publication-title: ISA Trans
– volume: 54686
  start-page: 2071
  year: 2011
  end-page: 2079
  ident: b6
  article-title: Use of SCADA data for failure detection in wind turbines
  publication-title: Energy sustainability
– start-page: 55
  year: 1998
  end-page: 69
  ident: b39
  article-title: Early stopping-but when?
  publication-title: Neural networks: tricks of the trade
– volume: 12
  start-page: 574
  year: 2009
  end-page: 593
  ident: b9
  article-title: Online wind turbine fault detection through automated SCADA data analysis
  publication-title: Wind Energy Int J Prog Appl Wind Power Convers Technol
– volume: 30
  start-page: 947
  year: 1960
  end-page: 954
  ident: b33
  article-title: Gradient theory of optimal flight paths
  publication-title: Ars J
– volume: 54
  start-page: 1
  year: 2021
  end-page: 38
  ident: b15
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Comput Surv
– volume: 157
  start-page: 647
  year: 2020
  end-page: 659
  ident: b21
  article-title: System-wide anomaly detection in wind turbines using deep autoencoders
  publication-title: Renew Energy
– volume: 13
  start-page: 3132
  year: 2020
  ident: b13
  article-title: Using SCADA data for wind turbine condition monitoring: A systematic literature review
  publication-title: Energies
– volume: 13
  start-page: 1
  year: 2009
  end-page: 39
  ident: b5
  article-title: Condition monitoring and fault detection of wind turbines and related algorithms: A review
  publication-title: Renew Sustain Energy Rev
– volume: 58
  start-page: 1081
  year: 2011
  end-page: 1095
  ident: b1
  article-title: Overview of multi-MW wind turbines and wind parks
  publication-title: IEEE Trans Ind Electr
– year: 2016
  ident: b36
  article-title: Understanding deep neural networks with rectified linear units
– start-page: 37
  year: 2012
  end-page: 49
  ident: b32
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Proceedings of ICML workshop on unsupervised and transfer learning
– reference: Wilkinson M, Harman K, Hendriks B, Spinato F, van Delft T, Garrad G, et al. Measuring wind turbine reliability-results of the reliawind project. In: EWEA conference. 2011, p. 1–8.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 23
  ident: b28
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput Soc Netw
– volume: 22
  start-page: 1848
  year: 2019
  end-page: 1871
  ident: b7
  article-title: Wind turbine reliability data review and impacts on levelised cost of energy
  publication-title: Wind Energy
– volume: 20
  start-page: 3940
  year: 2019
  end-page: 3951
  ident: b25
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Trans Intell Transp Syst
– volume: 74
  start-page: 375
  year: 1998
  end-page: 387
  ident: b3
  article-title: Exploitation of wind as an energy source to meet the world’s electricity demand
  publication-title: J Wind Eng Ind Aerodyn
– start-page: 9
  year: 2020
  ident: b12
  article-title: Early fault detection based on wind turbine scada data using convolutional neural networks
  publication-title: 5th European conference of the prognostics and health management society, virtual conference, 27-31 July 2020. Vol. 5
– year: 2019
  ident: b24
  article-title: Deep learning for anomaly detection: A survey
– volume: 147
  start-page: 1469
  year: 2020
  end-page: 1480
  ident: b22
  article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders
  publication-title: Renew Energy
– volume: 172
  start-page: 829
  year: 2021
  end-page: 840
  ident: b23
  article-title: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network
  publication-title: Renew Energy
– year: 2021
  ident: b14
  article-title: A fault detection framework using recurrent neural networks for condition monitoring of wind turbines
  publication-title: Wind Energy
– volume: 9
  start-page: 796
  year: 2017
  ident: b37
  article-title: Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment
  publication-title: Water
– start-page: 1
  year: 2020
  end-page: 23
  ident: b27
  article-title: Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps
  publication-title: Int J Geogr Inf Sci
– reference: Li G, Muller M, Thabet A, Ghanem B. Deepgcns: Can gcns go as deep as cnns?. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, p. 9267–76.
– volume: 175
  year: 2021
  ident: b18
  article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism
  publication-title: Measurement
– volume: 13
  start-page: 4702
  year: 2020
  ident: b11
  article-title: Wind farm and resource datasets: A comprehensive survey and overview
  publication-title: Energies
– year: 2008
  ident: b40
  article-title: Introduction to the IEC 61400-1 standard
– volume: 146
  start-page: 760
  year: 2020
  end-page: 768
  ident: b17
  article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew Energy
– start-page: 3634
  year: 2018
  end-page: 3640
  ident: b19
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
  publication-title: Proceedings of the 27th international joint conference on artificial intelligence
– reference: Sahnoun M, Bagui F, Messaadia M. Failure analysis of onshore wind farms based on experimental data. In: Mediterranean conference on information & communication technologies’ 2015. 2015.
– year: 2016
  ident: b31
  article-title: Wind farm 1 - failures
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b38
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
– volume: 16
  start-page: 5451
  year: 2012
  end-page: 5465
  ident: b4
  article-title: Renewable energy supply chains, performance, application barriers, and strategies for further development
  publication-title: Renew Sustain Energy Rev
– start-page: 1
  year: 2017
  ident: b34
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: Proceedings of the 5th international conference on learning representations
– volume: 9
  year: 2014
  ident: b35
  article-title: Mutual information between discrete and continuous data sets
  publication-title: PLoS One
– year: 2020
  ident: b30
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 74
  start-page: 375
  year: 1998
  ident: 10.1016/j.egyai.2022.100145_b3
  article-title: Exploitation of wind as an energy source to meet the world’s electricity demand
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/S0167-6105(98)00034-8
– volume: 22
  start-page: 1848
  issue: 12
  year: 2019
  ident: 10.1016/j.egyai.2022.100145_b7
  article-title: Wind turbine reliability data review and impacts on levelised cost of energy
  publication-title: Wind Energy
  doi: 10.1002/we.2404
– volume: 12
  start-page: 574
  issue: 6
  year: 2009
  ident: 10.1016/j.egyai.2022.100145_b9
  article-title: Online wind turbine fault detection through automated SCADA data analysis
  publication-title: Wind Energy Int J Prog Appl Wind Power Convers Technol
– year: 2020
  ident: 10.1016/j.egyai.2022.100145_b26
– start-page: 55
  year: 1998
  ident: 10.1016/j.egyai.2022.100145_b39
  article-title: Early stopping-but when?
– volume: 13
  start-page: 3132
  issue: 12
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b13
  article-title: Using SCADA data for wind turbine condition monitoring: A systematic literature review
  publication-title: Energies
  doi: 10.3390/en13123132
– volume: 172
  start-page: 829
  year: 2021
  ident: 10.1016/j.egyai.2022.100145_b23
  article-title: Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2021.03.078
– volume: 157
  start-page: 647
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b21
  article-title: System-wide anomaly detection in wind turbines using deep autoencoders
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.04.148
– volume: 133
  start-page: 620
  year: 2019
  ident: 10.1016/j.egyai.2022.100145_b8
  article-title: Machine learning methods for wind turbine condition monitoring: A review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.047
– year: 2019
  ident: 10.1016/j.egyai.2022.100145_b24
– volume: 175
  year: 2021
  ident: 10.1016/j.egyai.2022.100145_b18
  article-title: Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM with attention mechanism
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109094
– volume: 58
  start-page: 1081
  issue: 4
  year: 2011
  ident: 10.1016/j.egyai.2022.100145_b1
  article-title: Overview of multi-MW wind turbines and wind parks
  publication-title: IEEE Trans Ind Electr
  doi: 10.1109/TIE.2010.2103910
– volume: 54
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.egyai.2022.100145_b15
  article-title: Deep learning for anomaly detection: A review
  publication-title: ACM Comput Surv
  doi: 10.1145/3439950
– ident: 10.1016/j.egyai.2022.100145_b29
  doi: 10.1109/ICCV.2019.00936
– year: 2016
  ident: 10.1016/j.egyai.2022.100145_b36
– volume: 20
  start-page: 3940
  issue: 10
  year: 2019
  ident: 10.1016/j.egyai.2022.100145_b25
  article-title: Real-time traffic speed estimation with graph convolutional generative autoencoder
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2910560
– year: 2020
  ident: 10.1016/j.egyai.2022.100145_b30
  article-title: A comprehensive survey on graph neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 13
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.egyai.2022.100145_b5
  article-title: Condition monitoring and fault detection of wind turbines and related algorithms: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2007.05.008
– volume: 13
  start-page: 4702
  issue: 18
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b11
  article-title: Wind farm and resource datasets: A comprehensive survey and overview
  publication-title: Energies
  doi: 10.3390/en13184702
– volume: 9
  issue: 2
  year: 2014
  ident: 10.1016/j.egyai.2022.100145_b35
  article-title: Mutual information between discrete and continuous data sets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087357
– volume: 30
  start-page: 947
  issue: 10
  year: 1960
  ident: 10.1016/j.egyai.2022.100145_b33
  article-title: Gradient theory of optimal flight paths
  publication-title: Ars J
  doi: 10.2514/8.5282
– ident: 10.1016/j.egyai.2022.100145_b42
– volume: 87
  start-page: 272
  year: 2019
  ident: 10.1016/j.egyai.2022.100145_b10
  article-title: A combined mono-and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data
  publication-title: ISA Trans
  doi: 10.1016/j.isatra.2018.11.041
– start-page: 3634
  year: 2018
  ident: 10.1016/j.egyai.2022.100145_b19
  article-title: Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting
– volume: 147
  start-page: 1469
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b22
  article-title: Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.09.041
– volume: 161
  start-page: 510
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b16
  article-title: Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.06.154
– ident: 10.1016/j.egyai.2022.100145_b20
  doi: 10.1145/3394486.3403118
– start-page: 1
  year: 2017
  ident: 10.1016/j.egyai.2022.100145_b34
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.egyai.2022.100145_b38
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal Chem
  doi: 10.1021/ac60214a047
– start-page: 9
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b12
  article-title: Early fault detection based on wind turbine scada data using convolutional neural networks
– volume: 9
  start-page: 796
  issue: 10
  year: 2017
  ident: 10.1016/j.egyai.2022.100145_b37
  article-title: Interpolation in time series: An introductive overview of existing methods, their performance criteria and uncertainty assessment
  publication-title: Water
  doi: 10.3390/w9100796
– year: 2008
  ident: 10.1016/j.egyai.2022.100145_b40
– start-page: 37
  year: 2012
  ident: 10.1016/j.egyai.2022.100145_b32
  article-title: Autoencoders, unsupervised learning, and deep architectures
– volume: PAS-100
  start-page: 1176
  issue: 3
  year: 1981
  ident: 10.1016/j.egyai.2022.100145_b2
  article-title: Wind energy - a utility perspective
  publication-title: IEEE Trans Power Appar Syst
  doi: 10.1109/TPAS.1981.316586
– start-page: 1
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b27
  article-title: Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps
  publication-title: Int J Geogr Inf Sci
– volume: 54686
  start-page: 2071
  year: 2011
  ident: 10.1016/j.egyai.2022.100145_b6
  article-title: Use of SCADA data for failure detection in wind turbines
– year: 2021
  ident: 10.1016/j.egyai.2022.100145_b14
  article-title: A fault detection framework using recurrent neural networks for condition monitoring of wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.2628
– volume: 16
  start-page: 5451
  issue: 8
  year: 2012
  ident: 10.1016/j.egyai.2022.100145_b4
  article-title: Renewable energy supply chains, performance, application barriers, and strategies for further development
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.06.006
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.egyai.2022.100145_b28
  article-title: Graph convolutional networks: a comprehensive review
  publication-title: Comput Soc Netw
  doi: 10.1186/s40649-019-0069-y
– volume: 146
  start-page: 760
  year: 2020
  ident: 10.1016/j.egyai.2022.100145_b17
  article-title: Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.033
– ident: 10.1016/j.egyai.2022.100145_b41
– year: 2016
  ident: 10.1016/j.egyai.2022.100145_b31
SSID ssj0002511977
Score 2.443658
Snippet Wind power is one of the fastest-growing renewable energy sectors instrumental in the ongoing decarbonization process. However, wind turbines are subjected to...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100145
SubjectTerms Condition monitoring
Deep anomaly detection
Early fault detection
Graph Convolutional Autoencoder
Multivariate Time series
SCADA data
Wind turbine
Title Deep anomaly detection in horizontal axis wind turbines using Graph Convolutional Autoencoders for Multivariate Time series
URI https://dx.doi.org/10.1016/j.egyai.2022.100145
https://doaj.org/article/24c38fb3bba94c47b4048e1cf1c518b2
Volume 8
WOSCitedRecordID wos001106796500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-5468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511977
  issn: 2666-5468
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-5468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511977
  issn: 2666-5468
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQxQEOK57aLg_5wJGIxPEjOe6WFg5QcQCpt8ivlKyWpGrT7hYkfjszTlrlVC57ycFK7Ghm5PlG_uYzIe-kU3mWCxcJ5-OIc6eiPPcuYomWlnNhmQuNwl_UfJ4tFvm3wVVfyAnr5IE7w31g3KZZaVJjdM4tV4ZDzPnElokVSWbC7guoZ1BM4R7MwvEY9kpDApKR4DI7SA4Fcpdf7nUF1SFjQYQIm5kGaSmo9w-y0yDjzJ6Qsx4q0svuF5-SB75-Rh4PBASfkz8fvV9RXTe_9M2eOt8GYlVNq5r-bNbV7wZ7Ham-qzb0FopvCvnFIM-dIt19ST-hWjWdNPWuD0Bcbts2KG6JBGcKiJaGFt0dlNSASil2jFCMWr95QX7Mpt8nn6P-OoXI8oS3UClybpVOS-1L4WJWgoW0S71SUobzVy9zW2Yqh6LP2LhMTCIMGFExzSGt2_QlGdVN7c8JhSHAGcZkTCMiiME1MlaSy0SKVHA7JuxgzcL2WuN45cVNcSCVXRfBBQW6oOhcMCbvjx-tOqmN069foZuOr6JOdhiA6Cn66Cn-Fz1jIg9OLnrI0UEJmKo6tfrFfaz-ijzCKTv-5Gsyatdb_4Y8tLu22qzfhoiG59e_038NY_sy
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+anomaly+detection+in+horizontal+axis+wind+turbines+using+Graph+Convolutional+Autoencoders+for+Multivariate+Time+series&rft.jtitle=Energy+and+AI&rft.au=Miele%2C+Eric+Stefan&rft.au=Bonacina%2C+Fabrizio&rft.au=Corsini%2C+Alessandro&rft.date=2022-05-01&rft.issn=2666-5468&rft.eissn=2666-5468&rft.volume=8&rft.spage=100145&rft_id=info:doi/10.1016%2Fj.egyai.2022.100145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_egyai_2022_100145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5468&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5468&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5468&client=summon