A fast image encryption algorithm based on chaotic map

Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optics and lasers in engineering Ročník 84; s. 26 - 36
Hlavní autoři: Liu, Wenhao, Sun, Kehui, Zhu, Congxu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2016
Témata:
ISSN:0143-8166, 1873-0302
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks. •We propose a hyperchaotic map 2D-SIMM by close-loop modulation coupling method.•Chaotic shift transform (CST) is designed to permute the image pixels.•Based on 2D-SIMM and CST, a fast image encryption algorithm is proposed.•We proposed an extended algorithm for color image using decomposition mechanism.
AbstractList Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks. •We propose a hyperchaotic map 2D-SIMM by close-loop modulation coupling method.•Chaotic shift transform (CST) is designed to permute the image pixels.•Based on 2D-SIMM and CST, a fast image encryption algorithm is proposed.•We proposed an extended algorithm for color image using decomposition mechanism.
Author Liu, Wenhao
Zhu, Congxu
Sun, Kehui
Author_xml – sequence: 1
  givenname: Wenhao
  surname: Liu
  fullname: Liu, Wenhao
  organization: School of Physics and Electronics, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Kehui
  surname: Sun
  fullname: Sun, Kehui
  email: kehui@csu.edu.cn
  organization: School of Physics and Electronics, Central South University, Changsha 410083, China
– sequence: 3
  givenname: Congxu
  surname: Zhu
  fullname: Zhu, Congxu
  organization: School of Information Science and Engineering, Central South University, Changsha 410083, China
BookMark eNqNkE1LAzEURYNUsK3-BmfpZsaX-UhmFi5K0SoU3Og6vGaSNmVmMiap0H9vSsWFG109uNxz4Z0ZmQx2UITcUsgoUHa_z-wYOvRq2GZ5DDIoMqDNBZnSmhcpFJBPyBRoWaQ1ZeyKzLzfQyyWlE4JWyQafUhMj1uVqEG64xiMHRLsttaZsOuTTdxukxjJHdpgZNLjeE0uNXZe3XzfOXl_enxbPqfr19XLcrFOZUnLkOaslE1ZY1vyljFFKw0SaMsRZaN1pXOsoUINugGteM0lbRjmvK42vKnqvC3m5O68Ozr7cVA-iN54qboOB2UPXtD4EhS84VWsPpyr0lnvndJCmoCnX4JD0wkK4uRL7MWPL3HyJaAQ0Vfk-S9-dNGKO_6DXJxJFU18GuWElyaqVK1xSgbRWvPnxhd1Koxl
CitedBy_id crossref_primary_10_12677_JISP_2017_64021
crossref_primary_10_1155_2021_7580971
crossref_primary_10_1007_s11042_019_07794_9
crossref_primary_10_1007_s11071_025_11625_y
crossref_primary_10_1016_j_dsp_2024_104725
crossref_primary_10_1088_1402_4896_ad03cb
crossref_primary_10_1088_1402_4896_ada204
crossref_primary_10_3390_app12115452
crossref_primary_10_1016_j_ins_2022_11_121
crossref_primary_10_1109_ACCESS_2018_2875676
crossref_primary_10_1186_s13638_019_1628_5
crossref_primary_10_1007_s11071_023_08397_8
crossref_primary_10_1109_ACCESS_2021_3069977
crossref_primary_10_1007_s00500_023_09333_z
crossref_primary_10_1088_1742_6596_1879_3_032047
crossref_primary_10_1016_j_sigpro_2018_02_011
crossref_primary_10_1016_j_eswa_2023_120622
crossref_primary_10_1002_spy2_484
crossref_primary_10_1088_1674_1056_ab695c
crossref_primary_10_1140_epjs_s11734_025_01646_4
crossref_primary_10_1155_2018_8402578
crossref_primary_10_1016_j_optlaseng_2016_11_022
crossref_primary_10_1007_s11042_021_11657_7
crossref_primary_10_1088_1402_4896_ab842e
crossref_primary_10_3390_math11112585
crossref_primary_10_1016_j_chaos_2022_113047
crossref_primary_10_3390_e18080276
crossref_primary_10_1016_j_optlaseng_2019_04_011
crossref_primary_10_1007_s11042_024_19173_0
crossref_primary_10_1007_s11265_024_01937_4
crossref_primary_10_3390_sym14030493
crossref_primary_10_1016_j_optlaseng_2020_106031
crossref_primary_10_1007_s11042_021_10631_7
crossref_primary_10_1007_s11554_018_0801_0
crossref_primary_10_3390_electronics10172116
crossref_primary_10_1016_j_jisa_2020_102553
crossref_primary_10_1088_1402_4896_ab0033
crossref_primary_10_1140_epjp_i2017_11819_7
crossref_primary_10_1016_j_sigpro_2018_02_007
crossref_primary_10_1016_j_sigpro_2017_08_020
crossref_primary_10_1007_s11042_021_11708_z
crossref_primary_10_3390_e23050570
crossref_primary_10_1117_1_JEI_33_4_043032
crossref_primary_10_3390_e25050753
crossref_primary_10_1007_s00340_020_07480_x
crossref_primary_10_1016_j_optlaseng_2016_10_009
crossref_primary_10_1016_j_jisa_2021_102811
crossref_primary_10_1088_1402_4896_ad5804
crossref_primary_10_1007_s00500_023_08170_4
crossref_primary_10_1016_j_sigpro_2018_05_008
crossref_primary_10_1007_s11042_021_10665_x
crossref_primary_10_1007_s11071_021_06491_3
crossref_primary_10_1002_cta_2573
crossref_primary_10_1016_j_chaos_2017_11_004
crossref_primary_10_1088_1402_4896_add5a4
crossref_primary_10_1007_s11042_017_5461_8
crossref_primary_10_1109_ACCESS_2018_2867111
crossref_primary_10_1155_2020_1987670
crossref_primary_10_1016_j_optlastec_2019_01_043
crossref_primary_10_1016_j_optlastec_2019_105942
crossref_primary_10_3390_app112311206
crossref_primary_10_1007_s11042_020_10149_4
crossref_primary_10_3390_math11030703
crossref_primary_10_1007_s11042_018_6326_5
crossref_primary_10_1109_ACCESS_2019_2958319
crossref_primary_10_3390_app12115321
crossref_primary_10_1109_ACCESS_2020_2971759
crossref_primary_10_3390_electronics7110326
crossref_primary_10_1016_j_cnsns_2019_02_007
crossref_primary_10_1016_j_optlaseng_2016_10_012
crossref_primary_10_1088_1674_1056_27_8_080701
crossref_primary_10_1109_TCYB_2021_3105568
crossref_primary_10_1155_2023_8831078
crossref_primary_10_1016_j_optlaseng_2016_10_019
crossref_primary_10_1007_s11042_018_5782_2
crossref_primary_10_1007_s11071_018_4573_7
crossref_primary_10_1016_j_jisa_2020_102650
crossref_primary_10_1007_s11042_020_10308_7
crossref_primary_10_1088_1402_4896_ad0bba
crossref_primary_10_1007_s11042_022_13348_3
crossref_primary_10_1016_j_sigpro_2019_107340
crossref_primary_10_1016_j_optlaseng_2020_106178
crossref_primary_10_1007_s11042_022_13708_z
crossref_primary_10_1016_j_optlastec_2020_106837
crossref_primary_10_1007_s13369_018_3104_7
crossref_primary_10_1007_s11071_019_05157_5
crossref_primary_10_1016_j_sigpro_2020_107457
crossref_primary_10_1186_s13640_018_0402_7
crossref_primary_10_1109_ACCESS_2018_2890116
crossref_primary_10_1016_j_micpro_2020_103737
crossref_primary_10_1007_s00542_019_04395_2
crossref_primary_10_3233_JIFS_179568
crossref_primary_10_1140_epjp_s13360_023_04078_y
crossref_primary_10_3390_e23091221
crossref_primary_10_1145_3614433
crossref_primary_10_1177_10775463221082714
crossref_primary_10_1049_iet_ipr_2019_0310
crossref_primary_10_1109_ACCESS_2019_2952140
crossref_primary_10_1109_ACCESS_2021_3054842
crossref_primary_10_1016_j_optlaseng_2019_105995
crossref_primary_10_1016_j_eswa_2025_126521
crossref_primary_10_1007_s11071_023_08859_z
crossref_primary_10_3233_ICA_210673
crossref_primary_10_3390_e25050787
crossref_primary_10_1007_s11042_019_08168_x
crossref_primary_10_1007_s11831_018_9298_8
crossref_primary_10_1007_s11042_024_18319_4
crossref_primary_10_1016_j_ins_2020_02_008
crossref_primary_10_1007_s00500_023_09233_2
crossref_primary_10_3390_math11234835
crossref_primary_10_1140_epjs_s11734_022_00566_x
crossref_primary_10_1209_0295_5075_ad0aef
crossref_primary_10_1007_s00521_021_05797_y
crossref_primary_10_3390_e22070779
crossref_primary_10_1142_S0218127425501445
crossref_primary_10_1088_1674_1056_26_10_100504
crossref_primary_10_1016_j_jisa_2020_102470
crossref_primary_10_1016_j_sigpro_2019_107280
crossref_primary_10_51537_chaos_1500547
crossref_primary_10_1109_ACCESS_2019_2938181
crossref_primary_10_1016_j_chaos_2021_111693
crossref_primary_10_1016_j_ijimpeng_2022_104424
crossref_primary_10_1371_journal_pone_0325197
crossref_primary_10_1016_j_ins_2019_02_049
crossref_primary_10_1016_j_optlaseng_2016_11_017
crossref_primary_10_3390_s21134320
crossref_primary_10_1007_s11042_019_07753_4
crossref_primary_10_1016_j_optlastec_2021_107753
crossref_primary_10_1109_ACCESS_2020_2982567
crossref_primary_10_1109_ACCESS_2020_3024869
crossref_primary_10_1016_j_chaos_2023_113791
crossref_primary_10_3390_jimaging8060167
crossref_primary_10_1080_19393555_2016_1272725
crossref_primary_10_3390_e23040456
crossref_primary_10_3390_complexities1010002
crossref_primary_10_1016_j_image_2019_08_014
crossref_primary_10_1007_s11042_021_10757_8
crossref_primary_10_1117_1_JEI_34_2_023038
crossref_primary_10_1016_j_chaos_2024_114843
crossref_primary_10_1371_journal_pone_0202558
crossref_primary_10_1007_s10462_024_10719_0
crossref_primary_10_1016_j_chaos_2022_112628
crossref_primary_10_1140_epjp_i2019_12374_y
crossref_primary_10_1109_ACCESS_2020_3020835
crossref_primary_10_1007_s00371_023_02812_2
crossref_primary_10_1016_j_jksuci_2022_07_025
crossref_primary_10_3390_app11125691
crossref_primary_10_1007_s11042_019_08086_y
crossref_primary_10_1016_j_optlastec_2020_106355
crossref_primary_10_1007_s12524_024_01984_1
crossref_primary_10_1016_j_aej_2025_03_026
crossref_primary_10_1016_j_jisa_2018_10_011
crossref_primary_10_1007_s40998_018_0094_0
crossref_primary_10_1007_s00542_018_4121_x
crossref_primary_10_1016_j_chaos_2018_08_005
crossref_primary_10_1109_ACCESS_2025_3582705
crossref_primary_10_1016_j_jisa_2020_102699
crossref_primary_10_1007_s00371_022_02426_0
crossref_primary_10_1063_1_4963743
crossref_primary_10_1140_epjs_s11734_021_00365_w
crossref_primary_10_1007_s11280_022_01090_7
crossref_primary_10_3390_math12223602
crossref_primary_10_1007_s11071_023_09170_7
crossref_primary_10_1016_j_jfranklin_2025_107794
crossref_primary_10_1140_epjst_e2018_700098_x
crossref_primary_10_1007_s11042_022_12239_x
crossref_primary_10_1088_1674_1056_27_11_110502
crossref_primary_10_1088_1402_4896_acbba6
crossref_primary_10_1007_s11831_021_09656_w
crossref_primary_10_1016_j_jfranklin_2019_10_006
crossref_primary_10_1007_s11071_024_09670_0
crossref_primary_10_1109_ACCESS_2024_3481230
crossref_primary_10_1007_s11760_023_02971_8
crossref_primary_10_1007_s11042_019_08079_x
crossref_primary_10_1016_j_chaos_2023_114022
crossref_primary_10_1007_s11071_017_3601_3
crossref_primary_10_1007_s11071_022_07756_1
crossref_primary_10_1016_j_sigpro_2019_02_016
crossref_primary_10_1007_s10489_024_06209_z
crossref_primary_10_1016_j_image_2021_116363
crossref_primary_10_1088_1674_1056_ac5a43
crossref_primary_10_1007_s11042_023_15880_2
crossref_primary_10_1109_ACCESS_2020_3019216
crossref_primary_10_1007_s11042_022_12762_x
crossref_primary_10_1007_s11071_021_06663_1
crossref_primary_10_4018_IJDCF_2019070103
crossref_primary_10_1016_j_ijleo_2017_01_062
crossref_primary_10_1109_JIOT_2024_3418859
crossref_primary_10_1007_s11071_023_08985_8
crossref_primary_10_1007_s11227_025_07460_y
crossref_primary_10_1007_s11042_022_13066_w
crossref_primary_10_1007_s11042_022_14133_y
crossref_primary_10_1007_s12652_019_01493_x
crossref_primary_10_1051_ita_2025001
crossref_primary_10_1016_j_physa_2017_08_007
crossref_primary_10_1109_ACCESS_2020_3004536
crossref_primary_10_1007_s11071_021_06422_2
crossref_primary_10_1016_j_optlaseng_2019_06_015
crossref_primary_10_3390_e20110843
crossref_primary_10_1016_j_vlsi_2023_102071
crossref_primary_10_1109_ACCESS_2023_3250758
crossref_primary_10_3390_e26121013
crossref_primary_10_1007_s11071_023_08538_z
crossref_primary_10_1007_s11071_024_10726_4
crossref_primary_10_1155_2022_4152683
crossref_primary_10_1007_s11042_022_13933_6
crossref_primary_10_1007_s12065_018_0159_z
crossref_primary_10_1016_j_chaos_2022_112380
crossref_primary_10_1016_j_ins_2018_12_048
crossref_primary_10_1155_2020_3026972
crossref_primary_10_1155_2021_5012496
crossref_primary_10_1063_5_0207225
crossref_primary_10_1109_ACCESS_2021_3070350
crossref_primary_10_1016_j_ijleo_2022_169042
crossref_primary_10_1007_s11042_020_08810_z
crossref_primary_10_1007_s11042_021_10660_2
crossref_primary_10_1109_JPHOT_2018_2817550
crossref_primary_10_1016_j_sigpro_2020_107790
crossref_primary_10_1109_ACCESS_2025_3558943
crossref_primary_10_1016_j_optcom_2022_127901
crossref_primary_10_1007_s11042_019_08071_5
crossref_primary_10_1016_j_sigpro_2018_03_010
crossref_primary_10_1007_s12046_022_01934_y
crossref_primary_10_1016_j_sigpro_2017_06_028
crossref_primary_10_1088_1402_4896_acd887
crossref_primary_10_1016_j_jisa_2025_103995
crossref_primary_10_1007_s11071_021_06409_z
crossref_primary_10_1007_s10586_024_04672_4
crossref_primary_10_1088_1402_4896_ace28b
crossref_primary_10_1016_j_ins_2021_01_041
crossref_primary_10_1155_2017_2721910
crossref_primary_10_1109_ACCESS_2024_3367232
crossref_primary_10_1007_s11042_023_15105_6
crossref_primary_10_3390_e20040282
crossref_primary_10_1007_s11042_020_09058_3
crossref_primary_10_1007_s11042_024_18620_2
crossref_primary_10_3390_e22010076
crossref_primary_10_1109_ACCESS_2022_3230096
crossref_primary_10_1016_j_chaos_2024_115168
crossref_primary_10_1016_j_jisa_2019_02_006
crossref_primary_10_1007_s11042_019_08273_x
crossref_primary_10_1007_s11042_019_08295_5
crossref_primary_10_3390_e22060640
crossref_primary_10_1016_j_ins_2021_06_016
crossref_primary_10_1007_s11071_021_06688_6
crossref_primary_10_1016_j_jisa_2020_102626
crossref_primary_10_1016_j_trgeo_2022_100806
crossref_primary_10_1371_journal_pone_0291759
crossref_primary_10_1016_j_optlaseng_2016_10_025
crossref_primary_10_1007_s11042_023_15012_w
crossref_primary_10_1109_ACCESS_2020_2983716
crossref_primary_10_32604_cmc_2023_036090
crossref_primary_10_1007_s11042_019_7623_3
crossref_primary_10_1186_s42400_024_00352_3
crossref_primary_10_1088_1402_4896_ada11b
crossref_primary_10_1109_ACCESS_2019_2945578
crossref_primary_10_1140_epjp_s13360_023_04242_4
crossref_primary_10_1007_s11042_021_11295_z
crossref_primary_10_1016_j_optlaseng_2016_10_020
crossref_primary_10_1007_s11220_022_00387_1
crossref_primary_10_1016_j_optlastec_2023_109543
crossref_primary_10_1038_s41598_020_66486_9
crossref_primary_10_1007_s11042_024_18107_0
crossref_primary_10_1007_s11042_020_10318_5
crossref_primary_10_1049_ccs2_12070
crossref_primary_10_1007_s11042_023_17821_5
crossref_primary_10_1016_j_chaos_2018_02_022
crossref_primary_10_3390_info15030172
crossref_primary_10_1007_s11042_023_17663_1
crossref_primary_10_1088_1402_4896_aceb24
crossref_primary_10_3390_sym12020282
crossref_primary_10_1007_s11042_022_12583_y
crossref_primary_10_1016_j_optlaseng_2019_105905
crossref_primary_10_1007_s11042_022_12714_5
crossref_primary_10_1016_j_sigpro_2017_11_005
crossref_primary_10_1007_s12596_024_01655_x
crossref_primary_10_1002_cpe_6990
crossref_primary_10_1007_s40435_023_01238_x
crossref_primary_10_1088_1402_4896_ad35f3
crossref_primary_10_1007_s11042_020_09434_z
crossref_primary_10_1016_j_cnsns_2025_108671
crossref_primary_10_1007_s42835_020_00393_x
crossref_primary_10_3390_e20060463
crossref_primary_10_1007_s11042_020_09688_7
crossref_primary_10_1007_s11042_021_10511_0
crossref_primary_10_1155_2018_4140762
crossref_primary_10_1155_2020_8842376
crossref_primary_10_1007_s11042_022_13414_w
crossref_primary_10_1155_2021_6679288
crossref_primary_10_1140_epjst_e2019_800166_y
crossref_primary_10_1631_FITEE_1601346
crossref_primary_10_2478_aut_2022_0018
crossref_primary_10_1016_j_procs_2020_01_007
crossref_primary_10_3390_e25030476
crossref_primary_10_1016_j_jksuci_2021_03_007
crossref_primary_10_1007_s11042_018_7129_4
crossref_primary_10_1016_j_ijleo_2018_01_064
crossref_primary_10_1016_j_jisa_2025_104004
crossref_primary_10_1007_s11042_021_10584_x
crossref_primary_10_1007_s11071_022_07930_5
crossref_primary_10_1007_s11042_023_16025_1
crossref_primary_10_1109_ACCESS_2020_3015085
crossref_primary_10_1007_s11042_023_17700_z
crossref_primary_10_1080_02564602_2019_1595751
crossref_primary_10_1016_j_ins_2020_09_032
crossref_primary_10_1155_2022_1444676
crossref_primary_10_1109_ACCESS_2020_3038183
crossref_primary_10_1140_epjs_s11734_021_00126_9
crossref_primary_10_1016_j_dsp_2025_105488
crossref_primary_10_1109_ACCESS_2021_3096995
crossref_primary_10_1088_1402_4896_ab52bc
crossref_primary_10_1109_ACCESS_2018_2858839
crossref_primary_10_3390_sym12111881
crossref_primary_10_1007_s11071_021_06308_3
crossref_primary_10_1016_j_chaos_2021_111629
crossref_primary_10_1016_j_optlaseng_2019_03_006
crossref_primary_10_1109_ACCESS_2020_3032403
Cites_doi 10.1007/s11071-014-1729-y
10.1016/j.optlaseng.2015.03.007
10.1016/j.ins.2014.02.156
10.1016/j.cnsns.2009.02.033
10.1016/j.camwa.2010.03.017
10.1016/j.ins.2014.11.018
10.1007/s11071-010-9749-8
10.1016/j.sigpro.2010.03.022
10.1016/j.optlaseng.2015.07.015
10.1016/0375-9601(79)90150-6
10.1103/PhysRevLett.88.174102
10.1016/j.asoc.2012.01.016
10.1016/j.chaos.2004.02.008
10.1007/s11071-012-0639-0
10.1016/j.optcom.2011.04.001
10.1007/s11071-014-1757-7
10.1117/1.JEI.21.1.013014
10.1016/j.cnsns.2013.04.008
10.1016/j.optlaseng.2014.12.025
10.7498/aps.63.120511
10.1007/s11071-015-1979-3
10.1016/j.optlaseng.2014.08.005
10.1109/TENCON.2000.892231
10.1007/s11071-013-1086-2
10.1007/s11071-013-1070-x
10.1016/j.optlaseng.2014.11.017
10.1016/j.sigpro.2011.10.023
10.1016/j.optlaseng.2015.09.007
10.1007/s11071-015-2173-3
10.3390/e17127882
10.1007/s11071-015-2258-z
10.1109/78.757236
10.1016/j.optcom.2011.07.070
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
H8D
L7M
DOI 10.1016/j.optlaseng.2016.03.019
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-0302
EndPage 36
ExternalDocumentID 10_1016_j_optlaseng_2016_03_019
S0143816616300173
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABXRA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSM
SSQ
SST
SSZ
T5K
VOH
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7TB
7U5
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c414t-264c948ad47d66e15f0c01d7aac9ff5f2a805af0f90fe787c196a2785b79582d3
ISICitedReferencesCount 392
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376713300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-8166
IngestDate Thu Oct 02 11:06:03 EDT 2025
Tue Nov 18 22:15:40 EST 2025
Sat Nov 29 07:50:53 EST 2025
Fri Feb 23 02:26:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Chaos
Image encryption
Chaotic shift transform
Close-loop modulation coupling model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-264c948ad47d66e15f0c01d7aac9ff5f2a805af0f90fe787c196a2785b79582d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816037975
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1816037975
crossref_citationtrail_10_1016_j_optlaseng_2016_03_019
crossref_primary_10_1016_j_optlaseng_2016_03_019
elsevier_sciencedirect_doi_10_1016_j_optlaseng_2016_03_019
PublicationCentury 2000
PublicationDate September 2016
2016-09-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: September 2016
PublicationDecade 2010
PublicationTitle Optics and lasers in engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Haroun, Gulliver (bib9) 2015; 82
He, Sun, Wang (bib34) 2015; 17
Chen, Zhu, Fu, Yu, Zhang (bib2) 2015; 67
Xu, Li, Li, Hua (bib7) 2016; 78
Liao, Lai, Zhou (bib5) 2010; 90
Kaneko (bib29) 1993
Wang, Luan (bib6) 2013; 18
Wang, Gu, Zhang (bib10) 2015; 68
Wang, Song, Liu (bib8) 2016; 77
Hilborn (bib16) 2001
Bandt, Pompe (bib33) 2002; 88
Enayatifar, Sadaei, Abdullah, Lee, Isnin (bib1) 2015; 71
Zhu, Liao, Deng (bib14) 2013; 71
Liu, Wang (bib25) 2011; 284
Wang, Yang, Liu, Kadir (bib4) 2010; 62
Alvarez, Li (bib15) 2009; 14
Rössler (bib17) 1979; 71
Liu, Wang (bib20) 2010; 59
Ye (bib21) 2011; 284
Yao, Zhang, Zheng, Qiu (bib13) 2015; 81
Ling, Wu, Sun (bib18) 1999; 47
Wang, Wang (bib22) 2014; 75
Hua, Zhou, Pun, Philip Chen (bib23) 2015; 297
Wang, Xu (bib24) 2014; 75
Zhang, Wang (bib30) 2014; 273
He D, He C, Jiang LG, Zhu HW, Hu GR. A chaotic map with infinite collapses. In: Proceedings of TENCON, vol. 3; 2000. 95–9.
Wang, Wang, Zhang (bib27) 2015; 79
Khan (bib11) 2015; 82
Wu, Hu, Zhang (bib19) 2004; 22
Ai, Sun, He, Wang (bib3) 2014; 63
Wang, Teng, Qin (bib35) 2012; 92
Liu, Wang, Kadir (bib26) 2012; 12
Zhu, Xu, Hu, Sun (bib28) 2015; 79
Wang, Liu, Zhang (bib12) 2015; 66
Wu, Yang, Jin, Noonan (bib32) 2012; 21
Enayatifar (10.1016/j.optlaseng.2016.03.019_bib1) 2015; 71
Zhu (10.1016/j.optlaseng.2016.03.019_bib28) 2015; 79
Wang (10.1016/j.optlaseng.2016.03.019_bib24) 2014; 75
Ai (10.1016/j.optlaseng.2016.03.019_bib3) 2014; 63
Wang (10.1016/j.optlaseng.2016.03.019_bib22) 2014; 75
Liu (10.1016/j.optlaseng.2016.03.019_bib26) 2012; 12
Liu (10.1016/j.optlaseng.2016.03.019_bib20) 2010; 59
Rössler (10.1016/j.optlaseng.2016.03.019_bib17) 1979; 71
Wang (10.1016/j.optlaseng.2016.03.019_bib4) 2010; 62
Zhu (10.1016/j.optlaseng.2016.03.019_bib14) 2013; 71
Wang (10.1016/j.optlaseng.2016.03.019_bib12) 2015; 66
Ye (10.1016/j.optlaseng.2016.03.019_bib21) 2011; 284
Zhang (10.1016/j.optlaseng.2016.03.019_bib30) 2014; 273
Hua (10.1016/j.optlaseng.2016.03.019_bib23) 2015; 297
Bandt (10.1016/j.optlaseng.2016.03.019_bib33) 2002; 88
Wu (10.1016/j.optlaseng.2016.03.019_bib32) 2012; 21
Wu (10.1016/j.optlaseng.2016.03.019_bib19) 2004; 22
Chen (10.1016/j.optlaseng.2016.03.019_bib2) 2015; 67
Wang (10.1016/j.optlaseng.2016.03.019_bib10) 2015; 68
Wang (10.1016/j.optlaseng.2016.03.019_bib27) 2015; 79
Wang (10.1016/j.optlaseng.2016.03.019_bib35) 2012; 92
Khan (10.1016/j.optlaseng.2016.03.019_bib11) 2015; 82
Kaneko (10.1016/j.optlaseng.2016.03.019_bib29) 1993
Yao (10.1016/j.optlaseng.2016.03.019_bib13) 2015; 81
Liu (10.1016/j.optlaseng.2016.03.019_bib25) 2011; 284
10.1016/j.optlaseng.2016.03.019_bib31
Xu (10.1016/j.optlaseng.2016.03.019_bib7) 2016; 78
Haroun (10.1016/j.optlaseng.2016.03.019_bib9) 2015; 82
He (10.1016/j.optlaseng.2016.03.019_bib34) 2015; 17
Wang (10.1016/j.optlaseng.2016.03.019_bib6) 2013; 18
Liao (10.1016/j.optlaseng.2016.03.019_bib5) 2010; 90
Alvarez (10.1016/j.optlaseng.2016.03.019_bib15) 2009; 14
Hilborn (10.1016/j.optlaseng.2016.03.019_bib16) 2001
Wang (10.1016/j.optlaseng.2016.03.019_bib8) 2016; 77
Ling (10.1016/j.optlaseng.2016.03.019_bib18) 1999; 47
References_xml – volume: 284
  start-page: 5290
  year: 2011
  end-page: 5298
  ident: bib21
  article-title: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism
  publication-title: Opt Commun
– volume: 62
  start-page: 615
  year: 2010
  end-page: 621
  ident: bib4
  article-title: A chaotic image encryption algorithm based on perceptron model
  publication-title: Nonlinear Dyn
– volume: 22
  start-page: 359
  year: 2004
  end-page: 366
  ident: bib19
  article-title: Parameter estimation only from the symbolic sequences generated by chaos system
  publication-title: Chaos Soliton Fract
– volume: 17
  start-page: 8299
  year: 2015
  end-page: 8311
  ident: bib34
  article-title: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system
  publication-title: Entropy
– volume: 47
  start-page: 1424
  year: 1999
  end-page: 1428
  ident: bib18
  article-title: A general efficient method for chaotic signal estimation
  publication-title: IEEE Trans Signal Process
– volume: 66
  start-page: 10
  year: 2015
  end-page: 18
  ident: bib12
  article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique
  publication-title: Opt Laser Eng
– volume: 71
  start-page: 155
  year: 1979
  end-page: 157
  ident: bib17
  article-title: An equation for hyperchaos
  publication-title: Phys Lett A
– volume: 273
  start-page: 329
  year: 2014
  end-page: 351
  ident: bib30
  article-title: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice
  publication-title: Inf Sci
– volume: 21
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib32
  article-title: Image encryption using the two-dimensional logistic chaotic map
  publication-title: J Electron Imaging
– volume: 68
  start-page: 126
  year: 2015
  end-page: 134
  ident: bib10
  article-title: Novel image encryption algorithm based on cycle shift and chaotic system
  publication-title: Opt Laser Eng
– volume: 71
  start-page: 33
  year: 2015
  end-page: 41
  ident: bib1
  article-title: A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata
  publication-title: Opt Laser Eng
– volume: 78
  start-page: 17
  year: 2016
  end-page: 25
  ident: bib7
  article-title: A novel bit-level image encryption algorithm based on chaotic maps
  publication-title: Opt Laser Eng
– volume: 81
  start-page: 151
  year: 2015
  end-page: 168
  ident: bib13
  article-title: A color image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems
  publication-title: Nonlinear Dyn
– volume: 90
  start-page: 2714
  year: 2010
  end-page: 2722
  ident: bib5
  article-title: A novel image encryption algorithm based on self-adaptive wave transmission
  publication-title: Signal Process
– volume: 75
  start-page: 345
  year: 2014
  end-page: 353
  ident: bib24
  article-title: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system
  publication-title: Nonlinear Dyn
– volume: 88
  start-page: 1741
  year: 2002
  end-page: 1743
  ident: bib33
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys Rev Lett
– volume: 79
  start-page: 1511
  year: 2015
  end-page: 1518
  ident: bib28
  article-title: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system
  publication-title: Nonlinear Dyn
– volume: 18
  start-page: 3075
  year: 2013
  end-page: 3085
  ident: bib6
  article-title: A novel image encryption algorithm using chaos and reversible cellular automata
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 77
  start-page: 118
  year: 2016
  end-page: 125
  ident: bib8
  article-title: A novel hybrid color image encryption algorithm using two complex chaotic systems
  publication-title: Opt Laser Eng
– volume: 92
  start-page: 1101
  year: 2012
  end-page: 1108
  ident: bib35
  article-title: A novel color image encryption algorithm based on chaos
  publication-title: Signal Process
– volume: 79
  start-page: 1141
  year: 2015
  end-page: 1149
  ident: bib27
  article-title: A fast image algorithm based on rows and columns switch
  publication-title: Nonlinear Dyn
– reference: He D, He C, Jiang LG, Zhu HW, Hu GR. A chaotic map with infinite collapses. In: Proceedings of TENCON, vol. 3; 2000. 95–9.
– volume: 67
  start-page: 191
  year: 2015
  end-page: 204
  ident: bib2
  article-title: An efficient image encryption scheme using gray code based permutation approach
  publication-title: Opt Laser Eng
– volume: 82
  start-page: 1523
  year: 2015
  end-page: 1535
  ident: bib9
  article-title: Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher
  publication-title: Nonlinear Dyn
– year: 1993
  ident: bib29
  publication-title: Theory and applications of coupled map lattices
– year: 2001
  ident: bib16
  article-title: Chaos and nonlinear dynamics: an introduction for scientists and engineers
– volume: 75
  start-page: 567
  year: 2014
  end-page: 576
  ident: bib22
  article-title: A novel image encryption algorithm based on dynamic S-box constructed by chaos
  publication-title: Nonlinear Dyn
– volume: 14
  start-page: 3743
  year: 2009
  end-page: 3749
  ident: bib15
  article-title: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 12
  start-page: 1457
  year: 2012
  end-page: 1466
  ident: bib26
  article-title: Image encryption using DNA complementary rule and chaotic maps
  publication-title: Appl Soft Comput
– volume: 63
  start-page: 120511
  year: 2014
  ident: bib3
  article-title: Design and application of multi-scroll chaotic attractors based on simplified Lorenz system
  publication-title: Acta Phys Sin
– volume: 71
  start-page: 25
  year: 2013
  end-page: 34
  ident: bib14
  article-title: Breaking and improving an image encryption scheme based on total shuffling scheme
  publication-title: Nonlinear Dyn
– volume: 82
  start-page: 527
  year: 2015
  end-page: 533
  ident: bib11
  article-title: A novel image encryption scheme based on multiple chaotic S-boxes
  publication-title: Nonlinear Dyn
– volume: 284
  start-page: 3895
  year: 2011
  end-page: 3903
  ident: bib25
  article-title: Color image encryption using spatial bit-level permutation and high-dimension chaotic system
  publication-title: Opt Commun
– volume: 59
  start-page: 3320
  year: 2010
  end-page: 3327
  ident: bib20
  article-title: Color image encryption based on one-time keys and robust chaotic maps
  publication-title: Comput Math Appl
– volume: 297
  start-page: 80
  year: 2015
  end-page: 94
  ident: bib23
  article-title: 2D Sine Logistic modulation map for image encryption
  publication-title: Inf Sci
– volume: 79
  start-page: 1141
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib27
  article-title: A fast image algorithm based on rows and columns switch
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1729-y
– volume: 71
  start-page: 33
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib1
  article-title: A novel chaotic based image encryption using a hybrid model of deoxyribonucleic acid and cellular automata
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.03.007
– volume: 273
  start-page: 329
  year: 2014
  ident: 10.1016/j.optlaseng.2016.03.019_bib30
  article-title: A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.156
– volume: 14
  start-page: 3743
  year: 2009
  ident: 10.1016/j.optlaseng.2016.03.019_bib15
  article-title: Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2009.02.033
– volume: 59
  start-page: 3320
  year: 2010
  ident: 10.1016/j.optlaseng.2016.03.019_bib20
  article-title: Color image encryption based on one-time keys and robust chaotic maps
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2010.03.017
– volume: 297
  start-page: 80
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib23
  article-title: 2D Sine Logistic modulation map for image encryption
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.11.018
– volume: 62
  start-page: 615
  year: 2010
  ident: 10.1016/j.optlaseng.2016.03.019_bib4
  article-title: A chaotic image encryption algorithm based on perceptron model
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-010-9749-8
– volume: 90
  start-page: 2714
  year: 2010
  ident: 10.1016/j.optlaseng.2016.03.019_bib5
  article-title: A novel image encryption algorithm based on self-adaptive wave transmission
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.03.022
– volume: 77
  start-page: 118
  year: 2016
  ident: 10.1016/j.optlaseng.2016.03.019_bib8
  article-title: A novel hybrid color image encryption algorithm using two complex chaotic systems
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.07.015
– volume: 71
  start-page: 155
  year: 1979
  ident: 10.1016/j.optlaseng.2016.03.019_bib17
  article-title: An equation for hyperchaos
  publication-title: Phys Lett A
  doi: 10.1016/0375-9601(79)90150-6
– volume: 88
  start-page: 1741
  year: 2002
  ident: 10.1016/j.optlaseng.2016.03.019_bib33
  article-title: Permutation entropy: a natural complexity measure for time series
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.88.174102
– volume: 12
  start-page: 1457
  year: 2012
  ident: 10.1016/j.optlaseng.2016.03.019_bib26
  article-title: Image encryption using DNA complementary rule and chaotic maps
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.01.016
– volume: 22
  start-page: 359
  year: 2004
  ident: 10.1016/j.optlaseng.2016.03.019_bib19
  article-title: Parameter estimation only from the symbolic sequences generated by chaos system
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2004.02.008
– volume: 71
  start-page: 25
  year: 2013
  ident: 10.1016/j.optlaseng.2016.03.019_bib14
  article-title: Breaking and improving an image encryption scheme based on total shuffling scheme
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-012-0639-0
– volume: 284
  start-page: 3895
  year: 2011
  ident: 10.1016/j.optlaseng.2016.03.019_bib25
  article-title: Color image encryption using spatial bit-level permutation and high-dimension chaotic system
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2011.04.001
– volume: 79
  start-page: 1511
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib28
  article-title: Breaking a novel image encryption scheme based on Brownian motion and PWLCM chaotic system
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-014-1757-7
– volume: 21
  start-page: 1
  year: 2012
  ident: 10.1016/j.optlaseng.2016.03.019_bib32
  article-title: Image encryption using the two-dimensional logistic chaotic map
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.21.1.013014
– volume: 18
  start-page: 3075
  year: 2013
  ident: 10.1016/j.optlaseng.2016.03.019_bib6
  article-title: A novel image encryption algorithm using chaos and reversible cellular automata
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2013.04.008
– volume: 68
  start-page: 126
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib10
  article-title: Novel image encryption algorithm based on cycle shift and chaotic system
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.12.025
– volume: 63
  start-page: 120511
  year: 2014
  ident: 10.1016/j.optlaseng.2016.03.019_bib3
  article-title: Design and application of multi-scroll chaotic attractors based on simplified Lorenz system
  publication-title: Acta Phys Sin
  doi: 10.7498/aps.63.120511
– volume: 81
  start-page: 151
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib13
  article-title: A color image encryption algorithm using 4-pixel Feistel structure and multiple chaotic systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-1979-3
– volume: 66
  start-page: 10
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib12
  article-title: A novel chaotic block image encryption algorithm based on dynamic random growth technique
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.08.005
– ident: 10.1016/j.optlaseng.2016.03.019_bib31
  doi: 10.1109/TENCON.2000.892231
– volume: 75
  start-page: 567
  year: 2014
  ident: 10.1016/j.optlaseng.2016.03.019_bib22
  article-title: A novel image encryption algorithm based on dynamic S-box constructed by chaos
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1086-2
– volume: 75
  start-page: 345
  year: 2014
  ident: 10.1016/j.optlaseng.2016.03.019_bib24
  article-title: A novel image encryption scheme based on Brownian motion and PWLCM chaotic system
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-013-1070-x
– volume: 67
  start-page: 191
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib2
  article-title: An efficient image encryption scheme using gray code based permutation approach
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2014.11.017
– volume: 92
  start-page: 1101
  year: 2012
  ident: 10.1016/j.optlaseng.2016.03.019_bib35
  article-title: A novel color image encryption algorithm based on chaos
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2011.10.023
– volume: 78
  start-page: 17
  year: 2016
  ident: 10.1016/j.optlaseng.2016.03.019_bib7
  article-title: A novel bit-level image encryption algorithm based on chaotic maps
  publication-title: Opt Laser Eng
  doi: 10.1016/j.optlaseng.2015.09.007
– volume: 82
  start-page: 527
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib11
  article-title: A novel image encryption scheme based on multiple chaotic S-boxes
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2173-3
– year: 2001
  ident: 10.1016/j.optlaseng.2016.03.019_bib16
– volume: 17
  start-page: 8299
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib34
  article-title: Complexity analysis and DSP implementation of the fractional-order Lorenz hyperchaotic system
  publication-title: Entropy
  doi: 10.3390/e17127882
– volume: 82
  start-page: 1523
  year: 2015
  ident: 10.1016/j.optlaseng.2016.03.019_bib9
  article-title: Real-time image encryption using a low-complexity discrete 3D dual chaotic cipher
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2258-z
– year: 1993
  ident: 10.1016/j.optlaseng.2016.03.019_bib29
– volume: 47
  start-page: 1424
  year: 1999
  ident: 10.1016/j.optlaseng.2016.03.019_bib18
  article-title: A general efficient method for chaotic signal estimation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.757236
– volume: 284
  start-page: 5290
  year: 2011
  ident: 10.1016/j.optlaseng.2016.03.019_bib21
  article-title: A novel chaos-based image encryption scheme with an efficient permutation-diffusion mechanism
  publication-title: Opt Commun
  doi: 10.1016/j.optcom.2011.07.070
SSID ssj0016411
Score 2.6005518
Snippet Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 26
SubjectTerms Algorithms
Chaos
Chaos theory
Chaotic shift transform
Close-loop modulation coupling model
Complexity
Encryption
Image encryption
Lyapunov exponents
Modulation
Pixels
Title A fast image encryption algorithm based on chaotic map
URI https://dx.doi.org/10.1016/j.optlaseng.2016.03.019
https://www.proquest.com/docview/1816037975
Volume 84
WOSCitedRecordID wos000376713300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016411
  issn: 0143-8166
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagCxIcECwglpeChLhUQUmcxDa3atUVoFWXQ1f0ZrmO3Wa1TUKToPLvGSdukuWhXQ5cosiK85jPGk88n79B6O3SbDnQCXbDQDI3xMpzGZWGuIaJFzChApE0xSbIbEYXC_bFFrosm3ICJMvobseK_wo1tAHYZuvsP8Dd3RQa4BxAhyPADscbAT8Za1FW43Rj2DjwYtsfrVcQl6t8m1brzdjMXInJEsi1yI1g60YUwyD1rOi0myG2Njt8ja5IL1zYkXjSugk9v6oMbtSnl-w2M7Wu035dum5KqR_n2WpXD5ca_LjjUvWrj9g1icah-6Th0P_Fg5m0VTb5zUe3ywUX7_OiMh-RrQzBLm6kZq33vKKKPTvjJ-enp3w-XczfFd9cUzDMJNZt9ZTb6CAgEaMjdDD5NF187lJIcei3xSjtO18h9_3x2X8LTX6ZpJvIY_4QPbC_DM6khfoRuqWyQ3R_ICR5iO42RF5ZPkbxxDHwOw38Tg-_08HvNPA70GThdwD-J-j8ZDo__uja2hiuDP2wMsREyUIqkpAkcaz8SHvS8xMihGRaRzoQ1IuE9jTztAKnLMHTioDQaElYRIMEP0WjLM_UM-RghTHVhIiY4lDS5RIuAIsybbQhIcA-QvHeLFxa4XhTv-SS7xmCF7yzJzf25B7mYM8j5HUdi1Y75fouH_Z25zYEbEM7DqPn-s5v9khxcJIm8yUyldclhzA29jBhJHp-g2teoHv96H-JRtW2Vq_QHfm9SsvtazvOfgJ-JIlZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fast+image+encryption+algorithm+based+on+chaotic+map&rft.jtitle=Optics+and+lasers+in+engineering&rft.au=Liua%2C+Wenhao&rft.au=Suna%2C+Kehui&rft.au=Zhuc%2C+Congxu&rft.date=2016-09-01&rft.issn=0143-8166&rft.volume=84&rft.spage=26&rft.epage=36&rft_id=info:doi/10.1016%2Fj.optlaseng.2016.03.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-8166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-8166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-8166&client=summon