Machine learning in gastrointestinal surgery

Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological ima...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Surgery today (Tokyo, Japan) Ročník 52; číslo 7; s. 995 - 1007
Hlavní autori: Sakamoto, Takashi, Goto, Tadahiro, Fujiogi, Michimasa, Kawarai Lefor, Alan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.07.2022
Predmet:
ISSN:0941-1291, 1436-2813, 1436-2813
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current “big data” era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage “big data” and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.
AbstractList Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current “big data” era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage “big data” and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.
Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze "big data". In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current "big data" era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage "big data" and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze "big data". In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current "big data" era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage "big data" and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.
Author Sakamoto, Takashi
Fujiogi, Michimasa
Goto, Tadahiro
Kawarai Lefor, Alan
Author_xml – sequence: 1
  givenname: Takashi
  orcidid: 0000-0001-7483-9704
  surname: Sakamoto
  fullname: Sakamoto, Takashi
  email: sakamoto-kob@umin.ac.jp
  organization: Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo
– sequence: 2
  givenname: Tadahiro
  surname: Goto
  fullname: Goto, Tadahiro
  organization: Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, TXP Medical Co. Ltd
– sequence: 3
  givenname: Michimasa
  surname: Fujiogi
  fullname: Fujiogi, Michimasa
  organization: Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo
– sequence: 4
  givenname: Alan
  surname: Kawarai Lefor
  fullname: Kawarai Lefor, Alan
  organization: Department of Surgery, Jichi Medical University
BookMark eNp9kD1PwzAQhi1UJNrCH2DKyEDg_JHEHlEFBamIBWbL8UdxlTrFTob-ewxhYuhweod7n9PpWaBZ6INF6BrDHQZo7hNAJaoSCM5DOZTiDM0xo3VJOKYzNAfBcImJwBdokdIOgDAOMEe3r0p_-mCLzqoYfNgWPhRblYbY-zDYNPiguiKNcWvj8RKdO9Ule_WXS_Tx9Pi-ei43b-uX1cOm1AyzoaQNbU1TuZYpQ6zmChwIx4gCYoypDa6sdVzXkBcNaxURtSOUuRa3NcFG0yW6me4eYv815ifk3idtu04F249Jkqqp64oDb3KVT1Ud-5SidVL7QQ2-D0NUvpMY5I8gOQmSWZD8FSRFRsk_9BD9XsXjaYhOUMrlkKXIXT_G7Cidor4BnQV6uQ
CitedBy_id crossref_primary_10_1007_s00423_023_03134_6
crossref_primary_10_1007_s12149_021_01693_6
crossref_primary_10_3389_fonc_2022_955668
crossref_primary_10_1002_adsr_202200036
crossref_primary_10_3389_fpubh_2022_982335
crossref_primary_10_1016_j_soard_2024_06_012
crossref_primary_10_1016_j_ciresp_2025_800124
crossref_primary_10_1007_s10143_023_02028_x
crossref_primary_10_35712_aig_v6_i1_108198
crossref_primary_10_1016_j_cireng_2025_800124
crossref_primary_10_4251_wjgo_v17_i4_100089
crossref_primary_10_1097_MD_0000000000043977
crossref_primary_10_1007_s10120_025_01658_y
crossref_primary_10_1097_MD_0000000000041766
crossref_primary_10_3390_biomimetics8070512
crossref_primary_10_1016_j_imu_2024_101530
crossref_primary_10_4240_wjgs_v17_i8_109463
crossref_primary_10_3390_biomedicines12020409
crossref_primary_10_4240_wjgs_v17_i5_102799
Cites_doi 10.1016/j.athoracsur.2019.09.049
10.1007/s10120-017-0701-1
10.1371/journal.pmed.1002730
10.1245/s10434-020-08991-9
10.1016/j.ebiom.2018.12.028
10.1097/SLA.0000000000004594
10.1007/s00464-019-07281-0
10.1055/a-0855-3532
10.1049/htl.2019.0064
10.1097/SLA.0000000000003778
10.1007/s00464-020-07378-x
10.1001/jamasurg.2019.4917
10.2196/18186
10.1097/SLA.0000000000003262
10.1097/SLA.0000000000004425
10.1038/s41598-018-21758-3
10.1016/j.gie.2018.11.011
10.1007/s00261-020-02624-1
10.1016/j.gie.2019.12.049
10.1159/000503291
10.1016/j.surg.2019.01.002
10.1007/s11605-012-1986-3
10.1161/CIRCULATIONAHA.115.001593
10.1007/s00261-019-02098-w
10.1016/j.cell.2020.07.009
10.1007/s10120-018-0793-2
10.1053/j.gastro.2018.06.037
10.1001/jamasurg.2019.2979
10.1016/j.cmpb.2019.05.008
10.1001/jamanetworkopen.2019.17221
10.1111/codi.14991
10.1001/jamaoncol.2016.6905
10.1038/s41591-018-0213-5
10.1016/j.gie.2018.07.037
10.1053/j.gastro.2019.11.030
10.1111/den.13688
10.1016/S1470-2045(19)30637-0
10.1016/j.jamcollsurg.2019.09.015
10.1016/S0140-6736(19)32998-8
10.1016/j.surg.2019.09.019
10.1016/j.surg.2019.10.008
10.1007/s00464-020-08110-5
10.1002/bjs.11461
10.1016/j.surg.2020.10.039
10.1016/j.surg.2020.08.016
10.1097/SLA.0000000000004351
10.1186/s12885-020-07626-2
10.1001/jamasurg.2018.0501
10.1056/NEJMra1814259
10.1007/s00330-020-07119-7
10.1016/j.jamcollsurg.2013.07.385
10.3748/wjg.v25.i43.6451
10.1097/SLA.0000000000002956
10.1001/jamanetworkopen.2019.8363
10.1016/j.gie.2019.08.018
10.1007/s00330-019-06205-9
10.1038/s41591-019-0462-y
10.1016/j.jss.2016.12.032
10.1097/SLA.0000000000004229
10.1161/01.CIR.100.10.1043
10.21037/jtd-20-1956
10.1016/j.ijsu.2020.05.015
10.1016/j.surg.2020.06.031
10.1097/SLA.0000000000002706
10.1001/jama.2019.5791
10.1177/000313481808400318
10.1007/s11605-019-04338-2
10.1001/jamanetworkopen.2020.1664
10.1053/j.gastro.2019.09.009
10.1245/s10434-020-09374-w
10.1093/bja/77.2.217
10.1001/jamasurg.2018.1512
10.1002/bjs.11928
10.1016/j.annonc.2020.04.003
10.18632/oncotarget.8217
10.1016/j.jamcollsurg.2020.01.037
ContentType Journal Article
Copyright Springer Nature Singapore Pte Ltd. 2021
2021. Springer Nature Singapore Pte Ltd.
Copyright_xml – notice: Springer Nature Singapore Pte Ltd. 2021
– notice: 2021. Springer Nature Singapore Pte Ltd.
DBID AAYXX
CITATION
7X8
DOI 10.1007/s00595-021-02380-9
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1436-2813
EndPage 1007
ExternalDocumentID 10_1007_s00595_021_02380_9
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.55
.86
.GJ
.VR
06C
06D
0R~
0VY
123
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
3O-
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUDM
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
X7M
YLTOR
Z45
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
7X7
8FI
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
BENPR
CCPQU
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PSQYO
UKHRP
7X8
ID FETCH-LOGICAL-c414t-373bd75fb4ad2ec8a0f09f42a02ddd6d15eef8c60a0f74ba296f234fb1b621dc3
IEDL.DBID RSV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0941-1291
1436-2813
IngestDate Thu Sep 04 20:16:57 EDT 2025
Sat Nov 29 02:25:02 EST 2025
Tue Nov 18 22:20:39 EST 2025
Fri Feb 21 02:46:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Deep learning
Gastrointestinal surgery
Artificial intelligence
Computer-assisted surgery
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-373bd75fb4ad2ec8a0f09f42a02ddd6d15eef8c60a0f74ba296f234fb1b621dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7483-9704
PQID 2576658087
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2576658087
crossref_citationtrail_10_1007_s00595_021_02380_9
crossref_primary_10_1007_s00595_021_02380_9
springer_journals_10_1007_s00595_021_02380_9
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationSubtitle Official Journal of the Japan Surgical Society
PublicationTitle Surgery today (Tokyo, Japan)
PublicationTitleAbbrev Surg Today
PublicationYear 2022
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References Wolters, Wolf, Stutzer, Schroder (CR40) 1996; 77
Dong, Fang, Tang, Shan, Gao, Giganti (CR28) 2020; 31
Hyer, White, Cloyd, Dillhoff, Tsung, Pawlik (CR39) 2020; 230
Loftus, Tighe, Filiberto, Efron, Brakenridge, Mohr (CR11) 2020; 155
Luo, Chen, Chen, Song, Shen, Xiao (CR25) 2020; 110
Boffa, Rosen, Mallin, Loomis, Gay, Palis (CR2) 2017; 3
Loftus, Brakenridge, Croft, Smith, Efron, Moore (CR34) 2017; 212
Kather, Krisam, Charoentong, Luedde, Herpel, Weis (CR74) 2019; 16
Liu, Shao, Sun, Liu, Hu, Cong (CR26) 2020; 12
Horie, Yoshio, Aoyama, Yoshimizu, Horiuchi, Ishiyama (CR13) 2019; 89
Skrede, De Raedt, Kleppe, Hveem, Liestøl, Maddison (CR68) 2020; 395
Chen, Liu, Li, Feng, Xiong, Zhao (CR71) 2019; 39
Madani, Namazi, Altieri, Hashimoto, Rivera, Pucher (CR53) 2020
Luongo, Hakim, Nguyen, Anandkumar, Hung (CR60) 2020
Rajkomar, Dean, Kohane (CR6) 2019; 380
Kitaguchi, Takeshita, Matsuzaki, Takano, Owada, Enomoto (CR57) 2020; 34
Zhu, Wang, Xu, Zhang, Cheng, Zhong (CR20) 2019; 89
Winkler-Schwartz, Yilmaz, Mirchi, Bissonnette, Ledwos, Siyar (CR49) 2019; 2
Kather, Pearson, Halama, Jager, Krause, Loosen (CR72) 2019; 25
Jin, Jiang, Yu, Wang, Li, Chen (CR27) 2020; 108
Ikenoyama, Hirasawa, Ishioka, Namikawa, Yoshimizu, Horiuchi (CR19) 2020
Mascagni, Vardazaryan, Alapatt, Urade, Emre, Fiorillo (CR54) 2020
Hoshino, Kim, Bojmar, Gyan, Cioffi, Hernandez (CR75) 2020; 182
Merath, Hyer, Mehta, Farooq, Bagante, Sahara (CR45) 2020; 24
Zhao, Gabriel, Vaida, Eisenstein, Schnickel, Sicklick (CR36) 2020; 22
Yamazaki, Kanaji, Matsuda, Oshikiri, Nakamura, Suzuki (CR61) 2020; 230
Komorowski, Celi, Badawi, Gordon, Faisal (CR12) 2018; 24
Luo, Xu, Li, He, Luo, Wang (CR22) 2019; 20
Shung, Au, Taylor, Tay, Laursen, Stanley (CR33) 2020; 158
Hamm, Wang, Savic, Ferrante, Schobert, Schlachter (CR23) 2019; 29
Kambakamba, Mannil, Herrera, Muller, Kuemmerli, Linecker (CR47) 2020; 167
Seymour, Kennedy, Wang, Chang, Elliott, Xu (CR10) 2019; 321
Brennan, Puri, Ozrazgat-Baslanti, Feng, Ruppert, Hashemighouchani (CR42) 2019; 165
Beal, Saunders, Kearney, Lyon, Wei, Squires (CR5) 2018; 84
Chen, Lu, You, Zhou, Xu, Chen (CR44) 2020; 8
Que, Chen, Qing, Liu, Wang, Lin (CR35) 2019; 25
Guedon, Meij, Osman, Kloosterman, van Stralen, Grimbergen (CR55) 2020
Gao, Kruger, Intes, Schwaitzberg, De (CR52) 2020; 167
Safavi, Khaniyev, Copenhaver, Seelen, Zenteno Langle, Zanger (CR64) 2019; 2
Panesar, Cagle, Chander, Morey, Fernandez-Miranda, Kliot (CR77) 2019; 270
Liu, Qi, Feng, Sun, Zhang, Liu (CR29) 2019; 44
Bertsimas, Dunn, Velmahos, Kaafarani (CR43) 2018; 268
Bihorac, Ozrazgat-Baslanti, Ebadi, Motaei, Madkour, Pardalos (CR41) 2019; 269
Urban, Tripathi, Alkayali, Mittal, Jalali, Karnes (CR21) 2018; 155
Guo, Xiao, Wu, Zeng, Zhang, Du (CR14) 2020; 91
Nudel, Bishara, de Geus, Patil, Srinivasan, Hess (CR63) 2021; 35
Fukagawa, Katai, Mizusawa, Nakamura, Sano, Terashima (CR30) 2018; 21
Hashimoto, Requa, Dao, Ninh, Tran, Mai (CR15) 2020; 91
Lee, Marcantonio, Mangione, Thomas, Polanczyk, Cook (CR4) 1999; 100
Liu, Khalvati, Namdar, Fischer, Lewis, Taouli (CR24) 2020
Wu, Zhou, Wan, Zhang, Shen, Hu (CR17) 2019; 51
Deo (CR9) 2015; 132
Bilimoria, Liu, Paruch, Zhou, Kmiecik, Ko (CR1) 2013; 217
Bychkov, Linder, Turkki, Nordling, Kovanen, Verrill (CR73) 2018; 8
Peng, Fang, Li, Ou, Jiang, Lu (CR66) 2016; 7
Rahman, Walker, Lloyd, Grace, van Boxel, Kingma (CR67) 2020; 107
Khalid, Goldenberg, Grantcharov, Taati, Rudzicz (CR59) 2020; 3
Hirasawa, Aoyama, Tanimoto, Ishihara, Shichijo, Ozawa (CR18) 2018; 21
Hung, Chen, Gill (CR7) 2018; 153
Hyer, Ejaz, Tsilimigras, Paredes, Mehta, Pawlik (CR38) 2019; 154
Ji, Wang, Xia, Wang, Wang, Li (CR70) 2020
Nguyen, Ljuhar, Pacilli, Nataraja, Chauhan (CR51) 2019; 177
Zhang, Zhu, Yuan, Li, Ding, Bao (CR62) 2020; 20
Paredes, Hyer, Tsilimigras, Moro, Bagante, Guglielmi (CR37) 2020; 27
Garrow, Kowalewski, Li, Wagner, Schmidt, Engelhardt (CR48) 2020
Zhao, Cai, Chang, Cheng (CR58) 2019; 6
Doll, Rademaker, Sosa (CR3) 2018; 153
Yuan, Xu, Cai, Zhao, Cao, Fichera (CR32) 2020
Kitaguchi, Takeshita, Matsuzaki, Oda, Watanabe, Mori (CR56) 2020; 79
Jiang, Jin, Yu, Wu, Chen, Yuan (CR65) 2020
Ward, Mascagni, Ban, Rosman, Padoy, Meireles (CR50) 2020
Shi, Lee, Wang, Sun, Lee, Chiu (CR69) 2012; 16
Bi, Goodman, Kaminsky, Lessler (CR76) 2019; 188
Kilic, Goyal, Miller, Gjekmarkaj, Tam, Gleason (CR8) 2020; 109
de Groof, Struyvenberg, van der Putten, van der Sommen, Fockens, Curvers (CR16) 2020; 158
Mai, Lu, Bai, Liang, Lin, Ma (CR46) 2020; 168
Taghavi, Trebeschi, Simoes, Meek, Beckers, Lambregts (CR31) 2020
L Guo (2380_CR14) 2020; 91
P Kambakamba (2380_CR47) 2020; 167
Q Bi (2380_CR76) 2019; 188
A Kilic (2380_CR8) 2020; 109
Y Luo (2380_CR25) 2020; 110
Y Yamazaki (2380_CR61) 2020; 230
M Taghavi (2380_CR31) 2020
D Kitaguchi (2380_CR56) 2020; 79
Y Jiang (2380_CR65) 2020
A Rajkomar (2380_CR6) 2019; 380
Y Zhu (2380_CR20) 2019; 89
D Bychkov (2380_CR73) 2018; 8
D Bertsimas (2380_CR43) 2018; 268
A Madani (2380_CR53) 2020
M Komorowski (2380_CR12) 2018; 24
R Hashimoto (2380_CR15) 2020; 91
JM Hyer (2380_CR39) 2020; 230
RY Mai (2380_CR46) 2020; 168
XL Liu (2380_CR26) 2020; 12
KY Bilimoria (2380_CR1) 2013; 217
M Brennan (2380_CR42) 2019; 165
AJ Hung (2380_CR7) 2018; 153
GW Ji (2380_CR70) 2020
EW Beal (2380_CR5) 2018; 84
Z Yuan (2380_CR32) 2020
Z Zhao (2380_CR58) 2019; 6
TM Ward (2380_CR50) 2020
D Kitaguchi (2380_CR57) 2020; 34
Y Horie (2380_CR13) 2019; 89
KC Safavi (2380_CR64) 2019; 2
T Chen (2380_CR71) 2019; 39
KM Doll (2380_CR3) 2018; 153
TH Lee (2380_CR4) 1999; 100
P Mascagni (2380_CR54) 2020
L Wu (2380_CR17) 2019; 51
H Luo (2380_CR22) 2019; 20
OJ Skrede (2380_CR68) 2020; 395
Y Gao (2380_CR52) 2020; 167
Y Zhang (2380_CR62) 2020; 20
T Hirasawa (2380_CR18) 2018; 21
CR Garrow (2380_CR48) 2020
K Merath (2380_CR45) 2020; 24
F Luongo (2380_CR60) 2020
C Liu (2380_CR29) 2019; 44
JN Kather (2380_CR72) 2019; 25
DL Shung (2380_CR33) 2020; 158
CW Seymour (2380_CR10) 2019; 321
Y Ikenoyama (2380_CR19) 2020
ACP Guedon (2380_CR55) 2020
HY Shi (2380_CR69) 2012; 16
RC Deo (2380_CR9) 2015; 132
AJ de Groof (2380_CR16) 2020; 158
S Khalid (2380_CR59) 2020; 3
AZ Paredes (2380_CR37) 2020; 27
G Urban (2380_CR21) 2018; 155
XA Nguyen (2380_CR51) 2019; 177
JM Hyer (2380_CR38) 2019; 154
X Liu (2380_CR24) 2020
JH Peng (2380_CR66) 2016; 7
B Zhao (2380_CR36) 2020; 22
JN Kather (2380_CR74) 2019; 16
TJ Loftus (2380_CR11) 2020; 155
C Jin (2380_CR27) 2020; 108
S Panesar (2380_CR77) 2019; 270
U Wolters (2380_CR40) 1996; 77
SA Rahman (2380_CR67) 2020; 107
CA Hamm (2380_CR23) 2019; 29
SJ Que (2380_CR35) 2019; 25
D Dong (2380_CR28) 2020; 31
A Winkler-Schwartz (2380_CR49) 2019; 2
DJ Boffa (2380_CR2) 2017; 3
TJ Loftus (2380_CR34) 2017; 212
A Bihorac (2380_CR41) 2019; 269
A Hoshino (2380_CR75) 2020; 182
J Nudel (2380_CR63) 2021; 35
W Chen (2380_CR44) 2020; 8
T Fukagawa (2380_CR30) 2018; 21
References_xml – volume: 109
  start-page: 1811
  issue: 6
  year: 2020
  end-page: 1819
  ident: CR8
  article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.049
– volume: 21
  start-page: 68
  issue: 1
  year: 2018
  end-page: 73
  ident: CR30
  article-title: A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer (JCOG1302A)
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-017-0701-1
– volume: 16
  start-page: e1002730
  issue: 1
  year: 2019
  ident: CR74
  article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002730
– volume: 27
  start-page: 5139
  issue: 13
  year: 2020
  end-page: 5147
  ident: CR37
  article-title: A novel machine-learning approach to predict recurrence after resection of colorectal liver metastases
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-020-08991-9
– volume: 39
  start-page: 272
  year: 2019
  end-page: 279
  ident: CR71
  article-title: Developed and validated a prognostic nomogram for recurrence-free survival after complete surgical resection of local primary gastrointestinal stromal tumors based on deep learning
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.12.028
– year: 2020
  ident: CR53
  article-title: Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004594
– volume: 34
  start-page: 4924
  issue: 11
  year: 2020
  end-page: 4931
  ident: CR57
  article-title: Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach
  publication-title: Surg Endosc
  doi: 10.1007/s00464-019-07281-0
– volume: 51
  start-page: 522
  issue: 6
  year: 2019
  end-page: 531
  ident: CR17
  article-title: A deep neural network improves endoscopic detection of early gastric cancer without blind spots
  publication-title: Endoscopy
  doi: 10.1055/a-0855-3532
– volume: 6
  start-page: 275
  issue: 6
  year: 2019
  end-page: 279
  ident: CR58
  article-title: Real-time surgical instrument detection in robot-assisted surgery using a convolutional neural network cascade
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl.2019.0064
– year: 2020
  ident: CR65
  article-title: Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer: a multicenter retrospective study
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003778
– volume: 35
  start-page: 182
  issue: 1
  year: 2021
  end-page: 191
  ident: CR63
  article-title: Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database
  publication-title: Surg Endosc
  doi: 10.1007/s00464-020-07378-x
– volume: 155
  start-page: 148
  issue: 2
  year: 2020
  end-page: 158
  ident: CR11
  article-title: Artificial intelligence and surgical decision-making
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2019.4917
– volume: 8
  start-page: e18186
  issue: 6
  year: 2020
  ident: CR44
  article-title: Artificial intelligence-based multimodal risk assessment model for surgical site infection (AMRAMS): development and validation study
  publication-title: JMIR Med Inform
  doi: 10.2196/18186
– volume: 270
  start-page: 223
  issue: 2
  year: 2019
  end-page: 226
  ident: CR77
  article-title: Artificial intelligence and the future of surgical robotics
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003262
– year: 2020
  ident: CR48
  article-title: Machine learning for surgical phase recognition: a systematic review
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004425
– volume: 8
  start-page: 3395
  issue: 1
  year: 2018
  ident: CR73
  article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-21758-3
– volume: 89
  start-page: 806
  issue: 4
  year: 2019
  end-page: 815 e1
  ident: CR20
  article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.11.011
– year: 2020
  ident: CR31
  article-title: Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-020-02624-1
– volume: 91
  start-page: 1264
  issue: 6
  year: 2020
  end-page: 1271 e1
  ident: CR15
  article-title: Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.12.049
– volume: 110
  start-page: 338
  issue: 5
  year: 2020
  end-page: 350
  ident: CR25
  article-title: Preoperative prediction of pancreatic neuroendocrine neoplasms grading based on enhanced computed tomography imaging: validation of deep learning with a convolutional neural network
  publication-title: Neuroendocrinology
  doi: 10.1159/000503291
– volume: 188
  start-page: 2222
  issue: 12
  year: 2019
  end-page: 2239
  ident: CR76
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am J Epidemiol
– volume: 165
  start-page: 1035
  issue: 5
  year: 2019
  end-page: 1045
  ident: CR42
  article-title: Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.01.002
– volume: 16
  start-page: 2126
  issue: 11
  year: 2012
  end-page: 2131
  ident: CR69
  article-title: Artificial neural network model for predicting 5-year mortality after surgery for hepatocellular carcinoma: a nationwide study
  publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract
  doi: 10.1007/s11605-012-1986-3
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  end-page: 1930
  ident: CR9
  article-title: Machine learning in medicine
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 44
  start-page: 3019
  issue: 9
  year: 2019
  end-page: 29
  ident: CR29
  article-title: Performance of a machine learning-based decision model to help clinicians decide the extent of lymphadenectomy (D1 vs. D2) in gastric cancer before surgical resection
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02098-w
– volume: 182
  start-page: 1044
  issue: 4
  year: 2020
  end-page: 1061 e18
  ident: CR75
  article-title: Extracellular vesicle and particle biomarkers define multiple human cancers
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.009
– volume: 21
  start-page: 653
  issue: 4
  year: 2018
  end-page: 660
  ident: CR18
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 155
  start-page: 1069
  issue: 4
  year: 2018
  end-page: 1078 e8
  ident: CR21
  article-title: Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.06.037
– volume: 154
  start-page: 1014
  issue: 11
  year: 2019
  end-page: 1021
  ident: CR38
  article-title: Novel machine learning approach to identify preoperative risk factors associated with super-utilization of medicare expenditure following surgery
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2019.2979
– volume: 177
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR51
  article-title: Surgical skill levels: classification and analysis using deep neural network model and motion signals
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.05.008
– volume: 2
  start-page: e1917221
  issue: 12
  year: 2019
  ident: CR64
  article-title: Development and validation of a machine learning model to aid discharge processes for inpatient surgical care
  publication-title: JAMA Netw Open.
  doi: 10.1001/jamanetworkopen.2019.17221
– volume: 22
  start-page: 914
  issue: 8
  year: 2020
  end-page: 922
  ident: CR36
  article-title: Using machine learning to construct nomograms for patients with metastatic colon cancer
  publication-title: Colorectal Dis
  doi: 10.1111/codi.14991
– volume: 3
  start-page: 1722
  issue: 12
  year: 2017
  end-page: 1728
  ident: CR2
  article-title: Using the National Cancer Database for outcomes research: a review
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2016.6905
– volume: 24
  start-page: 1716
  issue: 11
  year: 2018
  end-page: 1720
  ident: CR12
  article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0213-5
– volume: 89
  start-page: 25
  issue: 1
  year: 2019
  end-page: 32
  ident: CR13
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.07.037
– volume: 158
  start-page: 915
  issue: 4
  year: 2020
  end-page: 929.e4
  ident: CR16
  article-title: Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.030
– year: 2020
  ident: CR19
  article-title: Detecting early gastric cancer: comparison between the diagnostic ability of convolutional neural networks and endoscopists
  publication-title: Dig Endosc: Off J Jpn Gastroenterol Endosc Soc
  doi: 10.1111/den.13688
– volume: 20
  start-page: 1645
  issue: 12
  year: 2019
  end-page: 1654
  ident: CR22
  article-title: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30637-0
– volume: 230
  start-page: 43
  issue: 1
  year: 2020
  end-page: 52
  ident: CR39
  article-title: Can we improve prediction of adverse surgical outcomes? Development of a surgical complexity score using a novel machine learning technique
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2019.09.015
– volume: 395
  start-page: 350
  issue: 10221
  year: 2020
  end-page: 360
  ident: CR68
  article-title: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(19)32998-8
– volume: 167
  start-page: 448
  issue: 2
  year: 2020
  end-page: 454
  ident: CR47
  article-title: The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: a proof-of-principle study
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.09.019
– volume: 167
  start-page: 321
  issue: 2
  year: 2020
  end-page: 327
  ident: CR52
  article-title: A machine learning approach to predict surgical learning curves
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.10.008
– year: 2020
  ident: CR55
  article-title: Deep learning for surgical phase recognition using endoscopic videos
  publication-title: Surg Endosc
  doi: 10.1007/s00464-020-08110-5
– volume: 107
  start-page: 1042
  issue: 8
  year: 2020
  end-page: 1052
  ident: CR67
  article-title: Machine learning to predict early recurrence after oesophageal cancer surgery
  publication-title: Br J Surg
  doi: 10.1002/bjs.11461
– year: 2020
  ident: CR50
  article-title: Computer vision in surgery
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.10.039
– year: 2020
  ident: CR60
  article-title: Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.08.016
– year: 2020
  ident: CR54
  article-title: Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004351
– volume: 20
  start-page: 1161
  issue: 1
  year: 2020
  ident: CR62
  article-title: Risk factors and socio-economic burden in pancreatic ductal adenocarcinoma operation: a machine learning based analysis
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-07626-2
– volume: 153
  start-page: 588
  issue: 6
  year: 2018
  end-page: 589
  ident: CR3
  article-title: Practical guide to surgical data sets: surveillance, epidemiology, and end results (SEER) database
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2018.0501
– volume: 380
  start-page: 1347
  issue: 14
  year: 2019
  end-page: 1358
  ident: CR6
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– year: 2020
  ident: CR24
  article-title: Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning?
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07119-7
– volume: 217
  start-page: 833
  issue: 5
  year: 2013
  end-page: 842 e1-3
  ident: CR1
  article-title: Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2013.07.385
– volume: 25
  start-page: 6451
  issue: 43
  year: 2019
  end-page: 6464
  ident: CR35
  article-title: Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v25.i43.6451
– volume: 268
  start-page: 574
  issue: 4
  year: 2018
  end-page: 583
  ident: CR43
  article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002956
– volume: 2
  start-page: e198363
  issue: 8
  year: 2019
  ident: CR49
  article-title: Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.8363
– volume: 91
  start-page: 41
  issue: 1
  year: 2020
  end-page: 51
  ident: CR14
  article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos)
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.08.018
– volume: 29
  start-page: 3338
  issue: 7
  year: 2019
  end-page: 3347
  ident: CR23
  article-title: Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06205-9
– volume: 25
  start-page: 1054
  issue: 7
  year: 2019
  end-page: 1056
  ident: CR72
  article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0462-y
– volume: 212
  start-page: 42
  year: 2017
  end-page: 47
  ident: CR34
  article-title: Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2016.12.032
– year: 2020
  ident: CR32
  article-title: Development and validation of an image-based deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004229
– volume: 100
  start-page: 1043
  issue: 10
  year: 1999
  end-page: 1049
  ident: CR4
  article-title: Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.10.1043
– volume: 12
  start-page: 5580
  issue: 10
  year: 2020
  end-page: 5592
  ident: CR26
  article-title: An artificial neural network model predicting pathologic nodal metastases in clinical stage I-II esophageal squamous cell carcinoma patients
  publication-title: J Thorac Dis
  doi: 10.21037/jtd-20-1956
– volume: 79
  start-page: 88
  year: 2020
  end-page: 94
  ident: CR56
  article-title: Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: experimental research
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2020.05.015
– volume: 168
  start-page: 643
  issue: 4
  year: 2020
  end-page: 652
  ident: CR46
  article-title: Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.06.031
– volume: 269
  start-page: 652
  issue: 4
  year: 2019
  end-page: 662
  ident: CR41
  article-title: MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002706
– volume: 321
  start-page: 2003
  issue: 20
  year: 2019
  end-page: 2017
  ident: CR10
  article-title: Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis
  publication-title: JAMA
  doi: 10.1001/jama.2019.5791
– volume: 84
  start-page: 358
  issue: 3
  year: 2018
  end-page: 364
  ident: CR5
  article-title: Accuracy of the ACS NSQIP online risk calculator depends on how you look at it: results from the United States gastric cancer collaborative
  publication-title: Am Surg
  doi: 10.1177/000313481808400318
– volume: 24
  start-page: 1843
  issue: 8
  year: 2020
  end-page: 1851
  ident: CR45
  article-title: Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery
  publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract
  doi: 10.1007/s11605-019-04338-2
– volume: 3
  start-page: e201664
  issue: 3
  year: 2020
  ident: CR59
  article-title: Evaluation of deep learning models for identifying surgical actions and measuring performance
  publication-title: JAMA Netw Open.
  doi: 10.1001/jamanetworkopen.2020.1664
– volume: 158
  start-page: 160
  issue: 1
  year: 2020
  end-page: 167
  ident: CR33
  article-title: Validation of a machine learning model that outperforms clinical risk scoring systems for upper gastrointestinal bleeding
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.09.009
– year: 2020
  ident: CR70
  article-title: Integrating machine learning and tumor immune signature to predict oncologic outcomes in resected biliary tract cancer
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-020-09374-w
– volume: 77
  start-page: 217
  issue: 2
  year: 1996
  end-page: 222
  ident: CR40
  article-title: ASA classification and perioperative variables as predictors of postoperative outcome
  publication-title: Br J Anaesth
  doi: 10.1093/bja/77.2.217
– volume: 153
  start-page: 770
  issue: 8
  year: 2018
  end-page: 771
  ident: CR7
  article-title: Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2018.1512
– volume: 108
  start-page: 542
  issue: 5
  year: 2020
  end-page: 549
  ident: CR27
  article-title: Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer
  publication-title: Br J Surg
  doi: 10.1002/bjs.11928
– volume: 31
  start-page: 912
  issue: 7
  year: 2020
  end-page: 920
  ident: CR28
  article-title: Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.04.003
– volume: 7
  start-page: 22939
  issue: 16
  year: 2016
  end-page: 22947
  ident: CR66
  article-title: A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8217
– volume: 230
  start-page: 725
  issue: 5
  year: 2020
  end-page: 32 e1
  ident: CR61
  article-title: Automated surgical instrument detection from laparoscopic gastrectomy video images using an open source convolutional neural network platform
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2020.01.037
– volume: 44
  start-page: 3019
  issue: 9
  year: 2019
  ident: 2380_CR29
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-019-02098-w
– volume: 3
  start-page: 1722
  issue: 12
  year: 2017
  ident: 2380_CR2
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2016.6905
– volume: 154
  start-page: 1014
  issue: 11
  year: 2019
  ident: 2380_CR38
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2019.2979
– volume: 155
  start-page: 148
  issue: 2
  year: 2020
  ident: 2380_CR11
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2019.4917
– volume: 27
  start-page: 5139
  issue: 13
  year: 2020
  ident: 2380_CR37
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-020-08991-9
– volume: 25
  start-page: 6451
  issue: 43
  year: 2019
  ident: 2380_CR35
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v25.i43.6451
– volume: 155
  start-page: 1069
  issue: 4
  year: 2018
  ident: 2380_CR21
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2018.06.037
– volume: 91
  start-page: 41
  issue: 1
  year: 2020
  ident: 2380_CR14
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.08.018
– volume: 20
  start-page: 1645
  issue: 12
  year: 2019
  ident: 2380_CR22
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30637-0
– volume: 22
  start-page: 914
  issue: 8
  year: 2020
  ident: 2380_CR36
  publication-title: Colorectal Dis
  doi: 10.1111/codi.14991
– volume: 79
  start-page: 88
  year: 2020
  ident: 2380_CR56
  publication-title: Int J Surg
  doi: 10.1016/j.ijsu.2020.05.015
– volume: 2
  start-page: e1917221
  issue: 12
  year: 2019
  ident: 2380_CR64
  publication-title: JAMA Netw Open.
  doi: 10.1001/jamanetworkopen.2019.17221
– volume: 270
  start-page: 223
  issue: 2
  year: 2019
  ident: 2380_CR77
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003262
– volume: 7
  start-page: 22939
  issue: 16
  year: 2016
  ident: 2380_CR66
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.8217
– volume: 89
  start-page: 25
  issue: 1
  year: 2019
  ident: 2380_CR13
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.07.037
– volume: 177
  start-page: 1
  year: 2019
  ident: 2380_CR51
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.05.008
– year: 2020
  ident: 2380_CR65
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000003778
– volume: 100
  start-page: 1043
  issue: 10
  year: 1999
  ident: 2380_CR4
  publication-title: Circulation
  doi: 10.1161/01.CIR.100.10.1043
– volume: 168
  start-page: 643
  issue: 4
  year: 2020
  ident: 2380_CR46
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.06.031
– volume: 188
  start-page: 2222
  issue: 12
  year: 2019
  ident: 2380_CR76
  publication-title: Am J Epidemiol
– volume: 167
  start-page: 448
  issue: 2
  year: 2020
  ident: 2380_CR47
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.09.019
– volume: 2
  start-page: e198363
  issue: 8
  year: 2019
  ident: 2380_CR49
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.8363
– volume: 16
  start-page: e1002730
  issue: 1
  year: 2019
  ident: 2380_CR74
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1002730
– volume: 107
  start-page: 1042
  issue: 8
  year: 2020
  ident: 2380_CR67
  publication-title: Br J Surg
  doi: 10.1002/bjs.11461
– volume: 268
  start-page: 574
  issue: 4
  year: 2018
  ident: 2380_CR43
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002956
– year: 2020
  ident: 2380_CR55
  publication-title: Surg Endosc
  doi: 10.1007/s00464-020-08110-5
– volume: 167
  start-page: 321
  issue: 2
  year: 2020
  ident: 2380_CR52
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.10.008
– volume: 16
  start-page: 2126
  issue: 11
  year: 2012
  ident: 2380_CR69
  publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract
  doi: 10.1007/s11605-012-1986-3
– volume: 132
  start-page: 1920
  issue: 20
  year: 2015
  ident: 2380_CR9
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.001593
– volume: 153
  start-page: 770
  issue: 8
  year: 2018
  ident: 2380_CR7
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2018.1512
– volume: 380
  start-page: 1347
  issue: 14
  year: 2019
  ident: 2380_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 24
  start-page: 1716
  issue: 11
  year: 2018
  ident: 2380_CR12
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0213-5
– volume: 182
  start-page: 1044
  issue: 4
  year: 2020
  ident: 2380_CR75
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.009
– volume: 6
  start-page: 275
  issue: 6
  year: 2019
  ident: 2380_CR58
  publication-title: Healthc Technol Lett
  doi: 10.1049/htl.2019.0064
– year: 2020
  ident: 2380_CR48
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004425
– volume: 395
  start-page: 350
  issue: 10221
  year: 2020
  ident: 2380_CR68
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(19)32998-8
– volume: 110
  start-page: 338
  issue: 5
  year: 2020
  ident: 2380_CR25
  publication-title: Neuroendocrinology
  doi: 10.1159/000503291
– volume: 3
  start-page: e201664
  issue: 3
  year: 2020
  ident: 2380_CR59
  publication-title: JAMA Netw Open.
  doi: 10.1001/jamanetworkopen.2020.1664
– volume: 8
  start-page: 3395
  issue: 1
  year: 2018
  ident: 2380_CR73
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-21758-3
– year: 2020
  ident: 2380_CR24
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-07119-7
– volume: 109
  start-page: 1811
  issue: 6
  year: 2020
  ident: 2380_CR8
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.049
– year: 2020
  ident: 2380_CR60
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.08.016
– volume: 91
  start-page: 1264
  issue: 6
  year: 2020
  ident: 2380_CR15
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2019.12.049
– volume: 217
  start-page: 833
  issue: 5
  year: 2013
  ident: 2380_CR1
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2013.07.385
– year: 2020
  ident: 2380_CR31
  publication-title: Abdom Radiol (NY)
  doi: 10.1007/s00261-020-02624-1
– volume: 51
  start-page: 522
  issue: 6
  year: 2019
  ident: 2380_CR17
  publication-title: Endoscopy
  doi: 10.1055/a-0855-3532
– volume: 35
  start-page: 182
  issue: 1
  year: 2021
  ident: 2380_CR63
  publication-title: Surg Endosc
  doi: 10.1007/s00464-020-07378-x
– volume: 158
  start-page: 915
  issue: 4
  year: 2020
  ident: 2380_CR16
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.11.030
– year: 2020
  ident: 2380_CR54
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004351
– volume: 230
  start-page: 725
  issue: 5
  year: 2020
  ident: 2380_CR61
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2020.01.037
– volume: 20
  start-page: 1161
  issue: 1
  year: 2020
  ident: 2380_CR62
  publication-title: BMC Cancer
  doi: 10.1186/s12885-020-07626-2
– volume: 39
  start-page: 272
  year: 2019
  ident: 2380_CR71
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.12.028
– volume: 24
  start-page: 1843
  issue: 8
  year: 2020
  ident: 2380_CR45
  publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract
  doi: 10.1007/s11605-019-04338-2
– year: 2020
  ident: 2380_CR32
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004229
– volume: 230
  start-page: 43
  issue: 1
  year: 2020
  ident: 2380_CR39
  publication-title: J Am Coll Surg.
  doi: 10.1016/j.jamcollsurg.2019.09.015
– volume: 165
  start-page: 1035
  issue: 5
  year: 2019
  ident: 2380_CR42
  publication-title: Surgery
  doi: 10.1016/j.surg.2019.01.002
– volume: 108
  start-page: 542
  issue: 5
  year: 2020
  ident: 2380_CR27
  publication-title: Br J Surg
  doi: 10.1002/bjs.11928
– year: 2020
  ident: 2380_CR19
  publication-title: Dig Endosc: Off J Jpn Gastroenterol Endosc Soc
  doi: 10.1111/den.13688
– volume: 77
  start-page: 217
  issue: 2
  year: 1996
  ident: 2380_CR40
  publication-title: Br J Anaesth
  doi: 10.1093/bja/77.2.217
– year: 2020
  ident: 2380_CR70
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-020-09374-w
– year: 2020
  ident: 2380_CR50
  publication-title: Surgery
  doi: 10.1016/j.surg.2020.10.039
– volume: 321
  start-page: 2003
  issue: 20
  year: 2019
  ident: 2380_CR10
  publication-title: JAMA
  doi: 10.1001/jama.2019.5791
– volume: 8
  start-page: e18186
  issue: 6
  year: 2020
  ident: 2380_CR44
  publication-title: JMIR Med Inform
  doi: 10.2196/18186
– volume: 269
  start-page: 652
  issue: 4
  year: 2019
  ident: 2380_CR41
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002706
– volume: 21
  start-page: 68
  issue: 1
  year: 2018
  ident: 2380_CR30
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-017-0701-1
– volume: 212
  start-page: 42
  year: 2017
  ident: 2380_CR34
  publication-title: J Surg Res
  doi: 10.1016/j.jss.2016.12.032
– volume: 153
  start-page: 588
  issue: 6
  year: 2018
  ident: 2380_CR3
  publication-title: JAMA Surg
  doi: 10.1001/jamasurg.2018.0501
– volume: 29
  start-page: 3338
  issue: 7
  year: 2019
  ident: 2380_CR23
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06205-9
– year: 2020
  ident: 2380_CR53
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000004594
– volume: 12
  start-page: 5580
  issue: 10
  year: 2020
  ident: 2380_CR26
  publication-title: J Thorac Dis
  doi: 10.21037/jtd-20-1956
– volume: 89
  start-page: 806
  issue: 4
  year: 2019
  ident: 2380_CR20
  publication-title: Gastrointest Endosc
  doi: 10.1016/j.gie.2018.11.011
– volume: 31
  start-page: 912
  issue: 7
  year: 2020
  ident: 2380_CR28
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2020.04.003
– volume: 158
  start-page: 160
  issue: 1
  year: 2020
  ident: 2380_CR33
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2019.09.009
– volume: 34
  start-page: 4924
  issue: 11
  year: 2020
  ident: 2380_CR57
  publication-title: Surg Endosc
  doi: 10.1007/s00464-019-07281-0
– volume: 25
  start-page: 1054
  issue: 7
  year: 2019
  ident: 2380_CR72
  publication-title: Nat Med
  doi: 10.1038/s41591-019-0462-y
– volume: 21
  start-page: 653
  issue: 4
  year: 2018
  ident: 2380_CR18
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 84
  start-page: 358
  issue: 3
  year: 2018
  ident: 2380_CR5
  publication-title: Am Surg
  doi: 10.1177/000313481808400318
SSID ssj0024800
Score 2.402349
SecondaryResourceType review_article
Snippet Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 995
SubjectTerms Medicine
Medicine & Public Health
Review Article
Surgery
Surgical Oncology
Title Machine learning in gastrointestinal surgery
URI https://link.springer.com/article/10.1007/s00595-021-02380-9
https://www.proquest.com/docview/2576658087
Volume 52
WOSCitedRecordID wos000698863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1436-2813
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024800
  issn: 0941-1291
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64KeKLd3FeRgXfXCFJ07V9FHH4siHe2FvJdQykk7Xz95uk6YYiA31uEsrJSc45nHzfB3AdacE1VXGIRaZMgYJQyIWQIceRZLSvLYe6E5tIRqN0PM4ePSisbF67Ny1Jd1MvwW4WJ2nRxKb8NXEGhVkLNi15idUteHp-WzHspTXwJKM4NNEMe6jM72t8D0erHPNHW9RFm8He__5zH3Z9dhnc1u5wABuqOITtoe-fH0Fv6N5OqsCLRUyCaRFMWFnNZ5Y3whx3O72sodLH8Dq4f7l7CL1eQigoppW5KyIuk1hzyiRRImVIo0xTwhCRVjgKx0rpVPSR-ZBQzkjW1ySimmPeJ1iK6ATaxaxQpxCYNEEzqaSWkaCCcFMVsThNtCBRZmpC1gHcmC0Xnkzcalq850saZGeG3Jghd2bIsw7cLOd81FQaa0dfNbuRG4-3bQxWqNmizG2JZPImlCYd6DVbkPujV65Z8uxvw89hh1isg3ubewHtar5Ql7AlPqtpOe9CKxmnXed5XyKU0Oc
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60ivriLdZzBd_swiabvR5FLBXbIlqlbyFnKchWult_v8keLYoU9DkHYTLJzDDzfQNw7WvBNVGBi0SiTIDieS4XQroc-ZKRUFsO9aLZRNTvx8Nh8lSBwrK62r1OSRY_9RzsZnGSFk1swl9jZzw3WYU1gpFv9fr55W3BsBeXwJOEINdYM1RBZX7f47s5WviYP9KihbVp7_zvnLuwXXmXzm2pDnuwotJ92OhV-fMDaPWK2knlVM0iRs44dUYsy6cTyxthnrtdnpVQ6UN4bd8P7jpu1S_BFQSR3PwVPpdRoDlhEisRM097iSaYeVjaxlEoUErHIvTMQEQ4w0mosU80RzzESAr_CBrpJFXH4Bg3QTOppJa-IAJzExWxII60wH5iYkLWBFSLjYqKTNz2tHincxrkQgzUiIEWYqBJE27maz5KKo2ls6_q26BG420ag6VqMsuoDZGM3-TFURNa9RXQ6ullS7Y8-dv0S9jsDHpd2n3oP57CFra4h6JO9wwa-XSmzmFdfObjbHpR6N8XCtnS4w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60SvHFW6xnBN9saHazaZJHUYuiLQUP-rbsWQqSlib197ubo1WRgvic3SXMHjMfM983AJe-FlwTFbhIxMoAFM9zuRDS5ciXjLS11VDPm02EvV40GMT9Lyz-vNq9SkkWnAar0pRkrYnUrTnxzXImLbPYQGHjczw3XoU1YtXQLF5_fluo7UUFCSUmyDWeDZW0md_X-O6aFvHmjxRp7nk6W___523YLKNO57o4JjuwopJdqHfLvPoeNLt5TaVyyiYSQ2eUOEOWZtOx1ZMwz4CdnhYU6n147dy93Ny7ZR8FVxBEMvOG-FyGgeaESaxExDztxZpg5mFpG0qhQCkdibZnPoSEMxy3NfaJ5oi3MZLCP4BaMk7UITgmfNBMKqmlL4jA3KAlFkShFtiPDVZkDUCVCakoRcZtr4t3OpdHzs1AjRlobgYaN-BqPmdSSGwsHX1R7Qw1N8GmN1iixrOUWuhk4ikvChvQrLaDllcyXbLk0d-Gn0O9f9uhTw-9x2PYwJYOkZfvnkAtm87UKayLj2yUTs_yo_gJJbTbxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+gastrointestinal+surgery&rft.jtitle=Surgery+today+%28Tokyo%2C+Japan%29&rft.au=Sakamoto%2C+Takashi&rft.au=Goto%2C+Tadahiro&rft.au=Fujiogi%2C+Michimasa&rft.au=Kawarai+Lefor%2C+Alan&rft.date=2022-07-01&rft.pub=Springer+Nature+Singapore&rft.issn=0941-1291&rft.eissn=1436-2813&rft.volume=52&rft.issue=7&rft.spage=995&rft.epage=1007&rft_id=info:doi/10.1007%2Fs00595-021-02380-9&rft.externalDocID=10_1007_s00595_021_02380_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-1291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-1291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-1291&client=summon