Machine learning in gastrointestinal surgery
Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological ima...
Uložené v:
| Vydané v: | Surgery today (Tokyo, Japan) Ročník 52; číslo 7; s. 995 - 1007 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
Springer Nature Singapore
01.07.2022
|
| Predmet: | |
| ISSN: | 0941-1291, 1436-2813, 1436-2813 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current “big data” era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage “big data” and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice. |
|---|---|
| AbstractList | Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze “big data”. In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current “big data” era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage “big data” and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice. Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze "big data". In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current "big data" era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage "big data" and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice.Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to analyze "big data". In gastrointestinal surgery, surgeons deal with various data such as clinical parameters, surgical videos, and pathological images, to stratify surgical risk, perform safe surgery and predict patient prognosis. In the current "big data" era, the accelerating accumulation of a large amount of data drives studies using ML algorithms. Three subfields of ML are supervised learning, unsupervised learning, and reinforcement learning. In this review, we summarize applications of ML to surgical practice in the preoperative, intraoperative, and postoperative phases of care. Prediction and stratification using ML is promising; however, the current overarching concern is the availability of ML models. Information systems that can manage "big data" and integrate ML models into electronic health records are essential to incorporate ML into daily practice. ML is fundamental technology to meaningfully process data that exceeds the capacity of the human mind to comprehend. The accelerating accumulation of a large amount of data is changing the nature of surgical practice fundamentally. Artificial intelligence (AI), represented by ML, is being incorporated into daily surgical practice. |
| Author | Sakamoto, Takashi Fujiogi, Michimasa Goto, Tadahiro Kawarai Lefor, Alan |
| Author_xml | – sequence: 1 givenname: Takashi orcidid: 0000-0001-7483-9704 surname: Sakamoto fullname: Sakamoto, Takashi email: sakamoto-kob@umin.ac.jp organization: Department of Gastroenterological Surgery, Gastroenterological Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo – sequence: 2 givenname: Tadahiro surname: Goto fullname: Goto, Tadahiro organization: Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, TXP Medical Co. Ltd – sequence: 3 givenname: Michimasa surname: Fujiogi fullname: Fujiogi, Michimasa organization: Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Department of Pediatric Surgery, Graduate School of Medicine, The University of Tokyo – sequence: 4 givenname: Alan surname: Kawarai Lefor fullname: Kawarai Lefor, Alan organization: Department of Surgery, Jichi Medical University |
| BookMark | eNp9kD1PwzAQhi1UJNrCH2DKyEDg_JHEHlEFBamIBWbL8UdxlTrFTob-ewxhYuhweod7n9PpWaBZ6INF6BrDHQZo7hNAJaoSCM5DOZTiDM0xo3VJOKYzNAfBcImJwBdokdIOgDAOMEe3r0p_-mCLzqoYfNgWPhRblYbY-zDYNPiguiKNcWvj8RKdO9Ule_WXS_Tx9Pi-ei43b-uX1cOm1AyzoaQNbU1TuZYpQ6zmChwIx4gCYoypDa6sdVzXkBcNaxURtSOUuRa3NcFG0yW6me4eYv815ifk3idtu04F249Jkqqp64oDb3KVT1Ud-5SidVL7QQ2-D0NUvpMY5I8gOQmSWZD8FSRFRsk_9BD9XsXjaYhOUMrlkKXIXT_G7Cidor4BnQV6uQ |
| CitedBy_id | crossref_primary_10_1007_s00423_023_03134_6 crossref_primary_10_1007_s12149_021_01693_6 crossref_primary_10_3389_fonc_2022_955668 crossref_primary_10_1002_adsr_202200036 crossref_primary_10_3389_fpubh_2022_982335 crossref_primary_10_1016_j_soard_2024_06_012 crossref_primary_10_1016_j_ciresp_2025_800124 crossref_primary_10_1007_s10143_023_02028_x crossref_primary_10_35712_aig_v6_i1_108198 crossref_primary_10_1016_j_cireng_2025_800124 crossref_primary_10_4251_wjgo_v17_i4_100089 crossref_primary_10_1097_MD_0000000000043977 crossref_primary_10_1007_s10120_025_01658_y crossref_primary_10_1097_MD_0000000000041766 crossref_primary_10_3390_biomimetics8070512 crossref_primary_10_1016_j_imu_2024_101530 crossref_primary_10_4240_wjgs_v17_i8_109463 crossref_primary_10_3390_biomedicines12020409 crossref_primary_10_4240_wjgs_v17_i5_102799 |
| Cites_doi | 10.1016/j.athoracsur.2019.09.049 10.1007/s10120-017-0701-1 10.1371/journal.pmed.1002730 10.1245/s10434-020-08991-9 10.1016/j.ebiom.2018.12.028 10.1097/SLA.0000000000004594 10.1007/s00464-019-07281-0 10.1055/a-0855-3532 10.1049/htl.2019.0064 10.1097/SLA.0000000000003778 10.1007/s00464-020-07378-x 10.1001/jamasurg.2019.4917 10.2196/18186 10.1097/SLA.0000000000003262 10.1097/SLA.0000000000004425 10.1038/s41598-018-21758-3 10.1016/j.gie.2018.11.011 10.1007/s00261-020-02624-1 10.1016/j.gie.2019.12.049 10.1159/000503291 10.1016/j.surg.2019.01.002 10.1007/s11605-012-1986-3 10.1161/CIRCULATIONAHA.115.001593 10.1007/s00261-019-02098-w 10.1016/j.cell.2020.07.009 10.1007/s10120-018-0793-2 10.1053/j.gastro.2018.06.037 10.1001/jamasurg.2019.2979 10.1016/j.cmpb.2019.05.008 10.1001/jamanetworkopen.2019.17221 10.1111/codi.14991 10.1001/jamaoncol.2016.6905 10.1038/s41591-018-0213-5 10.1016/j.gie.2018.07.037 10.1053/j.gastro.2019.11.030 10.1111/den.13688 10.1016/S1470-2045(19)30637-0 10.1016/j.jamcollsurg.2019.09.015 10.1016/S0140-6736(19)32998-8 10.1016/j.surg.2019.09.019 10.1016/j.surg.2019.10.008 10.1007/s00464-020-08110-5 10.1002/bjs.11461 10.1016/j.surg.2020.10.039 10.1016/j.surg.2020.08.016 10.1097/SLA.0000000000004351 10.1186/s12885-020-07626-2 10.1001/jamasurg.2018.0501 10.1056/NEJMra1814259 10.1007/s00330-020-07119-7 10.1016/j.jamcollsurg.2013.07.385 10.3748/wjg.v25.i43.6451 10.1097/SLA.0000000000002956 10.1001/jamanetworkopen.2019.8363 10.1016/j.gie.2019.08.018 10.1007/s00330-019-06205-9 10.1038/s41591-019-0462-y 10.1016/j.jss.2016.12.032 10.1097/SLA.0000000000004229 10.1161/01.CIR.100.10.1043 10.21037/jtd-20-1956 10.1016/j.ijsu.2020.05.015 10.1016/j.surg.2020.06.031 10.1097/SLA.0000000000002706 10.1001/jama.2019.5791 10.1177/000313481808400318 10.1007/s11605-019-04338-2 10.1001/jamanetworkopen.2020.1664 10.1053/j.gastro.2019.09.009 10.1245/s10434-020-09374-w 10.1093/bja/77.2.217 10.1001/jamasurg.2018.1512 10.1002/bjs.11928 10.1016/j.annonc.2020.04.003 10.18632/oncotarget.8217 10.1016/j.jamcollsurg.2020.01.037 |
| ContentType | Journal Article |
| Copyright | Springer Nature Singapore Pte Ltd. 2021 2021. Springer Nature Singapore Pte Ltd. |
| Copyright_xml | – notice: Springer Nature Singapore Pte Ltd. 2021 – notice: 2021. Springer Nature Singapore Pte Ltd. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1007/s00595-021-02380-9 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1436-2813 |
| EndPage | 1007 |
| ExternalDocumentID | 10_1007_s00595_021_02380_9 |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .55 .86 .GJ .VR 06C 06D 0R~ 0VY 123 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3O- 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUDM ACZOJ ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P9S PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 X7M YLTOR Z45 Z7U Z7X Z82 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 ~EX 7X7 8FI AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR CCPQU CITATION FYUFA HMCUK M1P PHGZM PHGZT PJZUB PPXIY PSQYO UKHRP 7X8 |
| ID | FETCH-LOGICAL-c414t-373bd75fb4ad2ec8a0f09f42a02ddd6d15eef8c60a0f74ba296f234fb1b621dc3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0941-1291 1436-2813 |
| IngestDate | Thu Sep 04 20:16:57 EDT 2025 Sat Nov 29 02:25:02 EST 2025 Tue Nov 18 22:20:39 EST 2025 Fri Feb 21 02:46:17 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Deep learning Gastrointestinal surgery Artificial intelligence Computer-assisted surgery Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-373bd75fb4ad2ec8a0f09f42a02ddd6d15eef8c60a0f74ba296f234fb1b621dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-7483-9704 |
| PQID | 2576658087 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2576658087 crossref_citationtrail_10_1007_s00595_021_02380_9 crossref_primary_10_1007_s00595_021_02380_9 springer_journals_10_1007_s00595_021_02380_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationSubtitle | Official Journal of the Japan Surgical Society |
| PublicationTitle | Surgery today (Tokyo, Japan) |
| PublicationTitleAbbrev | Surg Today |
| PublicationYear | 2022 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | Wolters, Wolf, Stutzer, Schroder (CR40) 1996; 77 Dong, Fang, Tang, Shan, Gao, Giganti (CR28) 2020; 31 Hyer, White, Cloyd, Dillhoff, Tsung, Pawlik (CR39) 2020; 230 Loftus, Tighe, Filiberto, Efron, Brakenridge, Mohr (CR11) 2020; 155 Luo, Chen, Chen, Song, Shen, Xiao (CR25) 2020; 110 Boffa, Rosen, Mallin, Loomis, Gay, Palis (CR2) 2017; 3 Loftus, Brakenridge, Croft, Smith, Efron, Moore (CR34) 2017; 212 Kather, Krisam, Charoentong, Luedde, Herpel, Weis (CR74) 2019; 16 Liu, Shao, Sun, Liu, Hu, Cong (CR26) 2020; 12 Horie, Yoshio, Aoyama, Yoshimizu, Horiuchi, Ishiyama (CR13) 2019; 89 Skrede, De Raedt, Kleppe, Hveem, Liestøl, Maddison (CR68) 2020; 395 Chen, Liu, Li, Feng, Xiong, Zhao (CR71) 2019; 39 Madani, Namazi, Altieri, Hashimoto, Rivera, Pucher (CR53) 2020 Luongo, Hakim, Nguyen, Anandkumar, Hung (CR60) 2020 Rajkomar, Dean, Kohane (CR6) 2019; 380 Kitaguchi, Takeshita, Matsuzaki, Takano, Owada, Enomoto (CR57) 2020; 34 Zhu, Wang, Xu, Zhang, Cheng, Zhong (CR20) 2019; 89 Winkler-Schwartz, Yilmaz, Mirchi, Bissonnette, Ledwos, Siyar (CR49) 2019; 2 Kather, Pearson, Halama, Jager, Krause, Loosen (CR72) 2019; 25 Jin, Jiang, Yu, Wang, Li, Chen (CR27) 2020; 108 Ikenoyama, Hirasawa, Ishioka, Namikawa, Yoshimizu, Horiuchi (CR19) 2020 Mascagni, Vardazaryan, Alapatt, Urade, Emre, Fiorillo (CR54) 2020 Hoshino, Kim, Bojmar, Gyan, Cioffi, Hernandez (CR75) 2020; 182 Merath, Hyer, Mehta, Farooq, Bagante, Sahara (CR45) 2020; 24 Zhao, Gabriel, Vaida, Eisenstein, Schnickel, Sicklick (CR36) 2020; 22 Yamazaki, Kanaji, Matsuda, Oshikiri, Nakamura, Suzuki (CR61) 2020; 230 Komorowski, Celi, Badawi, Gordon, Faisal (CR12) 2018; 24 Luo, Xu, Li, He, Luo, Wang (CR22) 2019; 20 Shung, Au, Taylor, Tay, Laursen, Stanley (CR33) 2020; 158 Hamm, Wang, Savic, Ferrante, Schobert, Schlachter (CR23) 2019; 29 Kambakamba, Mannil, Herrera, Muller, Kuemmerli, Linecker (CR47) 2020; 167 Seymour, Kennedy, Wang, Chang, Elliott, Xu (CR10) 2019; 321 Brennan, Puri, Ozrazgat-Baslanti, Feng, Ruppert, Hashemighouchani (CR42) 2019; 165 Beal, Saunders, Kearney, Lyon, Wei, Squires (CR5) 2018; 84 Chen, Lu, You, Zhou, Xu, Chen (CR44) 2020; 8 Que, Chen, Qing, Liu, Wang, Lin (CR35) 2019; 25 Guedon, Meij, Osman, Kloosterman, van Stralen, Grimbergen (CR55) 2020 Gao, Kruger, Intes, Schwaitzberg, De (CR52) 2020; 167 Safavi, Khaniyev, Copenhaver, Seelen, Zenteno Langle, Zanger (CR64) 2019; 2 Panesar, Cagle, Chander, Morey, Fernandez-Miranda, Kliot (CR77) 2019; 270 Liu, Qi, Feng, Sun, Zhang, Liu (CR29) 2019; 44 Bertsimas, Dunn, Velmahos, Kaafarani (CR43) 2018; 268 Bihorac, Ozrazgat-Baslanti, Ebadi, Motaei, Madkour, Pardalos (CR41) 2019; 269 Urban, Tripathi, Alkayali, Mittal, Jalali, Karnes (CR21) 2018; 155 Guo, Xiao, Wu, Zeng, Zhang, Du (CR14) 2020; 91 Nudel, Bishara, de Geus, Patil, Srinivasan, Hess (CR63) 2021; 35 Fukagawa, Katai, Mizusawa, Nakamura, Sano, Terashima (CR30) 2018; 21 Hashimoto, Requa, Dao, Ninh, Tran, Mai (CR15) 2020; 91 Lee, Marcantonio, Mangione, Thomas, Polanczyk, Cook (CR4) 1999; 100 Liu, Khalvati, Namdar, Fischer, Lewis, Taouli (CR24) 2020 Wu, Zhou, Wan, Zhang, Shen, Hu (CR17) 2019; 51 Deo (CR9) 2015; 132 Bilimoria, Liu, Paruch, Zhou, Kmiecik, Ko (CR1) 2013; 217 Bychkov, Linder, Turkki, Nordling, Kovanen, Verrill (CR73) 2018; 8 Peng, Fang, Li, Ou, Jiang, Lu (CR66) 2016; 7 Rahman, Walker, Lloyd, Grace, van Boxel, Kingma (CR67) 2020; 107 Khalid, Goldenberg, Grantcharov, Taati, Rudzicz (CR59) 2020; 3 Hirasawa, Aoyama, Tanimoto, Ishihara, Shichijo, Ozawa (CR18) 2018; 21 Hung, Chen, Gill (CR7) 2018; 153 Hyer, Ejaz, Tsilimigras, Paredes, Mehta, Pawlik (CR38) 2019; 154 Ji, Wang, Xia, Wang, Wang, Li (CR70) 2020 Nguyen, Ljuhar, Pacilli, Nataraja, Chauhan (CR51) 2019; 177 Zhang, Zhu, Yuan, Li, Ding, Bao (CR62) 2020; 20 Paredes, Hyer, Tsilimigras, Moro, Bagante, Guglielmi (CR37) 2020; 27 Garrow, Kowalewski, Li, Wagner, Schmidt, Engelhardt (CR48) 2020 Zhao, Cai, Chang, Cheng (CR58) 2019; 6 Doll, Rademaker, Sosa (CR3) 2018; 153 Yuan, Xu, Cai, Zhao, Cao, Fichera (CR32) 2020 Kitaguchi, Takeshita, Matsuzaki, Oda, Watanabe, Mori (CR56) 2020; 79 Jiang, Jin, Yu, Wu, Chen, Yuan (CR65) 2020 Ward, Mascagni, Ban, Rosman, Padoy, Meireles (CR50) 2020 Shi, Lee, Wang, Sun, Lee, Chiu (CR69) 2012; 16 Bi, Goodman, Kaminsky, Lessler (CR76) 2019; 188 Kilic, Goyal, Miller, Gjekmarkaj, Tam, Gleason (CR8) 2020; 109 de Groof, Struyvenberg, van der Putten, van der Sommen, Fockens, Curvers (CR16) 2020; 158 Mai, Lu, Bai, Liang, Lin, Ma (CR46) 2020; 168 Taghavi, Trebeschi, Simoes, Meek, Beckers, Lambregts (CR31) 2020 L Guo (2380_CR14) 2020; 91 P Kambakamba (2380_CR47) 2020; 167 Q Bi (2380_CR76) 2019; 188 A Kilic (2380_CR8) 2020; 109 Y Luo (2380_CR25) 2020; 110 Y Yamazaki (2380_CR61) 2020; 230 M Taghavi (2380_CR31) 2020 D Kitaguchi (2380_CR56) 2020; 79 Y Jiang (2380_CR65) 2020 A Rajkomar (2380_CR6) 2019; 380 Y Zhu (2380_CR20) 2019; 89 D Bychkov (2380_CR73) 2018; 8 D Bertsimas (2380_CR43) 2018; 268 A Madani (2380_CR53) 2020 M Komorowski (2380_CR12) 2018; 24 R Hashimoto (2380_CR15) 2020; 91 JM Hyer (2380_CR39) 2020; 230 RY Mai (2380_CR46) 2020; 168 XL Liu (2380_CR26) 2020; 12 KY Bilimoria (2380_CR1) 2013; 217 M Brennan (2380_CR42) 2019; 165 AJ Hung (2380_CR7) 2018; 153 GW Ji (2380_CR70) 2020 EW Beal (2380_CR5) 2018; 84 Z Yuan (2380_CR32) 2020 Z Zhao (2380_CR58) 2019; 6 TM Ward (2380_CR50) 2020 D Kitaguchi (2380_CR57) 2020; 34 Y Horie (2380_CR13) 2019; 89 KC Safavi (2380_CR64) 2019; 2 T Chen (2380_CR71) 2019; 39 KM Doll (2380_CR3) 2018; 153 TH Lee (2380_CR4) 1999; 100 P Mascagni (2380_CR54) 2020 L Wu (2380_CR17) 2019; 51 H Luo (2380_CR22) 2019; 20 OJ Skrede (2380_CR68) 2020; 395 Y Gao (2380_CR52) 2020; 167 Y Zhang (2380_CR62) 2020; 20 T Hirasawa (2380_CR18) 2018; 21 CR Garrow (2380_CR48) 2020 K Merath (2380_CR45) 2020; 24 F Luongo (2380_CR60) 2020 C Liu (2380_CR29) 2019; 44 JN Kather (2380_CR72) 2019; 25 DL Shung (2380_CR33) 2020; 158 CW Seymour (2380_CR10) 2019; 321 Y Ikenoyama (2380_CR19) 2020 ACP Guedon (2380_CR55) 2020 HY Shi (2380_CR69) 2012; 16 RC Deo (2380_CR9) 2015; 132 AJ de Groof (2380_CR16) 2020; 158 S Khalid (2380_CR59) 2020; 3 AZ Paredes (2380_CR37) 2020; 27 G Urban (2380_CR21) 2018; 155 XA Nguyen (2380_CR51) 2019; 177 JM Hyer (2380_CR38) 2019; 154 X Liu (2380_CR24) 2020 JH Peng (2380_CR66) 2016; 7 B Zhao (2380_CR36) 2020; 22 JN Kather (2380_CR74) 2019; 16 TJ Loftus (2380_CR11) 2020; 155 C Jin (2380_CR27) 2020; 108 S Panesar (2380_CR77) 2019; 270 U Wolters (2380_CR40) 1996; 77 SA Rahman (2380_CR67) 2020; 107 CA Hamm (2380_CR23) 2019; 29 SJ Que (2380_CR35) 2019; 25 D Dong (2380_CR28) 2020; 31 A Winkler-Schwartz (2380_CR49) 2019; 2 DJ Boffa (2380_CR2) 2017; 3 TJ Loftus (2380_CR34) 2017; 212 A Bihorac (2380_CR41) 2019; 269 A Hoshino (2380_CR75) 2020; 182 J Nudel (2380_CR63) 2021; 35 W Chen (2380_CR44) 2020; 8 T Fukagawa (2380_CR30) 2018; 21 |
| References_xml | – volume: 109 start-page: 1811 issue: 6 year: 2020 end-page: 1819 ident: CR8 article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2019.09.049 – volume: 21 start-page: 68 issue: 1 year: 2018 end-page: 73 ident: CR30 article-title: A prospective multi-institutional validity study to evaluate the accuracy of clinical diagnosis of pathological stage III gastric cancer (JCOG1302A) publication-title: Gastric Cancer doi: 10.1007/s10120-017-0701-1 – volume: 16 start-page: e1002730 issue: 1 year: 2019 ident: CR74 article-title: Predicting survival from colorectal cancer histology slides using deep learning: a retrospective multicenter study publication-title: PLoS Med doi: 10.1371/journal.pmed.1002730 – volume: 27 start-page: 5139 issue: 13 year: 2020 end-page: 5147 ident: CR37 article-title: A novel machine-learning approach to predict recurrence after resection of colorectal liver metastases publication-title: Ann Surg Oncol doi: 10.1245/s10434-020-08991-9 – volume: 39 start-page: 272 year: 2019 end-page: 279 ident: CR71 article-title: Developed and validated a prognostic nomogram for recurrence-free survival after complete surgical resection of local primary gastrointestinal stromal tumors based on deep learning publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.028 – year: 2020 ident: CR53 article-title: Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy publication-title: Ann Surg doi: 10.1097/SLA.0000000000004594 – volume: 34 start-page: 4924 issue: 11 year: 2020 end-page: 4931 ident: CR57 article-title: Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach publication-title: Surg Endosc doi: 10.1007/s00464-019-07281-0 – volume: 51 start-page: 522 issue: 6 year: 2019 end-page: 531 ident: CR17 article-title: A deep neural network improves endoscopic detection of early gastric cancer without blind spots publication-title: Endoscopy doi: 10.1055/a-0855-3532 – volume: 6 start-page: 275 issue: 6 year: 2019 end-page: 279 ident: CR58 article-title: Real-time surgical instrument detection in robot-assisted surgery using a convolutional neural network cascade publication-title: Healthc Technol Lett doi: 10.1049/htl.2019.0064 – year: 2020 ident: CR65 article-title: Development and validation of a deep learning CT signature to predict survival and chemotherapy benefit in gastric cancer: a multicenter retrospective study publication-title: Ann Surg doi: 10.1097/SLA.0000000000003778 – volume: 35 start-page: 182 issue: 1 year: 2021 end-page: 191 ident: CR63 article-title: Development and validation of machine learning models to predict gastrointestinal leak and venous thromboembolism after weight loss surgery: an analysis of the MBSAQIP database publication-title: Surg Endosc doi: 10.1007/s00464-020-07378-x – volume: 155 start-page: 148 issue: 2 year: 2020 end-page: 158 ident: CR11 article-title: Artificial intelligence and surgical decision-making publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.4917 – volume: 8 start-page: e18186 issue: 6 year: 2020 ident: CR44 article-title: Artificial intelligence-based multimodal risk assessment model for surgical site infection (AMRAMS): development and validation study publication-title: JMIR Med Inform doi: 10.2196/18186 – volume: 270 start-page: 223 issue: 2 year: 2019 end-page: 226 ident: CR77 article-title: Artificial intelligence and the future of surgical robotics publication-title: Ann Surg doi: 10.1097/SLA.0000000000003262 – year: 2020 ident: CR48 article-title: Machine learning for surgical phase recognition: a systematic review publication-title: Ann Surg doi: 10.1097/SLA.0000000000004425 – volume: 8 start-page: 3395 issue: 1 year: 2018 ident: CR73 article-title: Deep learning based tissue analysis predicts outcome in colorectal cancer publication-title: Sci Rep doi: 10.1038/s41598-018-21758-3 – volume: 89 start-page: 806 issue: 4 year: 2019 end-page: 815 e1 ident: CR20 article-title: Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.11.011 – year: 2020 ident: CR31 article-title: Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-020-02624-1 – volume: 91 start-page: 1264 issue: 6 year: 2020 end-page: 1271 e1 ident: CR15 article-title: Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett's esophagus (with video) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.12.049 – volume: 110 start-page: 338 issue: 5 year: 2020 end-page: 350 ident: CR25 article-title: Preoperative prediction of pancreatic neuroendocrine neoplasms grading based on enhanced computed tomography imaging: validation of deep learning with a convolutional neural network publication-title: Neuroendocrinology doi: 10.1159/000503291 – volume: 188 start-page: 2222 issue: 12 year: 2019 end-page: 2239 ident: CR76 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am J Epidemiol – volume: 165 start-page: 1035 issue: 5 year: 2019 end-page: 1045 ident: CR42 article-title: Comparing clinical judgment with the MySurgeryRisk algorithm for preoperative risk assessment: a pilot usability study publication-title: Surgery doi: 10.1016/j.surg.2019.01.002 – volume: 16 start-page: 2126 issue: 11 year: 2012 end-page: 2131 ident: CR69 article-title: Artificial neural network model for predicting 5-year mortality after surgery for hepatocellular carcinoma: a nationwide study publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract doi: 10.1007/s11605-012-1986-3 – volume: 132 start-page: 1920 issue: 20 year: 2015 end-page: 1930 ident: CR9 article-title: Machine learning in medicine publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 44 start-page: 3019 issue: 9 year: 2019 end-page: 29 ident: CR29 article-title: Performance of a machine learning-based decision model to help clinicians decide the extent of lymphadenectomy (D1 vs. D2) in gastric cancer before surgical resection publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02098-w – volume: 182 start-page: 1044 issue: 4 year: 2020 end-page: 1061 e18 ident: CR75 article-title: Extracellular vesicle and particle biomarkers define multiple human cancers publication-title: Cell doi: 10.1016/j.cell.2020.07.009 – volume: 21 start-page: 653 issue: 4 year: 2018 end-page: 660 ident: CR18 article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images publication-title: Gastric Cancer doi: 10.1007/s10120-018-0793-2 – volume: 155 start-page: 1069 issue: 4 year: 2018 end-page: 1078 e8 ident: CR21 article-title: Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.06.037 – volume: 154 start-page: 1014 issue: 11 year: 2019 end-page: 1021 ident: CR38 article-title: Novel machine learning approach to identify preoperative risk factors associated with super-utilization of medicare expenditure following surgery publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.2979 – volume: 177 start-page: 1 year: 2019 end-page: 8 ident: CR51 article-title: Surgical skill levels: classification and analysis using deep neural network model and motion signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.05.008 – volume: 2 start-page: e1917221 issue: 12 year: 2019 ident: CR64 article-title: Development and validation of a machine learning model to aid discharge processes for inpatient surgical care publication-title: JAMA Netw Open. doi: 10.1001/jamanetworkopen.2019.17221 – volume: 22 start-page: 914 issue: 8 year: 2020 end-page: 922 ident: CR36 article-title: Using machine learning to construct nomograms for patients with metastatic colon cancer publication-title: Colorectal Dis doi: 10.1111/codi.14991 – volume: 3 start-page: 1722 issue: 12 year: 2017 end-page: 1728 ident: CR2 article-title: Using the National Cancer Database for outcomes research: a review publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2016.6905 – volume: 24 start-page: 1716 issue: 11 year: 2018 end-page: 1720 ident: CR12 article-title: The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care publication-title: Nat Med doi: 10.1038/s41591-018-0213-5 – volume: 89 start-page: 25 issue: 1 year: 2019 end-page: 32 ident: CR13 article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.07.037 – volume: 158 start-page: 915 issue: 4 year: 2020 end-page: 929.e4 ident: CR16 article-title: Deep-learning system detects neoplasia in patients with Barrett’s esophagus with higher accuracy than endoscopists in a multistep training and validation study with benchmarking publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.030 – year: 2020 ident: CR19 article-title: Detecting early gastric cancer: comparison between the diagnostic ability of convolutional neural networks and endoscopists publication-title: Dig Endosc: Off J Jpn Gastroenterol Endosc Soc doi: 10.1111/den.13688 – volume: 20 start-page: 1645 issue: 12 year: 2019 end-page: 1654 ident: CR22 article-title: Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30637-0 – volume: 230 start-page: 43 issue: 1 year: 2020 end-page: 52 ident: CR39 article-title: Can we improve prediction of adverse surgical outcomes? Development of a surgical complexity score using a novel machine learning technique publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2019.09.015 – volume: 395 start-page: 350 issue: 10221 year: 2020 end-page: 360 ident: CR68 article-title: Deep learning for prediction of colorectal cancer outcome: a discovery and validation study publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(19)32998-8 – volume: 167 start-page: 448 issue: 2 year: 2020 end-page: 454 ident: CR47 article-title: The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: a proof-of-principle study publication-title: Surgery doi: 10.1016/j.surg.2019.09.019 – volume: 167 start-page: 321 issue: 2 year: 2020 end-page: 327 ident: CR52 article-title: A machine learning approach to predict surgical learning curves publication-title: Surgery doi: 10.1016/j.surg.2019.10.008 – year: 2020 ident: CR55 article-title: Deep learning for surgical phase recognition using endoscopic videos publication-title: Surg Endosc doi: 10.1007/s00464-020-08110-5 – volume: 107 start-page: 1042 issue: 8 year: 2020 end-page: 1052 ident: CR67 article-title: Machine learning to predict early recurrence after oesophageal cancer surgery publication-title: Br J Surg doi: 10.1002/bjs.11461 – year: 2020 ident: CR50 article-title: Computer vision in surgery publication-title: Surgery doi: 10.1016/j.surg.2020.10.039 – year: 2020 ident: CR60 article-title: Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery publication-title: Surgery doi: 10.1016/j.surg.2020.08.016 – year: 2020 ident: CR54 article-title: Artificial intelligence for surgical safety: automatic assessment of the critical view of safety in laparoscopic cholecystectomy using deep learning publication-title: Ann Surg doi: 10.1097/SLA.0000000000004351 – volume: 20 start-page: 1161 issue: 1 year: 2020 ident: CR62 article-title: Risk factors and socio-economic burden in pancreatic ductal adenocarcinoma operation: a machine learning based analysis publication-title: BMC Cancer doi: 10.1186/s12885-020-07626-2 – volume: 153 start-page: 588 issue: 6 year: 2018 end-page: 589 ident: CR3 article-title: Practical guide to surgical data sets: surveillance, epidemiology, and end results (SEER) database publication-title: JAMA Surg doi: 10.1001/jamasurg.2018.0501 – volume: 380 start-page: 1347 issue: 14 year: 2019 end-page: 1358 ident: CR6 article-title: Machine learning in medicine publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – year: 2020 ident: CR24 article-title: Can machine learning radiomics provide pre-operative differentiation of combined hepatocellular cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma to inform optimal treatment planning? publication-title: Eur Radiol doi: 10.1007/s00330-020-07119-7 – volume: 217 start-page: 833 issue: 5 year: 2013 end-page: 842 e1-3 ident: CR1 article-title: Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2013.07.385 – volume: 25 start-page: 6451 issue: 43 year: 2019 end-page: 6464 ident: CR35 article-title: Application of preoperative artificial neural network based on blood biomarkers and clinicopathological parameters for predicting long-term survival of patients with gastric cancer publication-title: World J Gastroenterol doi: 10.3748/wjg.v25.i43.6451 – volume: 268 start-page: 574 issue: 4 year: 2018 end-page: 583 ident: CR43 article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based predictive optimal trees in emergency surgery risk (POTTER) calculator publication-title: Ann Surg doi: 10.1097/SLA.0000000000002956 – volume: 2 start-page: e198363 issue: 8 year: 2019 ident: CR49 article-title: Machine learning identification of surgical and operative factors associated with surgical expertise in virtual reality simulation publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.8363 – volume: 91 start-page: 41 issue: 1 year: 2020 end-page: 51 ident: CR14 article-title: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos) publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.08.018 – volume: 29 start-page: 3338 issue: 7 year: 2019 end-page: 3347 ident: CR23 article-title: Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI publication-title: Eur Radiol doi: 10.1007/s00330-019-06205-9 – volume: 25 start-page: 1054 issue: 7 year: 2019 end-page: 1056 ident: CR72 article-title: Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer publication-title: Nat Med doi: 10.1038/s41591-019-0462-y – volume: 212 start-page: 42 year: 2017 end-page: 47 ident: CR34 article-title: Neural network prediction of severe lower intestinal bleeding and the need for surgical intervention publication-title: J Surg Res doi: 10.1016/j.jss.2016.12.032 – year: 2020 ident: CR32 article-title: Development and validation of an image-based deep learning algorithm for detection of synchronous peritoneal carcinomatosis in colorectal cancer publication-title: Ann Surg doi: 10.1097/SLA.0000000000004229 – volume: 100 start-page: 1043 issue: 10 year: 1999 end-page: 1049 ident: CR4 article-title: Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery publication-title: Circulation doi: 10.1161/01.CIR.100.10.1043 – volume: 12 start-page: 5580 issue: 10 year: 2020 end-page: 5592 ident: CR26 article-title: An artificial neural network model predicting pathologic nodal metastases in clinical stage I-II esophageal squamous cell carcinoma patients publication-title: J Thorac Dis doi: 10.21037/jtd-20-1956 – volume: 79 start-page: 88 year: 2020 end-page: 94 ident: CR56 article-title: Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: experimental research publication-title: Int J Surg doi: 10.1016/j.ijsu.2020.05.015 – volume: 168 start-page: 643 issue: 4 year: 2020 end-page: 652 ident: CR46 article-title: Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma publication-title: Surgery doi: 10.1016/j.surg.2020.06.031 – volume: 269 start-page: 652 issue: 4 year: 2019 end-page: 662 ident: CR41 article-title: MySurgeryRisk: development and validation of a machine-learning risk algorithm for major complications and death after surgery publication-title: Ann Surg doi: 10.1097/SLA.0000000000002706 – volume: 321 start-page: 2003 issue: 20 year: 2019 end-page: 2017 ident: CR10 article-title: Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis publication-title: JAMA doi: 10.1001/jama.2019.5791 – volume: 84 start-page: 358 issue: 3 year: 2018 end-page: 364 ident: CR5 article-title: Accuracy of the ACS NSQIP online risk calculator depends on how you look at it: results from the United States gastric cancer collaborative publication-title: Am Surg doi: 10.1177/000313481808400318 – volume: 24 start-page: 1843 issue: 8 year: 2020 end-page: 1851 ident: CR45 article-title: Use of machine learning for prediction of patient risk of postoperative complications after liver, pancreatic, and colorectal surgery publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract doi: 10.1007/s11605-019-04338-2 – volume: 3 start-page: e201664 issue: 3 year: 2020 ident: CR59 article-title: Evaluation of deep learning models for identifying surgical actions and measuring performance publication-title: JAMA Netw Open. doi: 10.1001/jamanetworkopen.2020.1664 – volume: 158 start-page: 160 issue: 1 year: 2020 end-page: 167 ident: CR33 article-title: Validation of a machine learning model that outperforms clinical risk scoring systems for upper gastrointestinal bleeding publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.09.009 – year: 2020 ident: CR70 article-title: Integrating machine learning and tumor immune signature to predict oncologic outcomes in resected biliary tract cancer publication-title: Ann Surg Oncol doi: 10.1245/s10434-020-09374-w – volume: 77 start-page: 217 issue: 2 year: 1996 end-page: 222 ident: CR40 article-title: ASA classification and perioperative variables as predictors of postoperative outcome publication-title: Br J Anaesth doi: 10.1093/bja/77.2.217 – volume: 153 start-page: 770 issue: 8 year: 2018 end-page: 771 ident: CR7 article-title: Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery publication-title: JAMA Surg doi: 10.1001/jamasurg.2018.1512 – volume: 108 start-page: 542 issue: 5 year: 2020 end-page: 549 ident: CR27 article-title: Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer publication-title: Br J Surg doi: 10.1002/bjs.11928 – volume: 31 start-page: 912 issue: 7 year: 2020 end-page: 920 ident: CR28 article-title: Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.04.003 – volume: 7 start-page: 22939 issue: 16 year: 2016 end-page: 22947 ident: CR66 article-title: A scoring system based on artificial neural network for predicting 10-year survival in stage II A colon cancer patients after radical surgery publication-title: Oncotarget doi: 10.18632/oncotarget.8217 – volume: 230 start-page: 725 issue: 5 year: 2020 end-page: 32 e1 ident: CR61 article-title: Automated surgical instrument detection from laparoscopic gastrectomy video images using an open source convolutional neural network platform publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2020.01.037 – volume: 44 start-page: 3019 issue: 9 year: 2019 ident: 2380_CR29 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-019-02098-w – volume: 3 start-page: 1722 issue: 12 year: 2017 ident: 2380_CR2 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2016.6905 – volume: 154 start-page: 1014 issue: 11 year: 2019 ident: 2380_CR38 publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.2979 – volume: 155 start-page: 148 issue: 2 year: 2020 ident: 2380_CR11 publication-title: JAMA Surg doi: 10.1001/jamasurg.2019.4917 – volume: 27 start-page: 5139 issue: 13 year: 2020 ident: 2380_CR37 publication-title: Ann Surg Oncol doi: 10.1245/s10434-020-08991-9 – volume: 25 start-page: 6451 issue: 43 year: 2019 ident: 2380_CR35 publication-title: World J Gastroenterol doi: 10.3748/wjg.v25.i43.6451 – volume: 155 start-page: 1069 issue: 4 year: 2018 ident: 2380_CR21 publication-title: Gastroenterology doi: 10.1053/j.gastro.2018.06.037 – volume: 91 start-page: 41 issue: 1 year: 2020 ident: 2380_CR14 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.08.018 – volume: 20 start-page: 1645 issue: 12 year: 2019 ident: 2380_CR22 publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30637-0 – volume: 22 start-page: 914 issue: 8 year: 2020 ident: 2380_CR36 publication-title: Colorectal Dis doi: 10.1111/codi.14991 – volume: 79 start-page: 88 year: 2020 ident: 2380_CR56 publication-title: Int J Surg doi: 10.1016/j.ijsu.2020.05.015 – volume: 2 start-page: e1917221 issue: 12 year: 2019 ident: 2380_CR64 publication-title: JAMA Netw Open. doi: 10.1001/jamanetworkopen.2019.17221 – volume: 270 start-page: 223 issue: 2 year: 2019 ident: 2380_CR77 publication-title: Ann Surg doi: 10.1097/SLA.0000000000003262 – volume: 7 start-page: 22939 issue: 16 year: 2016 ident: 2380_CR66 publication-title: Oncotarget doi: 10.18632/oncotarget.8217 – volume: 89 start-page: 25 issue: 1 year: 2019 ident: 2380_CR13 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.07.037 – volume: 177 start-page: 1 year: 2019 ident: 2380_CR51 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2019.05.008 – year: 2020 ident: 2380_CR65 publication-title: Ann Surg doi: 10.1097/SLA.0000000000003778 – volume: 100 start-page: 1043 issue: 10 year: 1999 ident: 2380_CR4 publication-title: Circulation doi: 10.1161/01.CIR.100.10.1043 – volume: 168 start-page: 643 issue: 4 year: 2020 ident: 2380_CR46 publication-title: Surgery doi: 10.1016/j.surg.2020.06.031 – volume: 188 start-page: 2222 issue: 12 year: 2019 ident: 2380_CR76 publication-title: Am J Epidemiol – volume: 167 start-page: 448 issue: 2 year: 2020 ident: 2380_CR47 publication-title: Surgery doi: 10.1016/j.surg.2019.09.019 – volume: 2 start-page: e198363 issue: 8 year: 2019 ident: 2380_CR49 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.8363 – volume: 16 start-page: e1002730 issue: 1 year: 2019 ident: 2380_CR74 publication-title: PLoS Med doi: 10.1371/journal.pmed.1002730 – volume: 107 start-page: 1042 issue: 8 year: 2020 ident: 2380_CR67 publication-title: Br J Surg doi: 10.1002/bjs.11461 – volume: 268 start-page: 574 issue: 4 year: 2018 ident: 2380_CR43 publication-title: Ann Surg doi: 10.1097/SLA.0000000000002956 – year: 2020 ident: 2380_CR55 publication-title: Surg Endosc doi: 10.1007/s00464-020-08110-5 – volume: 167 start-page: 321 issue: 2 year: 2020 ident: 2380_CR52 publication-title: Surgery doi: 10.1016/j.surg.2019.10.008 – volume: 16 start-page: 2126 issue: 11 year: 2012 ident: 2380_CR69 publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract doi: 10.1007/s11605-012-1986-3 – volume: 132 start-page: 1920 issue: 20 year: 2015 ident: 2380_CR9 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.001593 – volume: 153 start-page: 770 issue: 8 year: 2018 ident: 2380_CR7 publication-title: JAMA Surg doi: 10.1001/jamasurg.2018.1512 – volume: 380 start-page: 1347 issue: 14 year: 2019 ident: 2380_CR6 publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – volume: 24 start-page: 1716 issue: 11 year: 2018 ident: 2380_CR12 publication-title: Nat Med doi: 10.1038/s41591-018-0213-5 – volume: 182 start-page: 1044 issue: 4 year: 2020 ident: 2380_CR75 publication-title: Cell doi: 10.1016/j.cell.2020.07.009 – volume: 6 start-page: 275 issue: 6 year: 2019 ident: 2380_CR58 publication-title: Healthc Technol Lett doi: 10.1049/htl.2019.0064 – year: 2020 ident: 2380_CR48 publication-title: Ann Surg doi: 10.1097/SLA.0000000000004425 – volume: 395 start-page: 350 issue: 10221 year: 2020 ident: 2380_CR68 publication-title: Lancet (London, England) doi: 10.1016/S0140-6736(19)32998-8 – volume: 110 start-page: 338 issue: 5 year: 2020 ident: 2380_CR25 publication-title: Neuroendocrinology doi: 10.1159/000503291 – volume: 3 start-page: e201664 issue: 3 year: 2020 ident: 2380_CR59 publication-title: JAMA Netw Open. doi: 10.1001/jamanetworkopen.2020.1664 – volume: 8 start-page: 3395 issue: 1 year: 2018 ident: 2380_CR73 publication-title: Sci Rep doi: 10.1038/s41598-018-21758-3 – year: 2020 ident: 2380_CR24 publication-title: Eur Radiol doi: 10.1007/s00330-020-07119-7 – volume: 109 start-page: 1811 issue: 6 year: 2020 ident: 2380_CR8 publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2019.09.049 – year: 2020 ident: 2380_CR60 publication-title: Surgery doi: 10.1016/j.surg.2020.08.016 – volume: 91 start-page: 1264 issue: 6 year: 2020 ident: 2380_CR15 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.12.049 – volume: 217 start-page: 833 issue: 5 year: 2013 ident: 2380_CR1 publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2013.07.385 – year: 2020 ident: 2380_CR31 publication-title: Abdom Radiol (NY) doi: 10.1007/s00261-020-02624-1 – volume: 51 start-page: 522 issue: 6 year: 2019 ident: 2380_CR17 publication-title: Endoscopy doi: 10.1055/a-0855-3532 – volume: 35 start-page: 182 issue: 1 year: 2021 ident: 2380_CR63 publication-title: Surg Endosc doi: 10.1007/s00464-020-07378-x – volume: 158 start-page: 915 issue: 4 year: 2020 ident: 2380_CR16 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.11.030 – year: 2020 ident: 2380_CR54 publication-title: Ann Surg doi: 10.1097/SLA.0000000000004351 – volume: 230 start-page: 725 issue: 5 year: 2020 ident: 2380_CR61 publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2020.01.037 – volume: 20 start-page: 1161 issue: 1 year: 2020 ident: 2380_CR62 publication-title: BMC Cancer doi: 10.1186/s12885-020-07626-2 – volume: 39 start-page: 272 year: 2019 ident: 2380_CR71 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.12.028 – volume: 24 start-page: 1843 issue: 8 year: 2020 ident: 2380_CR45 publication-title: J Gastrointest Surg: Off J Soc Surg Aliment Tract doi: 10.1007/s11605-019-04338-2 – year: 2020 ident: 2380_CR32 publication-title: Ann Surg doi: 10.1097/SLA.0000000000004229 – volume: 230 start-page: 43 issue: 1 year: 2020 ident: 2380_CR39 publication-title: J Am Coll Surg. doi: 10.1016/j.jamcollsurg.2019.09.015 – volume: 165 start-page: 1035 issue: 5 year: 2019 ident: 2380_CR42 publication-title: Surgery doi: 10.1016/j.surg.2019.01.002 – volume: 108 start-page: 542 issue: 5 year: 2020 ident: 2380_CR27 publication-title: Br J Surg doi: 10.1002/bjs.11928 – year: 2020 ident: 2380_CR19 publication-title: Dig Endosc: Off J Jpn Gastroenterol Endosc Soc doi: 10.1111/den.13688 – volume: 77 start-page: 217 issue: 2 year: 1996 ident: 2380_CR40 publication-title: Br J Anaesth doi: 10.1093/bja/77.2.217 – year: 2020 ident: 2380_CR70 publication-title: Ann Surg Oncol doi: 10.1245/s10434-020-09374-w – year: 2020 ident: 2380_CR50 publication-title: Surgery doi: 10.1016/j.surg.2020.10.039 – volume: 321 start-page: 2003 issue: 20 year: 2019 ident: 2380_CR10 publication-title: JAMA doi: 10.1001/jama.2019.5791 – volume: 8 start-page: e18186 issue: 6 year: 2020 ident: 2380_CR44 publication-title: JMIR Med Inform doi: 10.2196/18186 – volume: 269 start-page: 652 issue: 4 year: 2019 ident: 2380_CR41 publication-title: Ann Surg doi: 10.1097/SLA.0000000000002706 – volume: 21 start-page: 68 issue: 1 year: 2018 ident: 2380_CR30 publication-title: Gastric Cancer doi: 10.1007/s10120-017-0701-1 – volume: 212 start-page: 42 year: 2017 ident: 2380_CR34 publication-title: J Surg Res doi: 10.1016/j.jss.2016.12.032 – volume: 153 start-page: 588 issue: 6 year: 2018 ident: 2380_CR3 publication-title: JAMA Surg doi: 10.1001/jamasurg.2018.0501 – volume: 29 start-page: 3338 issue: 7 year: 2019 ident: 2380_CR23 publication-title: Eur Radiol doi: 10.1007/s00330-019-06205-9 – year: 2020 ident: 2380_CR53 publication-title: Ann Surg doi: 10.1097/SLA.0000000000004594 – volume: 12 start-page: 5580 issue: 10 year: 2020 ident: 2380_CR26 publication-title: J Thorac Dis doi: 10.21037/jtd-20-1956 – volume: 89 start-page: 806 issue: 4 year: 2019 ident: 2380_CR20 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2018.11.011 – volume: 31 start-page: 912 issue: 7 year: 2020 ident: 2380_CR28 publication-title: Ann Oncol doi: 10.1016/j.annonc.2020.04.003 – volume: 158 start-page: 160 issue: 1 year: 2020 ident: 2380_CR33 publication-title: Gastroenterology doi: 10.1053/j.gastro.2019.09.009 – volume: 34 start-page: 4924 issue: 11 year: 2020 ident: 2380_CR57 publication-title: Surg Endosc doi: 10.1007/s00464-019-07281-0 – volume: 25 start-page: 1054 issue: 7 year: 2019 ident: 2380_CR72 publication-title: Nat Med doi: 10.1038/s41591-019-0462-y – volume: 21 start-page: 653 issue: 4 year: 2018 ident: 2380_CR18 publication-title: Gastric Cancer doi: 10.1007/s10120-018-0793-2 – volume: 84 start-page: 358 issue: 3 year: 2018 ident: 2380_CR5 publication-title: Am Surg doi: 10.1177/000313481808400318 |
| SSID | ssj0024800 |
| Score | 2.402349 |
| SecondaryResourceType | review_article |
| Snippet | Machine learning (ML) is a collection of algorithms allowing computers to learn directly from data without predetermined equations. It is used widely to... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 995 |
| SubjectTerms | Medicine Medicine & Public Health Review Article Surgery Surgical Oncology |
| Title | Machine learning in gastrointestinal surgery |
| URI | https://link.springer.com/article/10.1007/s00595-021-02380-9 https://www.proquest.com/docview/2576658087 |
| Volume | 52 |
| WOSCitedRecordID | wos000698863300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-2813 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024800 issn: 0941-1291 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD64KeKLd3FeRgXfXCFJ07V9FHH4siHe2FvJdQykk7Xz95uk6YYiA31uEsrJSc45nHzfB3AdacE1VXGIRaZMgYJQyIWQIceRZLSvLYe6E5tIRqN0PM4ePSisbF67Ny1Jd1MvwW4WJ2nRxKb8NXEGhVkLNi15idUteHp-WzHspTXwJKM4NNEMe6jM72t8D0erHPNHW9RFm8He__5zH3Z9dhnc1u5wABuqOITtoe-fH0Fv6N5OqsCLRUyCaRFMWFnNZ5Y3whx3O72sodLH8Dq4f7l7CL1eQigoppW5KyIuk1hzyiRRImVIo0xTwhCRVjgKx0rpVPSR-ZBQzkjW1ySimmPeJ1iK6ATaxaxQpxCYNEEzqaSWkaCCcFMVsThNtCBRZmpC1gHcmC0Xnkzcalq850saZGeG3Jghd2bIsw7cLOd81FQaa0dfNbuRG4-3bQxWqNmizG2JZPImlCYd6DVbkPujV65Z8uxvw89hh1isg3ubewHtar5Ql7AlPqtpOe9CKxmnXed5XyKU0Oc |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60ivriLdZzBd_swiabvR5FLBXbIlqlbyFnKchWult_v8keLYoU9DkHYTLJzDDzfQNw7WvBNVGBi0SiTIDieS4XQroc-ZKRUFsO9aLZRNTvx8Nh8lSBwrK62r1OSRY_9RzsZnGSFk1swl9jZzw3WYU1gpFv9fr55W3BsBeXwJOEINdYM1RBZX7f47s5WviYP9KihbVp7_zvnLuwXXmXzm2pDnuwotJ92OhV-fMDaPWK2knlVM0iRs44dUYsy6cTyxthnrtdnpVQ6UN4bd8P7jpu1S_BFQSR3PwVPpdRoDlhEisRM097iSaYeVjaxlEoUErHIvTMQEQ4w0mosU80RzzESAr_CBrpJFXH4Bg3QTOppJa-IAJzExWxII60wH5iYkLWBFSLjYqKTNz2tHincxrkQgzUiIEWYqBJE27maz5KKo2ls6_q26BG420ag6VqMsuoDZGM3-TFURNa9RXQ6ullS7Y8-dv0S9jsDHpd2n3oP57CFra4h6JO9wwa-XSmzmFdfObjbHpR6N8XCtnS4w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB60SvHFW6xnBN9saHazaZJHUYuiLQUP-rbsWQqSlib197ubo1WRgvic3SXMHjMfM983AJe-FlwTFbhIxMoAFM9zuRDS5ciXjLS11VDPm02EvV40GMT9Lyz-vNq9SkkWnAar0pRkrYnUrTnxzXImLbPYQGHjczw3XoU1YtXQLF5_fluo7UUFCSUmyDWeDZW0md_X-O6aFvHmjxRp7nk6W___523YLKNO57o4JjuwopJdqHfLvPoeNLt5TaVyyiYSQ2eUOEOWZtOx1ZMwz4CdnhYU6n147dy93Ny7ZR8FVxBEMvOG-FyGgeaESaxExDztxZpg5mFpG0qhQCkdibZnPoSEMxy3NfaJ5oi3MZLCP4BaMk7UITgmfNBMKqmlL4jA3KAlFkShFtiPDVZkDUCVCakoRcZtr4t3OpdHzs1AjRlobgYaN-BqPmdSSGwsHX1R7Qw1N8GmN1iixrOUWuhk4ikvChvQrLaDllcyXbLk0d-Gn0O9f9uhTw-9x2PYwJYOkZfvnkAtm87UKayLj2yUTs_yo_gJJbTbxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+in+gastrointestinal+surgery&rft.jtitle=Surgery+today+%28Tokyo%2C+Japan%29&rft.au=Sakamoto%2C+Takashi&rft.au=Goto%2C+Tadahiro&rft.au=Fujiogi%2C+Michimasa&rft.au=Kawarai+Lefor%2C+Alan&rft.date=2022-07-01&rft.pub=Springer+Nature+Singapore&rft.issn=0941-1291&rft.eissn=1436-2813&rft.volume=52&rft.issue=7&rft.spage=995&rft.epage=1007&rft_id=info:doi/10.1007%2Fs00595-021-02380-9&rft.externalDocID=10_1007_s00595_021_02380_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-1291&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-1291&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-1291&client=summon |