Thermoelectric cooling materials

Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi 2 Te 3 alloys, which have had no rival for the past six decades around room temperat...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 20; no. 4; pp. 454 - 461
Main Authors: Mao, Jun, Chen, Gang, Ren, Zhifeng
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.04.2021
Nature Publishing Group
Subjects:
ISSN:1476-1122, 1476-4660, 1476-4660
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi 2 Te 3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials. Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials.
AbstractList Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.
Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi Te alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.
Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials.
Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi 2 Te 3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials. Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials.
Author Mao, Jun
Ren, Zhifeng
Chen, Gang
Author_xml – sequence: 1
  givenname: Jun
  surname: Mao
  fullname: Mao, Jun
  organization: Department of Physics and Texas Center for Superconductivity at the University of Houston, University of Houston
– sequence: 2
  givenname: Gang
  orcidid: 0000-0002-3968-8530
  surname: Chen
  fullname: Chen, Gang
  organization: Department of Mechanical Engineering, Massachusetts Institute of Technology
– sequence: 3
  givenname: Zhifeng
  orcidid: 0000-0001-8233-3332
  surname: Ren
  fullname: Ren, Zhifeng
  email: zren@uh.edu
  organization: Department of Physics and Texas Center for Superconductivity at the University of Houston, University of Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33288897$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPwzAYRS1URB_wBxhQJRaWgN9xRlTxkiqxlNmyHae4SuJiJ6r49xjSCqlDp-vhnKvPdwpGrW8tANcI3iNIxEOkiHGSQQwzCAXD2e4MTBDNeUY5h6P9GyGMx2Aa4wZCjBjjF2BMCBZCFPkEzFefNjTe1tZ0wZm58b527XreqM4Gp-p4Cc6rFPZqnzPw8fy0Wrxmy_eXt8XjMjMU0S7DVORYMM41KZWqlMZcW4osYVZbjCtOkEAmJykI14JVpCKkhKxABhal1mQG7obebfBfvY2dbFw0tq5Va30fJaZcEJIXBU7o7RG68X1o03USM8hYLlJtom72VK8bW8ptcI0K3_Lw9wSIATDBxxhsJY3rVOd82wXlaomg_J1ZDjPLNLP8m1nukoqP1EP7SYkMUkxwu7bh_-wT1g9uII1D
CitedBy_id crossref_primary_10_1038_s41467_025_57889_1
crossref_primary_10_1016_j_ceramint_2024_08_316
crossref_primary_10_1016_j_nanoen_2023_108270
crossref_primary_10_3390_mi13020233
crossref_primary_10_1016_j_cej_2023_145820
crossref_primary_10_1016_j_actamat_2025_121433
crossref_primary_10_1021_jacs_4c04453
crossref_primary_10_1002_smll_202403852
crossref_primary_10_1002_aenm_202202539
crossref_primary_10_1186_s12903_025_06593_z
crossref_primary_10_1002_aenm_202405024
crossref_primary_10_1002_smll_202206439
crossref_primary_10_1002_adma_202416394
crossref_primary_10_1016_j_applthermaleng_2024_124750
crossref_primary_10_1016_j_jmmm_2021_168833
crossref_primary_10_1016_j_prime_2021_100009
crossref_primary_10_1002_adfm_202214163
crossref_primary_10_1038_s41598_024_72500_1
crossref_primary_10_1073_pnas_2410041121
crossref_primary_10_3390_cryst12030307
crossref_primary_10_1007_s40843_024_3058_7
crossref_primary_10_1007_s40820_024_01342_3
crossref_primary_10_1016_j_ijthermalsci_2025_110013
crossref_primary_10_1016_j_jallcom_2022_166479
crossref_primary_10_1002_adma_202502705
crossref_primary_10_1007_s12274_022_4810_8
crossref_primary_10_1021_acs_chemrev_5c00060
crossref_primary_10_1016_j_actamat_2023_118816
crossref_primary_10_1002_admi_202400536
crossref_primary_10_1016_j_jpowsour_2024_234403
crossref_primary_10_3390_mi12050480
crossref_primary_10_1016_j_jallcom_2024_175855
crossref_primary_10_1016_j_mseb_2022_115967
crossref_primary_10_1016_j_jpcs_2024_112323
crossref_primary_10_1038_s41524_023_01162_w
crossref_primary_10_1016_j_snb_2024_137008
crossref_primary_10_1016_j_jmst_2023_01_004
crossref_primary_10_1021_acsaem_5c01473
crossref_primary_10_3390_app12136373
crossref_primary_10_1038_s41567_024_02417_z
crossref_primary_10_1002_smsc_202400284
crossref_primary_10_1002_adfm_202305269
crossref_primary_10_1002_smsc_202300359
crossref_primary_10_1016_j_actamat_2023_118847
crossref_primary_10_1063_5_0069575
crossref_primary_10_1016_j_jallcom_2024_174672
crossref_primary_10_1016_j_matchar_2023_113414
crossref_primary_10_1002_adfm_202205215
crossref_primary_10_1021_acsnano_5c10693
crossref_primary_10_1039_D3EE01902K
crossref_primary_10_1002_smll_202505757
crossref_primary_10_1016_j_scriptamat_2025_116866
crossref_primary_10_1103_PhysRevApplied_18_014053
crossref_primary_10_1103_PhysRevB_105_205201
crossref_primary_10_1002_adfm_202304173
crossref_primary_10_1002_adhm_202404525
crossref_primary_10_1016_j_nwnano_2025_100104
crossref_primary_10_1038_s41467_024_48346_6
crossref_primary_10_1016_j_jcis_2025_137375
crossref_primary_10_1002_sstr_202400694
crossref_primary_10_1016_j_ceramint_2025_04_002
crossref_primary_10_1016_j_jmst_2022_07_048
crossref_primary_10_1021_jacs_5c11435
crossref_primary_10_1016_j_ceramint_2024_02_111
crossref_primary_10_1016_j_nanoen_2022_107911
crossref_primary_10_1039_D2NH00429A
crossref_primary_10_1016_j_mseb_2024_117428
crossref_primary_10_1016_j_mtphys_2022_100764
crossref_primary_10_1002_aenm_202404251
crossref_primary_10_1016_j_mtphys_2022_100889
crossref_primary_10_1016_j_device_2025_100797
crossref_primary_10_59717_j_xinn_mater_2025_100130
crossref_primary_10_1002_adma_202110518
crossref_primary_10_1038_s41467_024_45811_0
crossref_primary_10_1093_ce_zkae028
crossref_primary_10_1016_j_jallcom_2025_180294
crossref_primary_10_1002_er_8366
crossref_primary_10_1016_j_vacuum_2023_112135
crossref_primary_10_1002_smll_202106875
crossref_primary_10_1007_s12648_023_02877_8
crossref_primary_10_1016_j_jallcom_2025_182488
crossref_primary_10_1021_acsaem_5c02536
crossref_primary_10_1016_j_commatsci_2025_113678
crossref_primary_10_1557_s43580_024_00937_7
crossref_primary_10_3390_s23115044
crossref_primary_10_1007_s11664_021_09312_w
crossref_primary_10_1002_adfm_202516306
crossref_primary_10_1016_j_enconman_2022_115871
crossref_primary_10_1038_s41467_023_40648_5
crossref_primary_10_1038_s41598_025_04545_9
crossref_primary_10_1002_smsc_202300245
crossref_primary_10_1039_D2EE02408J
crossref_primary_10_1063_5_0225369
crossref_primary_10_1088_1361_6528_ad6e89
crossref_primary_10_1016_j_jallcom_2022_167692
crossref_primary_10_1016_j_vacuum_2024_112993
crossref_primary_10_1016_j_enbuild_2025_115994
crossref_primary_10_1016_j_physb_2025_417338
crossref_primary_10_1016_j_applthermaleng_2025_125944
crossref_primary_10_1016_j_energy_2021_123059
crossref_primary_10_3390_ma18174219
crossref_primary_10_1088_1361_648X_ad5245
crossref_primary_10_1116_6_0002635
crossref_primary_10_1038_s41467_025_63174_y
crossref_primary_10_1038_s41467_023_40954_y
crossref_primary_10_1016_j_nanoen_2024_109651
crossref_primary_10_35848_1347_4065_aca0fc
crossref_primary_10_3390_cryst14060557
crossref_primary_10_1103_PhysRevX_15_021054
crossref_primary_10_1016_j_measurement_2023_113920
crossref_primary_10_1002_adfm_202100258
crossref_primary_10_1007_s11244_023_01799_3
crossref_primary_10_1016_j_ceramint_2024_10_420
crossref_primary_10_1063_5_0255434
crossref_primary_10_1016_j_actamat_2023_118753
crossref_primary_10_1016_j_apsusc_2023_157947
crossref_primary_10_1016_j_actamat_2023_118752
crossref_primary_10_1360_TB_2024_0796
crossref_primary_10_1002_adfm_202404886
crossref_primary_10_1080_10408436_2022_2053499
crossref_primary_10_1021_acsaem_5c00443
crossref_primary_10_1360_TB_2024_0793
crossref_primary_10_1080_15376494_2023_2217660
crossref_primary_10_1016_j_mattod_2023_04_021
crossref_primary_10_1126_science_adg7196
crossref_primary_10_1016_j_jallcom_2025_180535
crossref_primary_10_1016_j_seta_2022_102685
crossref_primary_10_1016_j_jtice_2024_105531
crossref_primary_10_1002_aenm_202400408
crossref_primary_10_3390_met14010040
crossref_primary_10_1002_adfm_202416861
crossref_primary_10_1016_j_apenergy_2021_117340
crossref_primary_10_1016_j_actbio_2025_05_033
crossref_primary_10_1016_j_ceramint_2023_07_183
crossref_primary_10_1016_j_xinn_2025_100864
crossref_primary_10_1016_j_nanoen_2024_109596
crossref_primary_10_1063_5_0226327
crossref_primary_10_1002_adma_202500802
crossref_primary_10_1016_j_jallcom_2024_177070
crossref_primary_10_1016_j_enconman_2023_116981
crossref_primary_10_1103_PhysRevApplied_20_014052
crossref_primary_10_1038_s41467_022_35289_z
crossref_primary_10_1002_admt_202100953
crossref_primary_10_1007_s44174_025_00289_2
crossref_primary_10_1016_j_actamat_2022_117743
crossref_primary_10_1016_j_nanoen_2022_107736
crossref_primary_10_54227_mlab_20240010
crossref_primary_10_54227_mlab_20240017
crossref_primary_10_1002_advs_202206395
crossref_primary_10_1002_advs_202206397
crossref_primary_10_1016_j_mtelec_2025_100169
crossref_primary_10_1016_j_apenergy_2025_125510
crossref_primary_10_1016_j_seta_2022_102585
crossref_primary_10_1016_j_apsusc_2025_164358
crossref_primary_10_1016_j_jallcom_2021_163296
crossref_primary_10_1016_j_jallcom_2023_170157
crossref_primary_10_1016_j_jallcom_2023_170399
crossref_primary_10_1007_s42114_024_01068_1
crossref_primary_10_1103_PhysRevB_111_235204
crossref_primary_10_1209_0295_5075_acdb98
crossref_primary_10_1016_j_apenergy_2022_119959
crossref_primary_10_1016_j_heliyon_2023_e21117
crossref_primary_10_1063_5_0081265
crossref_primary_10_1126_science_adp2444
crossref_primary_10_1039_D3MH01013A
crossref_primary_10_1039_D1EE03633E
crossref_primary_10_1039_D2EE00883A
crossref_primary_10_1016_j_enbenv_2023_11_011
crossref_primary_10_1063_5_0204885
crossref_primary_10_1088_1674_1056_ad2d57
crossref_primary_10_1093_nsr_nwaf227
crossref_primary_10_1126_science_ade9645
crossref_primary_10_1002_jccs_202200359
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126479
crossref_primary_10_1021_acsami_4c16642
crossref_primary_10_1016_j_cej_2024_151588
crossref_primary_10_1002_admt_202301069
crossref_primary_10_1063_5_0048411
crossref_primary_10_1038_s41524_024_01474_5
crossref_primary_10_1088_1361_6528_ac5288
crossref_primary_10_1002_adma_202508627
crossref_primary_10_1016_j_apmt_2025_102607
crossref_primary_10_1016_j_cej_2025_162649
crossref_primary_10_7498_aps_74_20250150
crossref_primary_10_1016_j_nanoen_2021_106572
crossref_primary_10_1016_j_applthermaleng_2023_120079
crossref_primary_10_1016_j_nanoen_2021_106692
crossref_primary_10_1039_D1NR06962D
crossref_primary_10_3390_cryst13010049
crossref_primary_10_1002_adfm_202506488
crossref_primary_10_1016_j_jalmes_2024_100056
crossref_primary_10_1016_j_chip_2023_100054
crossref_primary_10_1016_j_applthermaleng_2024_123612
crossref_primary_10_1038_s41598_025_98104_x
crossref_primary_10_1002_aenm_202202507
crossref_primary_10_1016_j_nanoen_2022_107809
crossref_primary_10_1002_cey2_281
crossref_primary_10_1016_j_mser_2022_100700
crossref_primary_10_1002_inf2_12663
crossref_primary_10_1016_j_jallcom_2024_174964
crossref_primary_10_1016_j_applthermaleng_2024_122763
crossref_primary_10_1016_j_xcrp_2025_102472
crossref_primary_10_1002_adfm_202403990
crossref_primary_10_1016_j_apsusc_2023_158779
crossref_primary_10_1021_acsaem_5c01834
crossref_primary_10_1021_jacs_2c12877
crossref_primary_10_1088_1361_6463_ac0843
crossref_primary_10_1063_5_0245017
crossref_primary_10_1016_j_actamat_2025_121451
crossref_primary_10_1021_acsami_5c14459
crossref_primary_10_1016_j_applthermaleng_2024_124739
crossref_primary_10_1063_5_0174135
crossref_primary_10_3390_nano13111735
crossref_primary_10_20517_energymater_2025_32
crossref_primary_10_1016_j_jallcom_2021_163090
crossref_primary_10_1016_j_applthermaleng_2025_128018
crossref_primary_10_1088_1361_6439_adf7b3
crossref_primary_10_1002_adma_202102990
crossref_primary_10_1002_advs_202103547
crossref_primary_10_1039_D4EE01857E
crossref_primary_10_1016_j_applthermaleng_2025_128010
crossref_primary_10_1016_j_nanoen_2021_106795
crossref_primary_10_1063_5_0187554
crossref_primary_10_1007_s10973_023_12682_4
crossref_primary_10_1016_j_mseb_2023_116463
crossref_primary_10_1103_cwfm_sx5b
crossref_primary_10_3389_fenrg_2023_1124288
crossref_primary_10_1007_s10973_023_12168_3
crossref_primary_10_1002_adfm_202402319
crossref_primary_10_1002_inf2_12324
crossref_primary_10_20517_energymater_2025_22
crossref_primary_10_1039_D1EE03339E
crossref_primary_10_1063_5_0235568
crossref_primary_10_1103_PhysRevLett_134_086401
crossref_primary_10_1088_1361_6501_acde00
crossref_primary_10_1063_5_0187427
crossref_primary_10_1002_adfm_202406428
crossref_primary_10_1016_j_cej_2022_135062
crossref_primary_10_1016_j_mtphys_2024_101534
crossref_primary_10_1016_j_rser_2023_113636
crossref_primary_10_1002_adma_202506999
crossref_primary_10_1038_s41598_025_12345_4
crossref_primary_10_1039_D5EE00253B
crossref_primary_10_1002_aenm_202400369
crossref_primary_10_1002_idm2_12009
crossref_primary_10_1088_0256_307X_38_11_117201
crossref_primary_10_1063_5_0187497
crossref_primary_10_1016_j_nanoen_2025_111213
crossref_primary_10_1016_j_mtphys_2025_101705
crossref_primary_10_1007_s11664_022_09985_x
crossref_primary_10_1063_5_0177326
crossref_primary_10_1002_adfm_202415368
crossref_primary_10_1038_s41699_024_00501_9
crossref_primary_10_1002_smll_202506188
crossref_primary_10_1088_1742_6596_3093_1_012016
crossref_primary_10_1002_aesr_202200124
crossref_primary_10_1016_j_actamat_2023_119587
crossref_primary_10_1039_D1EE00738F
crossref_primary_10_1002_aenm_202501184
crossref_primary_10_1002_smll_202312145
crossref_primary_10_1016_j_actamat_2024_119777
crossref_primary_10_1016_j_enconman_2023_117222
crossref_primary_10_1016_j_bioactmat_2024_02_006
crossref_primary_10_1002_smll_202405019
crossref_primary_10_1038_s41467_022_31372_7
crossref_primary_10_1038_s41467_025_56163_8
crossref_primary_10_1021_acs_jpca_5c04311
crossref_primary_10_1002_adma_202505642
crossref_primary_10_1007_s41918_024_00232_x
crossref_primary_10_1016_j_nanoen_2023_108615
crossref_primary_10_1016_j_mtphys_2023_101270
crossref_primary_10_1016_j_nanoen_2023_108611
crossref_primary_10_1016_j_matt_2022_03_011
crossref_primary_10_1038_s41563_024_02039_z
crossref_primary_10_3390_en16248109
crossref_primary_10_1038_s41524_023_01048_x
crossref_primary_10_1002_aenm_202301406
crossref_primary_10_1002_pssa_202200108
crossref_primary_10_1063_5_0187590
crossref_primary_10_1002_adts_202200049
crossref_primary_10_1016_j_cej_2022_137278
crossref_primary_10_1016_j_ceramint_2024_12_448
crossref_primary_10_1063_5_0084138
crossref_primary_10_1002_aesr_202100208
crossref_primary_10_1007_s00339_022_05838_w
crossref_primary_10_1002_smll_202302457
crossref_primary_10_1016_j_mtener_2021_100820
crossref_primary_10_1016_j_actamat_2024_120540
crossref_primary_10_1016_j_applthermaleng_2024_122939
crossref_primary_10_1063_5_0293474
crossref_primary_10_1002_admt_202400263
crossref_primary_10_1016_j_actamat_2024_119675
crossref_primary_10_1126_science_ado4077
crossref_primary_10_1016_j_enconman_2023_117760
crossref_primary_10_1016_j_xinn_2024_100782
crossref_primary_10_1007_s10854_024_12162_x
crossref_primary_10_1016_j_cej_2025_166606
crossref_primary_10_1016_j_mtphys_2024_101334
crossref_primary_10_1038_s41524_022_00887_4
crossref_primary_10_1016_j_mtphys_2025_101733
crossref_primary_10_1016_j_mtphys_2024_101451
crossref_primary_10_1016_j_applthermaleng_2024_122815
crossref_primary_10_3390_ma15248993
crossref_primary_10_1002_adfm_202302770
crossref_primary_10_1016_j_applthermaleng_2025_127548
crossref_primary_10_1016_j_jallcom_2023_169133
crossref_primary_10_1007_s12598_024_02986_1
crossref_primary_10_1016_j_mattod_2023_03_021
crossref_primary_10_1016_j_ceramint_2022_09_315
crossref_primary_10_1016_j_gee_2024_11_010
crossref_primary_10_1016_j_solidstatesciences_2024_107636
crossref_primary_10_1016_j_actamat_2025_121185
crossref_primary_10_1063_5_0176286
crossref_primary_10_1002_adfm_202415210
crossref_primary_10_1016_j_cej_2022_138389
crossref_primary_10_1016_j_ccr_2025_217132
crossref_primary_10_1002_adma_202409275
crossref_primary_10_54227_mlab_20230016
crossref_primary_10_1016_j_enconman_2024_118901
crossref_primary_10_54227_mlab_20230015
crossref_primary_10_1002_aesr_202300069
crossref_primary_10_1016_j_joule_2025_101822
crossref_primary_10_1016_j_mtener_2022_101071
crossref_primary_10_1038_s41467_023_44331_7
crossref_primary_10_1103_PhysRevApplied_21_054010
crossref_primary_10_1103_PhysRevB_111_205202
crossref_primary_10_1038_s41586_024_07621_8
crossref_primary_10_1007_s43207_024_00394_w
crossref_primary_10_1088_1674_1056_ad34c5
crossref_primary_10_7498_aps_74_20241178
crossref_primary_10_1557_s43577_025_00939_2
crossref_primary_10_1039_D5CP01499A
crossref_primary_10_1002_adfm_202415000
crossref_primary_10_1016_j_pmatsci_2024_101402
crossref_primary_10_1002_adfm_202315707
crossref_primary_10_1002_cnma_202200419
crossref_primary_10_54227_mlab_20230032
crossref_primary_10_1002_smll_202412833
crossref_primary_10_1016_j_nanoen_2023_108930
crossref_primary_10_1038_s41563_024_02059_9
crossref_primary_10_1002_smll_202104916
crossref_primary_10_1016_j_solidstatesciences_2025_107829
crossref_primary_10_1016_j_jallcom_2021_162035
crossref_primary_10_1016_j_surfin_2025_105954
crossref_primary_10_1063_5_0166338
crossref_primary_10_1126_science_abi8668
crossref_primary_10_1016_j_mtphys_2025_101845
crossref_primary_10_1016_j_jeurceramsoc_2023_11_022
crossref_primary_10_1016_j_calphad_2024_102765
crossref_primary_10_1016_j_mtla_2024_102209
crossref_primary_10_1016_j_scriptamat_2024_116090
crossref_primary_10_1016_j_jmat_2023_05_011
crossref_primary_10_1039_D4EW00367E
crossref_primary_10_1002_smll_202405182
crossref_primary_10_3390_molecules29143312
crossref_primary_10_1039_D2EE01038K
crossref_primary_10_1016_j_jallcom_2023_170482
crossref_primary_10_1038_s41467_021_25208_z
crossref_primary_10_1016_j_joule_2025_101854
crossref_primary_10_1016_j_mtphys_2024_101491
crossref_primary_10_1088_2515_7655_ac49dc
crossref_primary_10_3390_nano14020234
crossref_primary_10_1080_09506608_2022_2145359
crossref_primary_10_1016_j_apenergy_2024_123878
crossref_primary_10_1089_soro_2024_0139
crossref_primary_10_1016_j_jallcom_2024_175349
crossref_primary_10_1016_j_jmst_2022_05_004
crossref_primary_10_1016_j_cej_2024_148530
crossref_primary_10_1016_j_jallcom_2024_175222
crossref_primary_10_1038_s41524_022_00927_z
crossref_primary_10_1007_s40820_024_01360_1
crossref_primary_10_1021_acsami_5c08992
crossref_primary_10_3390_en18102426
crossref_primary_10_1016_j_cej_2023_148135
crossref_primary_10_1016_j_ijrefrig_2022_10_009
crossref_primary_10_1016_j_nanoen_2022_108036
crossref_primary_10_1016_j_applthermaleng_2024_124591
crossref_primary_10_1063_5_0220462
crossref_primary_10_1016_j_mtphys_2021_100457
crossref_primary_10_1109_TED_2023_3304277
crossref_primary_10_1002_smll_202401723
crossref_primary_10_1016_j_matchar_2023_112760
crossref_primary_10_1088_1742_6596_2491_1_012016
crossref_primary_10_1016_j_jeurceramsoc_2025_117767
crossref_primary_10_1039_D5TA02626A
crossref_primary_10_7566_JPSJ_90_122001
crossref_primary_10_1038_s41467_022_28798_4
crossref_primary_10_1016_j_applthermaleng_2023_120968
crossref_primary_10_1016_j_mtphys_2024_101366
crossref_primary_10_1007_s10338_022_00355_y
crossref_primary_10_1016_j_ceramint_2023_02_233
crossref_primary_10_1016_j_applthermaleng_2024_123379
crossref_primary_10_1016_j_actamat_2023_118773
crossref_primary_10_1002_aenm_202202392
crossref_primary_10_1016_j_mtphys_2022_100746
crossref_primary_10_1021_acsami_4c19653
crossref_primary_10_1016_j_jorganchem_2025_123673
crossref_primary_10_1002_mgea_21
crossref_primary_10_1016_j_jeurceramsoc_2023_04_052
crossref_primary_10_1016_j_apenergy_2023_121870
crossref_primary_10_1016_j_mssp_2022_106944
crossref_primary_10_1016_j_mtphys_2022_100618
crossref_primary_10_1002_adfm_202314499
crossref_primary_10_1021_acsami_5c10608
crossref_primary_10_1002_smll_202412632
crossref_primary_10_1002_adfm_202501996
crossref_primary_10_1016_j_joule_2024_08_013
crossref_primary_10_1002_smtd_202301619
crossref_primary_10_1002_adma_202408008
crossref_primary_10_1016_j_enbenv_2024_10_002
crossref_primary_10_1016_j_joule_2024_08_008
crossref_primary_10_1016_j_tsf_2022_139082
crossref_primary_10_1021_acs_jpcc_4c06097
crossref_primary_10_1002_adfm_202303361
crossref_primary_10_1016_j_jallcom_2022_168476
crossref_primary_10_1002_aenm_202201043
crossref_primary_10_1002_adma_202311278
crossref_primary_10_1016_j_mtphys_2024_101460
crossref_primary_10_1016_j_applthermaleng_2025_125999
crossref_primary_10_1038_s41598_024_84074_z
crossref_primary_10_1002_adfm_202518193
crossref_primary_10_3390_cryst13071139
crossref_primary_10_1038_s41928_022_00776_0
crossref_primary_10_1002_idm2_12058
crossref_primary_10_1016_j_commatsci_2023_112751
crossref_primary_10_1016_j_applthermaleng_2023_120994
crossref_primary_10_1016_j_jpcs_2022_111020
crossref_primary_10_1007_s40195_025_01854_w
crossref_primary_10_1007_s11664_021_09320_w
crossref_primary_10_1039_D4EE04976D
crossref_primary_10_1016_j_mtphys_2025_101693
crossref_primary_10_1126_science_adk9589
crossref_primary_10_1016_j_ceramint_2022_02_165
crossref_primary_10_1016_j_mtphys_2025_101692
crossref_primary_10_1002_adma_202401828
crossref_primary_10_1016_j_mtphys_2023_101292
crossref_primary_10_1088_1674_1056_ad4cd3
crossref_primary_10_3390_ma16145204
crossref_primary_10_1002_aelm_202200352
crossref_primary_10_1016_j_nanoen_2022_107147
crossref_primary_10_1016_j_mtphys_2021_100519
crossref_primary_10_1002_adem_202100955
crossref_primary_10_1016_j_nanoen_2022_108118
crossref_primary_10_1038_s41563_021_01149_2
crossref_primary_10_1002_adfm_202502424
crossref_primary_10_1002_aenm_202300312
crossref_primary_10_1002_adfm_202404279
crossref_primary_10_1088_1757_899X_1327_1_012043
crossref_primary_10_1038_s41598_024_72950_7
crossref_primary_10_1002_adma_202208272
crossref_primary_10_1103_PhysRevB_111_045203
crossref_primary_10_1038_s41563_024_02070_0
crossref_primary_10_1080_09506608_2023_2193785
crossref_primary_10_1063_9_0000901
crossref_primary_10_1063_5_0102434
crossref_primary_10_1039_D3EE01450A
crossref_primary_10_1002_ece2_17
crossref_primary_10_12677_mos_2025_141078
crossref_primary_10_46904_eea_24_72_1_1108002
crossref_primary_10_1016_j_mtchem_2024_102285
crossref_primary_10_1016_j_mtphys_2022_100704
crossref_primary_10_1016_j_coco_2021_100901
crossref_primary_10_1016_j_mtphys_2025_101797
crossref_primary_10_1021_acsaem_5c02243
crossref_primary_10_1016_j_enconman_2025_119806
crossref_primary_10_1039_D3NR04584F
crossref_primary_10_1002_adma_202209119
crossref_primary_10_1134_S1990793124700325
crossref_primary_10_1016_j_physe_2022_115333
crossref_primary_10_1016_j_physb_2022_414108
crossref_primary_10_1021_jacs_4c01161
crossref_primary_10_1007_s43207_025_00531_z
crossref_primary_10_1016_j_applthermaleng_2024_123085
crossref_primary_10_1016_j_materresbull_2022_112106
crossref_primary_10_1002_apxr_202400063
crossref_primary_10_1016_j_jallcom_2023_172815
crossref_primary_10_1002_aenm_202302818
crossref_primary_10_1016_j_applthermaleng_2022_119690
crossref_primary_10_1002_aenm_202400184
crossref_primary_10_1016_j_jallcom_2023_172817
crossref_primary_10_1126_science_adr8450
crossref_primary_10_1016_j_applthermaleng_2025_127615
crossref_primary_10_1007_s11431_022_2159_8
crossref_primary_10_1002_adfm_202113164
crossref_primary_10_1016_j_vacuum_2022_111239
crossref_primary_10_1002_adma_202303341
crossref_primary_10_1002_apxr_202400179
crossref_primary_10_1002_aelm_202500287
crossref_primary_10_1016_j_physleta_2023_128684
crossref_primary_10_1038_s41598_022_14405_5
crossref_primary_10_1103_PhysRevApplied_19_064054
Cites_doi 10.1039/D0EE00838A
10.1016/0022-3697(95)00148-4
10.1016/j.applthermaleng.2004.02.010
10.1016/j.ijrefrig.2004.04.002
10.1002/adma.201903387
10.1038/nature09996
10.1109/EE.1951.6436699
10.1002/0470068329
10.1103/PhysRevMaterials.3.095401
10.1109/JPROC.2006.879795
10.1063/1.1753970
10.1002/(SICI)1099-114X(200002)24:2<93::AID-ER563>3.0.CO;2-6
10.1016/0038-1101(72)90173-6
10.1007/BF02746070
10.1002/adma.201603955
10.1016/j.applthermaleng.2014.01.074
10.1016/j.mtphys.2018.12.004
10.1201/9781420038903.ch58
10.1088/1674-1056/25/1/017202
10.1002/adfm.201807235
10.1126/science.aax7792
10.1039/c3ta13456c
10.1149/1.2427584
10.1007/978-1-4899-5723-8
10.1063/1.4994696
10.1063/1.5016488
10.1073/pnas.1711725114
10.1016/j.rser.2013.12.030
10.1088/0508-3443/5/11/303
10.1063/1.1729056
10.1103/PhysRevB.75.245208
10.1071/PH790585
10.1038/nmat3621
10.1103/PhysRevLett.16.574
10.1126/science.287.5455.1024
10.1038/srep22724
10.1016/S0081-1947(08)60190-3
10.1103/PhysRevB.80.193105
10.1088/0508-3443/9/9/306
10.1016/j.ijrefrig.2009.03.004
10.1063/1.4921457
10.1126/science.1156446
10.1080/14786435908233413
10.1016/S1359-4311(03)00202-3
10.1557/mrs.2018.7
10.1126/science.1158899
10.1088/0034-4885/79/9/095901
10.1103/PhysRevB.93.165209
10.1039/C8EE03374A
10.1063/1.881752
10.4324/9780203996997
10.1063/1.4727855
10.1007/BF00549720
10.1103/PhysRevB.49.4565
10.1016/j.apenergy.2005.01.002
10.1063/1.1777361
10.1016/S1359-4311(02)00039-X
ContentType Journal Article
Copyright Springer Nature Limited 2020
Springer Nature Limited 2020.
Copyright_xml – notice: Springer Nature Limited 2020
– notice: Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
DOI 10.1038/s41563-020-00852-w
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 461
ExternalDocumentID 33288897
10_1038_s41563_020_00852_w
Genre Journal Article
Review
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NFIDA
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c414t-248728566b3daafab26be41e35ebe22f63181c7331836b85f3f33d0591c09dbb3
IEDL.DBID BENPR
ISICitedReferencesCount 613
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598992700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Thu Oct 02 13:29:25 EDT 2025
Mon Oct 06 17:00:01 EDT 2025
Mon Jul 21 05:25:05 EDT 2025
Sat Nov 29 03:30:32 EST 2025
Tue Nov 18 21:58:34 EST 2025
Fri Feb 21 02:40:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c414t-248728566b3daafab26be41e35ebe22f63181c7331836b85f3f33d0591c09dbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3968-8530
0000-0001-8233-3332
PMID 33288897
PQID 2505578591
PQPubID 27576
PageCount 8
ParticipantIDs proquest_miscellaneous_2468337992
proquest_journals_2505578591
pubmed_primary_33288897
crossref_citationtrail_10_1038_s41563_020_00852_w
crossref_primary_10_1038_s41563_020_00852_w
springer_journals_10_1038_s41563_020_00852_w
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Song (CR39) 2019; 8
Sharp, Bierschenk, Lyon (CR75) 2006; 94
Liu, Mao, Liu, Chen, Ren (CR46) 2018; 43
Güler, Ahiska (CR68) 2002; 22
CR36
CR79
Gao, Rowe (CR17) 2006; 83
Mahan (CR77) 1997; 51
Tamaki, Sato, Kanno (CR37) 2016; 28
Zhang (CR38) 2017; 8
CR76
CR74
Yim, Fitzke, Rosi (CR34) 1966; 1
Conn, Taylor (CR58) 1960; 107
CR73
Sun, Ikeno, Mizushima, Isikawa (CR25) 2009; 80
CR72
Zebarjadi (CR78) 2015; 106
CR71
CR70
Zhang (CR54) 2015; 25
Ziabari, Zebarjadi, Vashaee, Shakouri (CR11) 2016; 79
Ishiwata (CR21) 2013; 12
Mao (CR40) 2017; 114
Pei (CR47) 2011; 473
Sofo, Mahan (CR52) 1994; 49
Altenkirch (CR2) 1911; 12
CR6
Lenoir, Cassart, Michenaud, Scherrer, Scherrer (CR24) 1996; 57
CR8
Zhao, Tan (CR10) 2014; 66
Yim, Amith (CR28) 1972; 15
CR7
Norouzzadeh, Vashaee (CR49) 2016; 6
Bansal, Martin (CR15) 2000; 24
Jeong, Kim, Lundstrom (CR48) 2012; 111
Bian, Wang, Zhou, Shakouri (CR80) 2007; 75
Ioffe (CR33) 1956; 3
Kanno (CR41) 2018; 112
Imasato, Kang, Snyder (CR43) 2019; 12
Gallo, Chandrasekhar, Sutter (CR27) 1963; 34
Goldsmid, Douglas (CR4) 1954; 5
Bahk, Shakouri (CR57) 2016; 93
Astrain, Vián, Domı́nguez (CR61) 2003; 23
Wolfe, Smith (CR29) 1962; 1
Chung (CR26) 2000; 287
Poudel (CR35) 2008; 320
CR14
CR13
CR12
CR55
Mahan, Sales, Sharp (CR20) 1997; 50
LeBlanc, Yee, Scullin, Dames, Goodson (CR59) 2014; 32
CR53
Sinani, Gordiakova (CR5) 1956; 1
Esaki, Stiles (CR65) 1966; 16
Witkoske, Wang, Lundstrom, Askarpour, Maassen (CR50) 2017; 122
MacDonald, Mooser, Pearson, Templeton, Woods (CR19) 1959; 4
Liu (CR45) 2013; 1
Shu (CR42) 2019; 29
Wang, Hwang, Radermacher (CR63) 2009; 32
Riffat, Qiu (CR16) 2004; 24
Markov, Rezaei, Sadeghi, Esfarjani, Zebarjadi (CR56) 2019; 3
Peltier (CR1) 1834; 56
Iordanishvili, Stilbans (CR18) 1956; 1
Goldsmid (CR31) 1955; 1
Harman, Honig, Fischler, Paladino, Button (CR30) 1964; 4
CR69
CR67
Mao (CR22) 2019; 365
CR66
CR60
Chasmar, Stratton (CR51) 1959; 7
White (CR3) 1951; 70
Shi (CR44) 2019; 31
Pan (CR23) 2020; 13
Disawas, Wongwises (CR62) 2004; 27
Issi (CR64) 1979; 32
Bell (CR9) 2008; 321
Goldsmid, Sheard, Wright (CR32) 1958; 9
852_CR66
B Lenoir (852_CR24) 1996; 57
852_CR67
Z Bian (852_CR80) 2007; 75
852_CR7
P Bansal (852_CR15) 2000; 24
852_CR69
852_CR8
852_CR6
SW Song (852_CR39) 2019; 8
H Tamaki (852_CR37) 2016; 28
852_CR60
C Zhang (852_CR54) 2015; 25
R Chasmar (852_CR51) 1959; 7
M Zebarjadi (852_CR78) 2015; 106
S Ishiwata (852_CR21) 2013; 12
HJXXVII Goldsmid (852_CR31) 1955; 1
L Esaki (852_CR65) 1966; 16
J Sharp (852_CR75) 2006; 94
Y Pan (852_CR23) 2020; 13
J Mao (852_CR40) 2017; 114
EK Iordanishvili (852_CR18) 1956; 1
852_CR76
852_CR79
JC Peltier (852_CR1) 1834; 56
852_CR36
HJ Goldsmid (852_CR4) 1954; 5
D Zhao (852_CR10) 2014; 66
852_CR70
HJ Goldsmid (852_CR32) 1958; 9
852_CR71
NF Güler (852_CR68) 2002; 22
852_CR72
K Imasato (852_CR43) 2019; 12
852_CR73
852_CR74
AF Ioffe (852_CR33) 1956; 3
DKC MacDonald (852_CR19) 1959; 4
LE Bell (852_CR9) 2008; 321
D Astrain (852_CR61) 2003; 23
SS Sinani (852_CR5) 1956; 1
J Conn (852_CR58) 1960; 107
W White (852_CR3) 1951; 70
A Ziabari (852_CR11) 2016; 79
J Zhang (852_CR38) 2017; 8
R Wolfe (852_CR29) 1962; 1
YZ Pei (852_CR47) 2011; 473
P Norouzzadeh (852_CR49) 2016; 6
T Kanno (852_CR41) 2018; 112
SB Riffat (852_CR16) 2004; 24
Z Liu (852_CR46) 2018; 43
E Witkoske (852_CR50) 2017; 122
DY Chung (852_CR26) 2000; 287
S Disawas (852_CR62) 2004; 27
GD Mahan (852_CR77) 1997; 51
W Yim (852_CR28) 1972; 15
R Shu (852_CR42) 2019; 29
W Liu (852_CR45) 2013; 1
JH Bahk (852_CR57) 2016; 93
WM Yim (852_CR34) 1966; 1
C Jeong (852_CR48) 2012; 111
T Harman (852_CR30) 1964; 4
CF Gallo (852_CR27) 1963; 34
X Wang (852_CR63) 2009; 32
P Sun (852_CR25) 2009; 80
852_CR55
852_CR12
852_CR13
852_CR14
X Shi (852_CR44) 2019; 31
J Issi (852_CR64) 1979; 32
M Gao (852_CR17) 2006; 83
852_CR53
G Mahan (852_CR20) 1997; 50
S LeBlanc (852_CR59) 2014; 32
B Poudel (852_CR35) 2008; 320
M Markov (852_CR56) 2019; 3
E Altenkirch (852_CR2) 1911; 12
JO Sofo (852_CR52) 1994; 49
J Mao (852_CR22) 2019; 365
References_xml – volume: 57
  start-page: 89
  year: 1996
  end-page: 99
  ident: CR24
  article-title: Transport properties of Bi-rich Bi–Sb alloys
  publication-title: J. Phys. Chem. Solids
– ident: CR70
– ident: CR74
– volume: 66
  start-page: 15
  year: 2014
  end-page: 24
  ident: CR10
  article-title: A review of thermoelectric cooling: materials, modeling and applications
  publication-title: Appl. Therm. Eng.
– volume: 32
  start-page: 585
  year: 1979
  end-page: 628
  ident: CR64
  article-title: Low temperature transport properties of the group V semimetals
  publication-title: Aust. J. Phys.
– volume: 16
  start-page: 574
  year: 1966
  ident: CR65
  article-title: BiSb alloy tunnel junctions
  publication-title: Phys. Rev. Lett.
– ident: CR12
– volume: 6
  year: 2016
  ident: CR49
  article-title: Classification of valleytronics in thermoelectricity
  publication-title: Sci. Rep.
– volume: 8
  start-page: 25
  year: 2019
  end-page: 33
  ident: CR39
  article-title: Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg Y Sb Bi .
  publication-title: Mater. Today Phys.
– volume: 24
  start-page: 93
  year: 2000
  end-page: 107
  ident: CR15
  article-title: Comparative study of vapour compression, thermoelectric and absorption refrigerators
  publication-title: Int. J. Energy Res.
– volume: 7
  start-page: 52
  year: 1959
  end-page: 72
  ident: CR51
  article-title: The thermoelectric figure of merit and its relation to thermoelectric generators
  publication-title: Int. J. Electron.
– volume: 25
  start-page: 017202
  year: 2015
  ident: CR54
  article-title: Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd As
  publication-title: Chin. Phys. B
– volume: 3
  start-page: 095401
  year: 2019
  ident: CR56
  article-title: Thermoelectric properties of semimetals
  publication-title: Phys. Rev. Mater.
– ident: CR8
– volume: 83
  start-page: 133
  year: 2006
  end-page: 152
  ident: CR17
  article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators
  publication-title: Appl. Energy
– volume: 34
  start-page: 144
  year: 1963
  end-page: 152
  ident: CR27
  article-title: Transport properties of bismuth single crystals
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 181
  year: 2018
  end-page: 186
  ident: CR46
  article-title: Nano-microstructural control of phonon engineering for thermoelectric energy harvesting
  publication-title: MRS Bull.
– volume: 12
  start-page: 965
  year: 2019
  end-page: 971
  ident: CR43
  article-title: Exceptional thermoelectric performance in Mg Sb Bi for low-grade waste heat recovery
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 512
  year: 2013
  end-page: 517
  ident: CR21
  article-title: Extremely high electron mobility in a phonon-glass semimetal
  publication-title: Nat. Mater.
– volume: 27
  start-page: 587
  year: 2004
  end-page: 594
  ident: CR62
  article-title: Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device
  publication-title: Int. J. Refrig.
– volume: 28
  start-page: 10182
  year: 2016
  end-page: 10187
  ident: CR37
  article-title: Isotropic conduction network and defect chemistry in Mg Sb -based layered Zintl compounds with high thermoelectric performance
  publication-title: Adv. Mater.
– ident: CR71
– volume: 4
  start-page: 77
  year: 1964
  end-page: 79
  ident: CR30
  article-title: Oriented single-crystal bismuth Nernst–Ettingshausen refrigerators
  publication-title: Appl. Phys. Lett.
– volume: 22
  start-page: 1271
  year: 2002
  end-page: 1276
  ident: CR68
  article-title: Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit
  publication-title: Appl. Therm. Eng.
– volume: 321
  start-page: 1457
  year: 2008
  end-page: 1461
  ident: CR9
  article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
  publication-title: Science
– ident: CR67
– volume: 106
  start-page: 203506
  year: 2015
  ident: CR78
  article-title: Electronic cooling using thermoelectric devices
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 165209
  year: 2016
  ident: CR57
  article-title: Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors
  publication-title: Phys. Rev. B
– volume: 112
  start-page: 033903
  year: 2018
  ident: CR41
  article-title: Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg Sb Bi Te
  publication-title: Appl. Phys. Lett.
– volume: 473
  start-page: 66
  year: 2011
  end-page: 69
  ident: CR47
  article-title: Convergence of electronic bands for high performance bulk thermoelectrics
  publication-title: Nature
– ident: CR60
– ident: CR36
– volume: 1
  start-page: 5
  year: 1962
  end-page: 7
  ident: CR29
  article-title: Effects of a magnetic field on the thermoelectric properties of a bismuth–antimony alloy
  publication-title: Appl. Phys. Lett.
– volume: 32
  start-page: 1442
  year: 2009
  end-page: 1451
  ident: CR63
  article-title: Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant
  publication-title: Int. J. Refrig.
– volume: 94
  start-page: 1602
  year: 2006
  end-page: 1612
  ident: CR75
  article-title: Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management
  publication-title: Proc. IEEE
– volume: 1
  start-page: 218
  year: 1955
  end-page: 222
  ident: CR31
  article-title: Thermoelectric applications of semiconductors
  publication-title: Int. J. Electron.
– volume: 122
  start-page: 175102
  year: 2017
  ident: CR50
  article-title: Thermoelectric band engineering: the role of carrier scattering
  publication-title: J. Appl. Phys.
– volume: 31
  start-page: 1903387
  year: 2019
  ident: CR44
  article-title: Extraordinary n-type Mg SbBi thermoelectrics enabled by yttrium doping
  publication-title: Adv. Mater.
– volume: 4
  start-page: 433
  year: 1959
  end-page: 446
  ident: CR19
  article-title: On the possibility of thermoelectric refrigeration at very low temperatures
  publication-title: Phil. Mag.
– ident: CR66
– ident: CR72
– ident: CR14
– ident: CR53
– volume: 80
  start-page: 193105
  year: 2009
  ident: CR25
  article-title: Simultaneously optimizing the interdependent thermoelectric parameters in Ce(Ni Cu ) Al
  publication-title: Phys. Rev. B
– volume: 70
  start-page: 589
  year: 1951
  end-page: 591
  ident: CR3
  article-title: Some experiments with Peltier effect
  publication-title: Electr. Eng.
– volume: 79
  start-page: 095901
  year: 2016
  ident: CR11
  article-title: Nanoscale solid-state cooling: a review
  publication-title: Rep. Prog. Phys.
– volume: 320
  start-page: 634
  year: 2008
  end-page: 638
  ident: CR35
  article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
  publication-title: Science
– volume: 114
  start-page: 10548
  year: 2017
  end-page: 10553
  ident: CR40
  article-title: Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg Sb -based materials
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 365
  start-page: 495
  year: 2019
  end-page: 498
  ident: CR22
  article-title: High thermoelectric cooling performance of n-type Mg Bi -based materials
  publication-title: Science
– volume: 9
  start-page: 365
  year: 1958
  end-page: 370
  ident: CR32
  article-title: The performance of bismuth telluride thermojunctions
  publication-title: Br. J. Appl. Phys.
– volume: 111
  start-page: 113707
  year: 2012
  ident: CR48
  article-title: On the best bandstructure for thermoelectric performance: a Landauer perspective
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 920
  year: 1911
  end-page: 924
  ident: CR2
  article-title: Elektrothermische Kälteerzeugung und reversible elektrische Heizung
  publication-title: Phys. Z.
– ident: CR6
– ident: CR79
– volume: 15
  start-page: 1141
  year: 1972
  end-page: 1165
  ident: CR28
  article-title: BiSb alloys for magneto-thermoelectric and thermomagnetic cooling
  publication-title: Solid State Electron.
– volume: 107
  start-page: 977
  year: 1960
  end-page: 982
  ident: CR58
  article-title: Thermoelectric and crystallographic properties of Ag Se
  publication-title: J. Electrochem. Soc.
– volume: 29
  start-page: 1807235
  year: 2019
  ident: CR42
  article-title: Mg Sb Bi family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature
  publication-title: Adv. Funct. Mater.
– volume: 24
  start-page: 1979
  year: 2004
  end-page: 1993
  ident: CR16
  article-title: Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners
  publication-title: Appl. Therm. Eng.
– ident: CR69
– volume: 1
  start-page: 2318
  year: 1956
  end-page: 2319
  ident: CR5
  article-title: Solid solution Bi Te –Bi Se as a material for thermoelements
  publication-title: Sov. Phys. Tech. Phys.
– volume: 1
  start-page: 928
  year: 1956
  end-page: 939
  ident: CR18
  article-title: Thermoelectric microcoolers
  publication-title: Sov. Phys. Tech. Phys.
– volume: 13
  start-page: 1717
  year: 2020
  end-page: 1724
  ident: CR23
  article-title: Mg (Bi,Sb) single crystals towards high thermoelectric performance
  publication-title: Energy Environ. Sci.
– ident: CR73
– volume: 287
  start-page: 1024
  year: 2000
  end-page: 1027
  ident: CR26
  article-title: CsBi Te : a high-performance thermoelectric material for low-temperature applications
  publication-title: Science
– volume: 51
  start-page: 81
  year: 1997
  end-page: 157
  ident: CR77
  article-title: Good thermoelectrics
  publication-title: Solid State Phys.
– volume: 1
  start-page: 52
  year: 1966
  end-page: 65
  ident: CR34
  article-title: Thermoelectric properties of Bi Te –Sb Te –Sb Se pseudo-ternary alloys in the temperature range 77 to 300 K
  publication-title: J. Mater. Sci.
– ident: CR13
– volume: 8
  year: 2017
  ident: CR38
  article-title: Discovery of high-performance low-cost n-type Mg Sb -based thermoelectric materials with multi-valley conduction bands
  publication-title: Nat. Commun.
– volume: 49
  start-page: 4565
  year: 1994
  end-page: 4570
  ident: CR52
  article-title: Optimum band gap of a thermoelectric material
  publication-title: Phys. Rev. B
– volume: 56
  start-page: 371
  year: 1834
  end-page: 386
  ident: CR1
  article-title: Nouvelles expériences sur la caloricité des courants électrique
  publication-title: Ann. Chim. Phys.
– volume: 3
  start-page: 702
  year: 1956
  end-page: 715
  ident: CR33
  article-title: On thermal conduction in semiconductors
  publication-title: Il Nuovo Cimento
– volume: 32
  start-page: 313
  year: 2014
  end-page: 327
  ident: CR59
  article-title: Material and manufacturing cost considerations for thermoelectrics
  publication-title: Renew. Sust. Energy Rev.
– ident: CR55
– ident: CR7
– ident: CR76
– volume: 75
  start-page: 245208
  year: 2007
  ident: CR80
  article-title: Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 42
  year: 1997
  end-page: 47
  ident: CR20
  article-title: Thermoelectric materials: new approaches to an old problem
  publication-title: Phys. Today
– volume: 23
  start-page: 2183
  year: 2003
  end-page: 2200
  ident: CR61
  article-title: Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation
  publication-title: Appl. Therm. Eng.
– volume: 1
  start-page: 13093
  year: 2013
  end-page: 13100
  ident: CR45
  article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi Te Se legs for power generation applications
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 386
  year: 1954
  end-page: 390
  ident: CR4
  article-title: The use of semiconductors in thermoelectric refrigeration
  publication-title: Br. J. Appl. Phys.
– volume: 56
  start-page: 371
  year: 1834
  ident: 852_CR1
  publication-title: Ann. Chim. Phys.
– volume: 13
  start-page: 1717
  year: 2020
  ident: 852_CR23
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00838A
– volume: 57
  start-page: 89
  year: 1996
  ident: 852_CR24
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/0022-3697(95)00148-4
– volume: 24
  start-page: 1979
  year: 2004
  ident: 852_CR16
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.02.010
– ident: 852_CR60
– volume: 27
  start-page: 587
  year: 2004
  ident: 852_CR62
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2004.04.002
– volume: 31
  start-page: 1903387
  year: 2019
  ident: 852_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201903387
– volume: 12
  start-page: 920
  year: 1911
  ident: 852_CR2
  publication-title: Phys. Z.
– volume: 473
  start-page: 66
  year: 2011
  ident: 852_CR47
  publication-title: Nature
  doi: 10.1038/nature09996
– volume: 70
  start-page: 589
  year: 1951
  ident: 852_CR3
  publication-title: Electr. Eng.
  doi: 10.1109/EE.1951.6436699
– ident: 852_CR55
  doi: 10.1002/0470068329
– ident: 852_CR73
– volume: 3
  start-page: 095401
  year: 2019
  ident: 852_CR56
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.095401
– volume: 94
  start-page: 1602
  year: 2006
  ident: 852_CR75
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.879795
– volume: 4
  start-page: 77
  year: 1964
  ident: 852_CR30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1753970
– volume: 8
  year: 2017
  ident: 852_CR38
  publication-title: Nat. Commun.
– volume: 24
  start-page: 93
  year: 2000
  ident: 852_CR15
  publication-title: Int. J. Energy Res.
  doi: 10.1002/(SICI)1099-114X(200002)24:2<93::AID-ER563>3.0.CO;2-6
– volume: 15
  start-page: 1141
  year: 1972
  ident: 852_CR28
  publication-title: Solid State Electron.
  doi: 10.1016/0038-1101(72)90173-6
– volume: 3
  start-page: 702
  year: 1956
  ident: 852_CR33
  publication-title: Il Nuovo Cimento
  doi: 10.1007/BF02746070
– volume: 28
  start-page: 10182
  year: 2016
  ident: 852_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603955
– volume: 66
  start-page: 15
  year: 2014
  ident: 852_CR10
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.01.074
– volume: 8
  start-page: 25
  year: 2019
  ident: 852_CR39
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2018.12.004
– ident: 852_CR69
– ident: 852_CR70
  doi: 10.1201/9781420038903.ch58
– volume: 25
  start-page: 017202
  year: 2015
  ident: 852_CR54
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/1/017202
– ident: 852_CR8
– volume: 29
  start-page: 1807235
  year: 2019
  ident: 852_CR42
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807235
– volume: 365
  start-page: 495
  year: 2019
  ident: 852_CR22
  publication-title: Science
  doi: 10.1126/science.aax7792
– volume: 1
  start-page: 13093
  year: 2013
  ident: 852_CR45
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta13456c
– volume: 107
  start-page: 977
  year: 1960
  ident: 852_CR58
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2427584
– ident: 852_CR12
  doi: 10.1007/978-1-4899-5723-8
– volume: 122
  start-page: 175102
  year: 2017
  ident: 852_CR50
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4994696
– volume: 112
  start-page: 033903
  year: 2018
  ident: 852_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5016488
– volume: 114
  start-page: 10548
  year: 2017
  ident: 852_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1711725114
– ident: 852_CR76
– volume: 32
  start-page: 313
  year: 2014
  ident: 852_CR59
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2013.12.030
– ident: 852_CR72
– volume: 5
  start-page: 386
  year: 1954
  ident: 852_CR4
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/5/11/303
– volume: 34
  start-page: 144
  year: 1963
  ident: 852_CR27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1729056
– ident: 852_CR13
– ident: 852_CR66
– volume: 7
  start-page: 52
  year: 1959
  ident: 852_CR51
  publication-title: Int. J. Electron.
– volume: 75
  start-page: 245208
  year: 2007
  ident: 852_CR80
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.245208
– volume: 32
  start-page: 585
  year: 1979
  ident: 852_CR64
  publication-title: Aust. J. Phys.
  doi: 10.1071/PH790585
– volume: 12
  start-page: 512
  year: 2013
  ident: 852_CR21
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3621
– volume: 16
  start-page: 574
  year: 1966
  ident: 852_CR65
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.16.574
– volume: 287
  start-page: 1024
  year: 2000
  ident: 852_CR26
  publication-title: Science
  doi: 10.1126/science.287.5455.1024
– ident: 852_CR79
– volume: 6
  year: 2016
  ident: 852_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/srep22724
– volume: 51
  start-page: 81
  year: 1997
  ident: 852_CR77
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60190-3
– volume: 80
  start-page: 193105
  year: 2009
  ident: 852_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.193105
– volume: 9
  start-page: 365
  year: 1958
  ident: 852_CR32
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/9/9/306
– volume: 32
  start-page: 1442
  year: 2009
  ident: 852_CR63
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2009.03.004
– volume: 106
  start-page: 203506
  year: 2015
  ident: 852_CR78
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921457
– volume: 320
  start-page: 634
  year: 2008
  ident: 852_CR35
  publication-title: Science
  doi: 10.1126/science.1156446
– ident: 852_CR71
– volume: 4
  start-page: 433
  year: 1959
  ident: 852_CR19
  publication-title: Phil. Mag.
  doi: 10.1080/14786435908233413
– volume: 1
  start-page: 218
  year: 1955
  ident: 852_CR31
  publication-title: Int. J. Electron.
– ident: 852_CR14
– volume: 23
  start-page: 2183
  year: 2003
  ident: 852_CR61
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(03)00202-3
– volume: 43
  start-page: 181
  year: 2018
  ident: 852_CR46
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2018.7
– volume: 321
  start-page: 1457
  year: 2008
  ident: 852_CR9
  publication-title: Science
  doi: 10.1126/science.1158899
– ident: 852_CR6
– volume: 79
  start-page: 095901
  year: 2016
  ident: 852_CR11
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/9/095901
– ident: 852_CR67
– volume: 93
  start-page: 165209
  year: 2016
  ident: 852_CR57
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.165209
– volume: 12
  start-page: 965
  year: 2019
  ident: 852_CR43
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03374A
– volume: 50
  start-page: 42
  year: 1997
  ident: 852_CR20
  publication-title: Phys. Today
  doi: 10.1063/1.881752
– ident: 852_CR7
  doi: 10.4324/9780203996997
– volume: 111
  start-page: 113707
  year: 2012
  ident: 852_CR48
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4727855
– volume: 1
  start-page: 2318
  year: 1956
  ident: 852_CR5
  publication-title: Sov. Phys. Tech. Phys.
– volume: 1
  start-page: 52
  year: 1966
  ident: 852_CR34
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00549720
– ident: 852_CR53
– volume: 49
  start-page: 4565
  year: 1994
  ident: 852_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.4565
– ident: 852_CR74
– volume: 1
  start-page: 928
  year: 1956
  ident: 852_CR18
  publication-title: Sov. Phys. Tech. Phys.
– ident: 852_CR36
– volume: 83
  start-page: 133
  year: 2006
  ident: 852_CR17
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2005.01.002
– volume: 1
  start-page: 5
  year: 1962
  ident: 852_CR29
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1777361
– volume: 22
  start-page: 1271
  year: 2002
  ident: 852_CR68
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(02)00039-X
SSID ssj0021556
Score 2.7343736
SecondaryResourceType review_article
Snippet Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 454
SubjectTerms 639/301/1005/1007
639/301/299/2736
Biomaterials
Bismuth tellurides
Chemistry and Materials Science
Commercialization
Condensed Matter Physics
Cooling
Electricity
Materials Science
Nanotechnology
Optical and Electronic Materials
Peltier effects
Perspective
Room temperature
Thermoelectric cooling
Thermoelectric materials
Title Thermoelectric cooling materials
URI https://link.springer.com/article/10.1038/s41563-020-00852-w
https://www.ncbi.nlm.nih.gov/pubmed/33288897
https://www.proquest.com/docview/2505578591
https://www.proquest.com/docview/2468337992
Volume 20
WOSCitedRecordID wos000598992700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5B4QAH3o-wbJWVuLGGxk5j-7QC1GqlFVW1gNRbFDsxQoIG2gJ_n5nELSC0vezFUpSXNTP2fOOx5wM4cq7Q6GiobKhqs9hyw7RwijnC-q6wOG-aimxC9npqMNB9v-A29tsqp3NiNVHnpaU18lNy1VSYRUe_Hp8YsUZRdtVTaCzCElUqixuwdN7p9f_OQi70lvX5IpkwRBbcH5tpCXU6ptCFcph0slq1OXv97Jq-4M0vudLKBXXX_7fzG7DmwWd4VlvLJiwUwy1Y_VCScBtCtJvRQ1mz49zZ0JbE6nMbIrCtbXUHbrqd64vfzLMoMBR0PGEcQxKuELUZkWeZywxPTBFHhWij_jh3CY7qyBJ1oxKJUW0nnBA5oq7ItnRujNiFxrAcFvsQRtLibKizVo5BYRZLBJsu57nIUNEmjnUA0VSAqfUlxonp4j6tUt1CpbXQUxR6Wgk9fQ3gePbOY11gY-7Th1MBp36wjdN36QbwY3YbhwnlPrJhUT7jM3GihJBa8wD2an3OficEV0ppGcDPqYLfP_7vvhzM78s3WOG0_6Xa5XMIjcnoufgOy_ZlcjceNWFRDmTVqqY3Wrz6c36C7SXvUyuv3gArLe_-
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xkoADtDzT0jZI9AQWGzub2AdUVW0RCFhxAImbiR0bIcEGdhdW_Cl-Y2fyWIpQuXHgHMdxMq9vMvZ8ABveO4WBhtqGyjaLLTdMCS-ZJ6zvnUW_aUqyibTTkWdn6ngMHpuzMLStsvGJpaPOC0v_yLcpVFNjFhX9uLllxBpF1dWGQqNSiwP3MMSUrb-z_xvl-53z3T8nv_ZYzSrA8MHxgHGE6FwiijEizzKfGZ4YF0dOtPF9OPcJanlkicpQisTIthdeiBxRSGRbKjdG4LzjMBljJkR2dcSPRwkexubqNFOaMMQxvD6k0xJyu0-JElVM6Ry3bHM2fB4IX6DbF5XZMuDtzr-3T_UB5mpoHf6sbOEjjLnuAsz-03BxEUK0it51UXH_XNrQFsRZdBEibK8scQlO32SJyzDRLbpuFcIotejrVdbKMeXN4hShtM95LjJUYxPHKoCoEZi2dQN14vG40mUhX0hdCVmjkHUpZD0MYHN0z03VPuTV0WuNQHXtSvr6SZoBrI8uoxOgyk7WdcUdjokTKUSqFA9gpdKf0eOE4FJKlQaw1SjU0-T_X8un19fyDab3To4O9eF-5-AzzHDa6VPuZ1qDiUHvzn2BKXs_uOz3vpYmEsL5WyvaX-5gRgk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JT-MwFH4qixAc2BnCMmQkOIHVxk4T-4AQgqmoQBXSgMTNxI6NkGYapi1U_DV-Hc9ZCgjBjQPnOM5L3vY5bwPYttYIdDSubShvklBTRQSznFiH9a3RaDdVPmwi7nT41ZU4r8FTVQvj0iorm5gb6jTT7h953blq15hFBHVbpkWcH7cO7v4TN0HKRVqrcRqFiJyaxyEe3_r77WPk9Q6lrd8XRyeknDBAkIhwQCjCdcoR0SiWJolNFI2UCQPDmvhulNoIJT7QbqwhZ5HiTcssYykikkA3RKoUw33HYCIOESfkaYN_Roc99NNFZVMcEcQ0tCzYaTBe77tDk4ueuppu3qRk-NYpvkO676K0ufNrzX3nzzYPsyXk9g8LHVmAmukuwsyrRoxL4KO29P5lxUygW-3rzM0yuvERzhcaugyXX0LiCox3s65ZBT-INfoAkTRSPAonYYwQ26Y0ZQmKtwpD4UFQMU_qsrG6m-_xV-YBfsZlwXCJDJc5w-XQg93RPXdFW5FPV29UzJWlienLF8568Gt0GY2Di_gkXZPd45ow4ozFQlAPfhSyNHocY5RzLmIP9irhetn8Y1rWPqdlC6ZQvuRZu3O6DtPUJQDlaU4bMD7o3ZtNmNQPg9t-72euLT5cf7WcPQN40E7Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+cooling+materials&rft.jtitle=Nature+materials&rft.au=Mao%2C+Jun&rft.au=Chen%2C+Gang&rft.au=Ren%2C+Zhifeng&rft.date=2021-04-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=4&rft.spage=454&rft.epage=461&rft_id=info:doi/10.1038%2Fs41563-020-00852-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_020_00852_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon