Thermoelectric cooling materials
Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi 2 Te 3 alloys, which have had no rival for the past six decades around room temperat...
Uloženo v:
| Vydáno v: | Nature materials Ročník 20; číslo 4; s. 454 - 461 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.04.2021
Nature Publishing Group |
| Témata: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi
2
Te
3
alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.
Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials. |
|---|---|
| AbstractList | Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials. Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi Te alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials. Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi2Te3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials.Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials. Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of thermoelectric cooling technology has been built on the Bi 2 Te 3 alloys, which have had no rival for the past six decades around room temperature. With the discovery and development of more promising materials, it is possible to reshape thermoelectric cooling technology. Here we review the current status of, and future outlook for, thermoelectric cooling materials. Thermoelectric materials can generate electricity from waste heat but can also use electricity for cooling. This Perspective discusses coefficients of performance for these systems and the state-of-the-art for materials, and suggests strategies for the discovery of improved thermoelectric materials. |
| Author | Mao, Jun Ren, Zhifeng Chen, Gang |
| Author_xml | – sequence: 1 givenname: Jun surname: Mao fullname: Mao, Jun organization: Department of Physics and Texas Center for Superconductivity at the University of Houston, University of Houston – sequence: 2 givenname: Gang orcidid: 0000-0002-3968-8530 surname: Chen fullname: Chen, Gang organization: Department of Mechanical Engineering, Massachusetts Institute of Technology – sequence: 3 givenname: Zhifeng orcidid: 0000-0001-8233-3332 surname: Ren fullname: Ren, Zhifeng email: zren@uh.edu organization: Department of Physics and Texas Center for Superconductivity at the University of Houston, University of Houston |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33288897$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kDtPwzAYRS1URB_wBxhQJRaWgN9xRlTxkiqxlNmyHae4SuJiJ6r49xjSCqlDp-vhnKvPdwpGrW8tANcI3iNIxEOkiHGSQQwzCAXD2e4MTBDNeUY5h6P9GyGMx2Aa4wZCjBjjF2BMCBZCFPkEzFefNjTe1tZ0wZm58b527XreqM4Gp-p4Cc6rFPZqnzPw8fy0Wrxmy_eXt8XjMjMU0S7DVORYMM41KZWqlMZcW4osYVZbjCtOkEAmJykI14JVpCKkhKxABhal1mQG7obebfBfvY2dbFw0tq5Va30fJaZcEJIXBU7o7RG68X1o03USM8hYLlJtom72VK8bW8ptcI0K3_Lw9wSIATDBxxhsJY3rVOd82wXlaomg_J1ZDjPLNLP8m1nukoqP1EP7SYkMUkxwu7bh_-wT1g9uII1D |
| CitedBy_id | crossref_primary_10_1038_s41467_025_57889_1 crossref_primary_10_1016_j_ceramint_2024_08_316 crossref_primary_10_1016_j_nanoen_2023_108270 crossref_primary_10_3390_mi13020233 crossref_primary_10_1016_j_cej_2023_145820 crossref_primary_10_1016_j_actamat_2025_121433 crossref_primary_10_1021_jacs_4c04453 crossref_primary_10_1002_smll_202403852 crossref_primary_10_1002_aenm_202202539 crossref_primary_10_1186_s12903_025_06593_z crossref_primary_10_1002_aenm_202405024 crossref_primary_10_1002_smll_202206439 crossref_primary_10_1002_adma_202416394 crossref_primary_10_1016_j_applthermaleng_2024_124750 crossref_primary_10_1016_j_jmmm_2021_168833 crossref_primary_10_1016_j_prime_2021_100009 crossref_primary_10_1002_adfm_202214163 crossref_primary_10_1038_s41598_024_72500_1 crossref_primary_10_1073_pnas_2410041121 crossref_primary_10_3390_cryst12030307 crossref_primary_10_1007_s40843_024_3058_7 crossref_primary_10_1007_s40820_024_01342_3 crossref_primary_10_1016_j_ijthermalsci_2025_110013 crossref_primary_10_1016_j_jallcom_2022_166479 crossref_primary_10_1002_adma_202502705 crossref_primary_10_1007_s12274_022_4810_8 crossref_primary_10_1021_acs_chemrev_5c00060 crossref_primary_10_1016_j_actamat_2023_118816 crossref_primary_10_1002_admi_202400536 crossref_primary_10_1016_j_jpowsour_2024_234403 crossref_primary_10_3390_mi12050480 crossref_primary_10_1016_j_jallcom_2024_175855 crossref_primary_10_1016_j_mseb_2022_115967 crossref_primary_10_1016_j_jpcs_2024_112323 crossref_primary_10_1038_s41524_023_01162_w crossref_primary_10_1016_j_snb_2024_137008 crossref_primary_10_1016_j_jmst_2023_01_004 crossref_primary_10_1021_acsaem_5c01473 crossref_primary_10_3390_app12136373 crossref_primary_10_1038_s41567_024_02417_z crossref_primary_10_1002_smsc_202400284 crossref_primary_10_1002_adfm_202305269 crossref_primary_10_1002_smsc_202300359 crossref_primary_10_1016_j_actamat_2023_118847 crossref_primary_10_1063_5_0069575 crossref_primary_10_1016_j_jallcom_2024_174672 crossref_primary_10_1016_j_matchar_2023_113414 crossref_primary_10_1002_adfm_202205215 crossref_primary_10_1021_acsnano_5c10693 crossref_primary_10_1039_D3EE01902K crossref_primary_10_1002_smll_202505757 crossref_primary_10_1016_j_scriptamat_2025_116866 crossref_primary_10_1103_PhysRevApplied_18_014053 crossref_primary_10_1103_PhysRevB_105_205201 crossref_primary_10_1002_adfm_202304173 crossref_primary_10_1002_adhm_202404525 crossref_primary_10_1016_j_nwnano_2025_100104 crossref_primary_10_1038_s41467_024_48346_6 crossref_primary_10_1016_j_jcis_2025_137375 crossref_primary_10_1002_sstr_202400694 crossref_primary_10_1016_j_ceramint_2025_04_002 crossref_primary_10_1016_j_jmst_2022_07_048 crossref_primary_10_1021_jacs_5c11435 crossref_primary_10_1016_j_ceramint_2024_02_111 crossref_primary_10_1016_j_nanoen_2022_107911 crossref_primary_10_1039_D2NH00429A crossref_primary_10_1016_j_mseb_2024_117428 crossref_primary_10_1016_j_mtphys_2022_100764 crossref_primary_10_1002_aenm_202404251 crossref_primary_10_1016_j_mtphys_2022_100889 crossref_primary_10_1016_j_device_2025_100797 crossref_primary_10_59717_j_xinn_mater_2025_100130 crossref_primary_10_1002_adma_202110518 crossref_primary_10_1038_s41467_024_45811_0 crossref_primary_10_1093_ce_zkae028 crossref_primary_10_1016_j_jallcom_2025_180294 crossref_primary_10_1002_er_8366 crossref_primary_10_1016_j_vacuum_2023_112135 crossref_primary_10_1002_smll_202106875 crossref_primary_10_1007_s12648_023_02877_8 crossref_primary_10_1016_j_jallcom_2025_182488 crossref_primary_10_1021_acsaem_5c02536 crossref_primary_10_1016_j_commatsci_2025_113678 crossref_primary_10_1557_s43580_024_00937_7 crossref_primary_10_3390_s23115044 crossref_primary_10_1007_s11664_021_09312_w crossref_primary_10_1002_adfm_202516306 crossref_primary_10_1016_j_enconman_2022_115871 crossref_primary_10_1038_s41467_023_40648_5 crossref_primary_10_1038_s41598_025_04545_9 crossref_primary_10_1002_smsc_202300245 crossref_primary_10_1039_D2EE02408J crossref_primary_10_1063_5_0225369 crossref_primary_10_1088_1361_6528_ad6e89 crossref_primary_10_1016_j_jallcom_2022_167692 crossref_primary_10_1016_j_vacuum_2024_112993 crossref_primary_10_1016_j_enbuild_2025_115994 crossref_primary_10_1016_j_physb_2025_417338 crossref_primary_10_1016_j_applthermaleng_2025_125944 crossref_primary_10_1016_j_energy_2021_123059 crossref_primary_10_3390_ma18174219 crossref_primary_10_1088_1361_648X_ad5245 crossref_primary_10_1116_6_0002635 crossref_primary_10_1038_s41467_025_63174_y crossref_primary_10_1038_s41467_023_40954_y crossref_primary_10_1016_j_nanoen_2024_109651 crossref_primary_10_35848_1347_4065_aca0fc crossref_primary_10_3390_cryst14060557 crossref_primary_10_1103_PhysRevX_15_021054 crossref_primary_10_1016_j_measurement_2023_113920 crossref_primary_10_1002_adfm_202100258 crossref_primary_10_1007_s11244_023_01799_3 crossref_primary_10_1016_j_ceramint_2024_10_420 crossref_primary_10_1063_5_0255434 crossref_primary_10_1016_j_actamat_2023_118753 crossref_primary_10_1016_j_apsusc_2023_157947 crossref_primary_10_1016_j_actamat_2023_118752 crossref_primary_10_1360_TB_2024_0796 crossref_primary_10_1002_adfm_202404886 crossref_primary_10_1080_10408436_2022_2053499 crossref_primary_10_1021_acsaem_5c00443 crossref_primary_10_1360_TB_2024_0793 crossref_primary_10_1080_15376494_2023_2217660 crossref_primary_10_1016_j_mattod_2023_04_021 crossref_primary_10_1126_science_adg7196 crossref_primary_10_1016_j_jallcom_2025_180535 crossref_primary_10_1016_j_seta_2022_102685 crossref_primary_10_1016_j_jtice_2024_105531 crossref_primary_10_1002_aenm_202400408 crossref_primary_10_3390_met14010040 crossref_primary_10_1002_adfm_202416861 crossref_primary_10_1016_j_apenergy_2021_117340 crossref_primary_10_1016_j_actbio_2025_05_033 crossref_primary_10_1016_j_ceramint_2023_07_183 crossref_primary_10_1016_j_xinn_2025_100864 crossref_primary_10_1016_j_nanoen_2024_109596 crossref_primary_10_1063_5_0226327 crossref_primary_10_1002_adma_202500802 crossref_primary_10_1016_j_jallcom_2024_177070 crossref_primary_10_1016_j_enconman_2023_116981 crossref_primary_10_1103_PhysRevApplied_20_014052 crossref_primary_10_1038_s41467_022_35289_z crossref_primary_10_1002_admt_202100953 crossref_primary_10_1007_s44174_025_00289_2 crossref_primary_10_1016_j_actamat_2022_117743 crossref_primary_10_1016_j_nanoen_2022_107736 crossref_primary_10_54227_mlab_20240010 crossref_primary_10_54227_mlab_20240017 crossref_primary_10_1002_advs_202206395 crossref_primary_10_1002_advs_202206397 crossref_primary_10_1016_j_mtelec_2025_100169 crossref_primary_10_1016_j_apenergy_2025_125510 crossref_primary_10_1016_j_seta_2022_102585 crossref_primary_10_1016_j_apsusc_2025_164358 crossref_primary_10_1016_j_jallcom_2021_163296 crossref_primary_10_1016_j_jallcom_2023_170157 crossref_primary_10_1016_j_jallcom_2023_170399 crossref_primary_10_1007_s42114_024_01068_1 crossref_primary_10_1103_PhysRevB_111_235204 crossref_primary_10_1209_0295_5075_acdb98 crossref_primary_10_1016_j_apenergy_2022_119959 crossref_primary_10_1016_j_heliyon_2023_e21117 crossref_primary_10_1063_5_0081265 crossref_primary_10_1126_science_adp2444 crossref_primary_10_1039_D3MH01013A crossref_primary_10_1039_D1EE03633E crossref_primary_10_1039_D2EE00883A crossref_primary_10_1016_j_enbenv_2023_11_011 crossref_primary_10_1063_5_0204885 crossref_primary_10_1088_1674_1056_ad2d57 crossref_primary_10_1093_nsr_nwaf227 crossref_primary_10_1126_science_ade9645 crossref_primary_10_1002_jccs_202200359 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126479 crossref_primary_10_1021_acsami_4c16642 crossref_primary_10_1016_j_cej_2024_151588 crossref_primary_10_1002_admt_202301069 crossref_primary_10_1063_5_0048411 crossref_primary_10_1038_s41524_024_01474_5 crossref_primary_10_1088_1361_6528_ac5288 crossref_primary_10_1002_adma_202508627 crossref_primary_10_1016_j_apmt_2025_102607 crossref_primary_10_1016_j_cej_2025_162649 crossref_primary_10_7498_aps_74_20250150 crossref_primary_10_1016_j_nanoen_2021_106572 crossref_primary_10_1016_j_applthermaleng_2023_120079 crossref_primary_10_1016_j_nanoen_2021_106692 crossref_primary_10_1039_D1NR06962D crossref_primary_10_3390_cryst13010049 crossref_primary_10_1002_adfm_202506488 crossref_primary_10_1016_j_jalmes_2024_100056 crossref_primary_10_1016_j_chip_2023_100054 crossref_primary_10_1016_j_applthermaleng_2024_123612 crossref_primary_10_1038_s41598_025_98104_x crossref_primary_10_1002_aenm_202202507 crossref_primary_10_1016_j_nanoen_2022_107809 crossref_primary_10_1002_cey2_281 crossref_primary_10_1016_j_mser_2022_100700 crossref_primary_10_1002_inf2_12663 crossref_primary_10_1016_j_jallcom_2024_174964 crossref_primary_10_1016_j_applthermaleng_2024_122763 crossref_primary_10_1016_j_xcrp_2025_102472 crossref_primary_10_1002_adfm_202403990 crossref_primary_10_1016_j_apsusc_2023_158779 crossref_primary_10_1021_acsaem_5c01834 crossref_primary_10_1021_jacs_2c12877 crossref_primary_10_1088_1361_6463_ac0843 crossref_primary_10_1063_5_0245017 crossref_primary_10_1016_j_actamat_2025_121451 crossref_primary_10_1021_acsami_5c14459 crossref_primary_10_1016_j_applthermaleng_2024_124739 crossref_primary_10_1063_5_0174135 crossref_primary_10_3390_nano13111735 crossref_primary_10_20517_energymater_2025_32 crossref_primary_10_1016_j_jallcom_2021_163090 crossref_primary_10_1016_j_applthermaleng_2025_128018 crossref_primary_10_1088_1361_6439_adf7b3 crossref_primary_10_1002_adma_202102990 crossref_primary_10_1002_advs_202103547 crossref_primary_10_1039_D4EE01857E crossref_primary_10_1016_j_applthermaleng_2025_128010 crossref_primary_10_1016_j_nanoen_2021_106795 crossref_primary_10_1063_5_0187554 crossref_primary_10_1007_s10973_023_12682_4 crossref_primary_10_1016_j_mseb_2023_116463 crossref_primary_10_1103_cwfm_sx5b crossref_primary_10_3389_fenrg_2023_1124288 crossref_primary_10_1007_s10973_023_12168_3 crossref_primary_10_1002_adfm_202402319 crossref_primary_10_1002_inf2_12324 crossref_primary_10_20517_energymater_2025_22 crossref_primary_10_1039_D1EE03339E crossref_primary_10_1063_5_0235568 crossref_primary_10_1103_PhysRevLett_134_086401 crossref_primary_10_1088_1361_6501_acde00 crossref_primary_10_1063_5_0187427 crossref_primary_10_1002_adfm_202406428 crossref_primary_10_1016_j_cej_2022_135062 crossref_primary_10_1016_j_mtphys_2024_101534 crossref_primary_10_1016_j_rser_2023_113636 crossref_primary_10_1002_adma_202506999 crossref_primary_10_1038_s41598_025_12345_4 crossref_primary_10_1039_D5EE00253B crossref_primary_10_1002_aenm_202400369 crossref_primary_10_1002_idm2_12009 crossref_primary_10_1088_0256_307X_38_11_117201 crossref_primary_10_1063_5_0187497 crossref_primary_10_1016_j_nanoen_2025_111213 crossref_primary_10_1016_j_mtphys_2025_101705 crossref_primary_10_1007_s11664_022_09985_x crossref_primary_10_1063_5_0177326 crossref_primary_10_1002_adfm_202415368 crossref_primary_10_1038_s41699_024_00501_9 crossref_primary_10_1002_smll_202506188 crossref_primary_10_1088_1742_6596_3093_1_012016 crossref_primary_10_1002_aesr_202200124 crossref_primary_10_1016_j_actamat_2023_119587 crossref_primary_10_1039_D1EE00738F crossref_primary_10_1002_aenm_202501184 crossref_primary_10_1002_smll_202312145 crossref_primary_10_1016_j_actamat_2024_119777 crossref_primary_10_1016_j_enconman_2023_117222 crossref_primary_10_1016_j_bioactmat_2024_02_006 crossref_primary_10_1002_smll_202405019 crossref_primary_10_1038_s41467_022_31372_7 crossref_primary_10_1038_s41467_025_56163_8 crossref_primary_10_1021_acs_jpca_5c04311 crossref_primary_10_1002_adma_202505642 crossref_primary_10_1007_s41918_024_00232_x crossref_primary_10_1016_j_nanoen_2023_108615 crossref_primary_10_1016_j_mtphys_2023_101270 crossref_primary_10_1016_j_nanoen_2023_108611 crossref_primary_10_1016_j_matt_2022_03_011 crossref_primary_10_1038_s41563_024_02039_z crossref_primary_10_3390_en16248109 crossref_primary_10_1038_s41524_023_01048_x crossref_primary_10_1002_aenm_202301406 crossref_primary_10_1002_pssa_202200108 crossref_primary_10_1063_5_0187590 crossref_primary_10_1002_adts_202200049 crossref_primary_10_1016_j_cej_2022_137278 crossref_primary_10_1016_j_ceramint_2024_12_448 crossref_primary_10_1063_5_0084138 crossref_primary_10_1002_aesr_202100208 crossref_primary_10_1007_s00339_022_05838_w crossref_primary_10_1002_smll_202302457 crossref_primary_10_1016_j_mtener_2021_100820 crossref_primary_10_1016_j_actamat_2024_120540 crossref_primary_10_1016_j_applthermaleng_2024_122939 crossref_primary_10_1063_5_0293474 crossref_primary_10_1002_admt_202400263 crossref_primary_10_1016_j_actamat_2024_119675 crossref_primary_10_1126_science_ado4077 crossref_primary_10_1016_j_enconman_2023_117760 crossref_primary_10_1016_j_xinn_2024_100782 crossref_primary_10_1007_s10854_024_12162_x crossref_primary_10_1016_j_cej_2025_166606 crossref_primary_10_1016_j_mtphys_2024_101334 crossref_primary_10_1038_s41524_022_00887_4 crossref_primary_10_1016_j_mtphys_2025_101733 crossref_primary_10_1016_j_mtphys_2024_101451 crossref_primary_10_1016_j_applthermaleng_2024_122815 crossref_primary_10_3390_ma15248993 crossref_primary_10_1002_adfm_202302770 crossref_primary_10_1016_j_applthermaleng_2025_127548 crossref_primary_10_1016_j_jallcom_2023_169133 crossref_primary_10_1007_s12598_024_02986_1 crossref_primary_10_1016_j_mattod_2023_03_021 crossref_primary_10_1016_j_ceramint_2022_09_315 crossref_primary_10_1016_j_gee_2024_11_010 crossref_primary_10_1016_j_solidstatesciences_2024_107636 crossref_primary_10_1016_j_actamat_2025_121185 crossref_primary_10_1063_5_0176286 crossref_primary_10_1002_adfm_202415210 crossref_primary_10_1016_j_cej_2022_138389 crossref_primary_10_1016_j_ccr_2025_217132 crossref_primary_10_1002_adma_202409275 crossref_primary_10_54227_mlab_20230016 crossref_primary_10_1016_j_enconman_2024_118901 crossref_primary_10_54227_mlab_20230015 crossref_primary_10_1002_aesr_202300069 crossref_primary_10_1016_j_joule_2025_101822 crossref_primary_10_1016_j_mtener_2022_101071 crossref_primary_10_1038_s41467_023_44331_7 crossref_primary_10_1103_PhysRevApplied_21_054010 crossref_primary_10_1103_PhysRevB_111_205202 crossref_primary_10_1038_s41586_024_07621_8 crossref_primary_10_1007_s43207_024_00394_w crossref_primary_10_1088_1674_1056_ad34c5 crossref_primary_10_7498_aps_74_20241178 crossref_primary_10_1557_s43577_025_00939_2 crossref_primary_10_1039_D5CP01499A crossref_primary_10_1002_adfm_202415000 crossref_primary_10_1016_j_pmatsci_2024_101402 crossref_primary_10_1002_adfm_202315707 crossref_primary_10_1002_cnma_202200419 crossref_primary_10_54227_mlab_20230032 crossref_primary_10_1002_smll_202412833 crossref_primary_10_1016_j_nanoen_2023_108930 crossref_primary_10_1038_s41563_024_02059_9 crossref_primary_10_1002_smll_202104916 crossref_primary_10_1016_j_solidstatesciences_2025_107829 crossref_primary_10_1016_j_jallcom_2021_162035 crossref_primary_10_1016_j_surfin_2025_105954 crossref_primary_10_1063_5_0166338 crossref_primary_10_1126_science_abi8668 crossref_primary_10_1016_j_mtphys_2025_101845 crossref_primary_10_1016_j_jeurceramsoc_2023_11_022 crossref_primary_10_1016_j_calphad_2024_102765 crossref_primary_10_1016_j_mtla_2024_102209 crossref_primary_10_1016_j_scriptamat_2024_116090 crossref_primary_10_1016_j_jmat_2023_05_011 crossref_primary_10_1039_D4EW00367E crossref_primary_10_1002_smll_202405182 crossref_primary_10_3390_molecules29143312 crossref_primary_10_1039_D2EE01038K crossref_primary_10_1016_j_jallcom_2023_170482 crossref_primary_10_1038_s41467_021_25208_z crossref_primary_10_1016_j_joule_2025_101854 crossref_primary_10_1016_j_mtphys_2024_101491 crossref_primary_10_1088_2515_7655_ac49dc crossref_primary_10_3390_nano14020234 crossref_primary_10_1080_09506608_2022_2145359 crossref_primary_10_1016_j_apenergy_2024_123878 crossref_primary_10_1089_soro_2024_0139 crossref_primary_10_1016_j_jallcom_2024_175349 crossref_primary_10_1016_j_jmst_2022_05_004 crossref_primary_10_1016_j_cej_2024_148530 crossref_primary_10_1016_j_jallcom_2024_175222 crossref_primary_10_1038_s41524_022_00927_z crossref_primary_10_1007_s40820_024_01360_1 crossref_primary_10_1021_acsami_5c08992 crossref_primary_10_3390_en18102426 crossref_primary_10_1016_j_cej_2023_148135 crossref_primary_10_1016_j_ijrefrig_2022_10_009 crossref_primary_10_1016_j_nanoen_2022_108036 crossref_primary_10_1016_j_applthermaleng_2024_124591 crossref_primary_10_1063_5_0220462 crossref_primary_10_1016_j_mtphys_2021_100457 crossref_primary_10_1109_TED_2023_3304277 crossref_primary_10_1002_smll_202401723 crossref_primary_10_1016_j_matchar_2023_112760 crossref_primary_10_1088_1742_6596_2491_1_012016 crossref_primary_10_1016_j_jeurceramsoc_2025_117767 crossref_primary_10_1039_D5TA02626A crossref_primary_10_7566_JPSJ_90_122001 crossref_primary_10_1038_s41467_022_28798_4 crossref_primary_10_1016_j_applthermaleng_2023_120968 crossref_primary_10_1016_j_mtphys_2024_101366 crossref_primary_10_1007_s10338_022_00355_y crossref_primary_10_1016_j_ceramint_2023_02_233 crossref_primary_10_1016_j_applthermaleng_2024_123379 crossref_primary_10_1016_j_actamat_2023_118773 crossref_primary_10_1002_aenm_202202392 crossref_primary_10_1016_j_mtphys_2022_100746 crossref_primary_10_1021_acsami_4c19653 crossref_primary_10_1016_j_jorganchem_2025_123673 crossref_primary_10_1002_mgea_21 crossref_primary_10_1016_j_jeurceramsoc_2023_04_052 crossref_primary_10_1016_j_apenergy_2023_121870 crossref_primary_10_1016_j_mssp_2022_106944 crossref_primary_10_1016_j_mtphys_2022_100618 crossref_primary_10_1002_adfm_202314499 crossref_primary_10_1021_acsami_5c10608 crossref_primary_10_1002_smll_202412632 crossref_primary_10_1002_adfm_202501996 crossref_primary_10_1016_j_joule_2024_08_013 crossref_primary_10_1002_smtd_202301619 crossref_primary_10_1002_adma_202408008 crossref_primary_10_1016_j_enbenv_2024_10_002 crossref_primary_10_1016_j_joule_2024_08_008 crossref_primary_10_1016_j_tsf_2022_139082 crossref_primary_10_1021_acs_jpcc_4c06097 crossref_primary_10_1002_adfm_202303361 crossref_primary_10_1016_j_jallcom_2022_168476 crossref_primary_10_1002_aenm_202201043 crossref_primary_10_1002_adma_202311278 crossref_primary_10_1016_j_mtphys_2024_101460 crossref_primary_10_1016_j_applthermaleng_2025_125999 crossref_primary_10_1038_s41598_024_84074_z crossref_primary_10_1002_adfm_202518193 crossref_primary_10_3390_cryst13071139 crossref_primary_10_1038_s41928_022_00776_0 crossref_primary_10_1002_idm2_12058 crossref_primary_10_1016_j_commatsci_2023_112751 crossref_primary_10_1016_j_applthermaleng_2023_120994 crossref_primary_10_1016_j_jpcs_2022_111020 crossref_primary_10_1007_s40195_025_01854_w crossref_primary_10_1007_s11664_021_09320_w crossref_primary_10_1039_D4EE04976D crossref_primary_10_1016_j_mtphys_2025_101693 crossref_primary_10_1126_science_adk9589 crossref_primary_10_1016_j_ceramint_2022_02_165 crossref_primary_10_1016_j_mtphys_2025_101692 crossref_primary_10_1002_adma_202401828 crossref_primary_10_1016_j_mtphys_2023_101292 crossref_primary_10_1088_1674_1056_ad4cd3 crossref_primary_10_3390_ma16145204 crossref_primary_10_1002_aelm_202200352 crossref_primary_10_1016_j_nanoen_2022_107147 crossref_primary_10_1016_j_mtphys_2021_100519 crossref_primary_10_1002_adem_202100955 crossref_primary_10_1016_j_nanoen_2022_108118 crossref_primary_10_1038_s41563_021_01149_2 crossref_primary_10_1002_adfm_202502424 crossref_primary_10_1002_aenm_202300312 crossref_primary_10_1002_adfm_202404279 crossref_primary_10_1088_1757_899X_1327_1_012043 crossref_primary_10_1038_s41598_024_72950_7 crossref_primary_10_1002_adma_202208272 crossref_primary_10_1103_PhysRevB_111_045203 crossref_primary_10_1038_s41563_024_02070_0 crossref_primary_10_1080_09506608_2023_2193785 crossref_primary_10_1063_9_0000901 crossref_primary_10_1063_5_0102434 crossref_primary_10_1039_D3EE01450A crossref_primary_10_1002_ece2_17 crossref_primary_10_12677_mos_2025_141078 crossref_primary_10_46904_eea_24_72_1_1108002 crossref_primary_10_1016_j_mtchem_2024_102285 crossref_primary_10_1016_j_mtphys_2022_100704 crossref_primary_10_1016_j_coco_2021_100901 crossref_primary_10_1016_j_mtphys_2025_101797 crossref_primary_10_1021_acsaem_5c02243 crossref_primary_10_1016_j_enconman_2025_119806 crossref_primary_10_1039_D3NR04584F crossref_primary_10_1002_adma_202209119 crossref_primary_10_1134_S1990793124700325 crossref_primary_10_1016_j_physe_2022_115333 crossref_primary_10_1016_j_physb_2022_414108 crossref_primary_10_1021_jacs_4c01161 crossref_primary_10_1007_s43207_025_00531_z crossref_primary_10_1016_j_applthermaleng_2024_123085 crossref_primary_10_1016_j_materresbull_2022_112106 crossref_primary_10_1002_apxr_202400063 crossref_primary_10_1016_j_jallcom_2023_172815 crossref_primary_10_1002_aenm_202302818 crossref_primary_10_1016_j_applthermaleng_2022_119690 crossref_primary_10_1002_aenm_202400184 crossref_primary_10_1016_j_jallcom_2023_172817 crossref_primary_10_1126_science_adr8450 crossref_primary_10_1016_j_applthermaleng_2025_127615 crossref_primary_10_1007_s11431_022_2159_8 crossref_primary_10_1002_adfm_202113164 crossref_primary_10_1016_j_vacuum_2022_111239 crossref_primary_10_1002_adma_202303341 crossref_primary_10_1002_apxr_202400179 crossref_primary_10_1002_aelm_202500287 crossref_primary_10_1016_j_physleta_2023_128684 crossref_primary_10_1038_s41598_022_14405_5 crossref_primary_10_1103_PhysRevApplied_19_064054 |
| Cites_doi | 10.1039/D0EE00838A 10.1016/0022-3697(95)00148-4 10.1016/j.applthermaleng.2004.02.010 10.1016/j.ijrefrig.2004.04.002 10.1002/adma.201903387 10.1038/nature09996 10.1109/EE.1951.6436699 10.1002/0470068329 10.1103/PhysRevMaterials.3.095401 10.1109/JPROC.2006.879795 10.1063/1.1753970 10.1002/(SICI)1099-114X(200002)24:2<93::AID-ER563>3.0.CO;2-6 10.1016/0038-1101(72)90173-6 10.1007/BF02746070 10.1002/adma.201603955 10.1016/j.applthermaleng.2014.01.074 10.1016/j.mtphys.2018.12.004 10.1201/9781420038903.ch58 10.1088/1674-1056/25/1/017202 10.1002/adfm.201807235 10.1126/science.aax7792 10.1039/c3ta13456c 10.1149/1.2427584 10.1007/978-1-4899-5723-8 10.1063/1.4994696 10.1063/1.5016488 10.1073/pnas.1711725114 10.1016/j.rser.2013.12.030 10.1088/0508-3443/5/11/303 10.1063/1.1729056 10.1103/PhysRevB.75.245208 10.1071/PH790585 10.1038/nmat3621 10.1103/PhysRevLett.16.574 10.1126/science.287.5455.1024 10.1038/srep22724 10.1016/S0081-1947(08)60190-3 10.1103/PhysRevB.80.193105 10.1088/0508-3443/9/9/306 10.1016/j.ijrefrig.2009.03.004 10.1063/1.4921457 10.1126/science.1156446 10.1080/14786435908233413 10.1016/S1359-4311(03)00202-3 10.1557/mrs.2018.7 10.1126/science.1158899 10.1088/0034-4885/79/9/095901 10.1103/PhysRevB.93.165209 10.1039/C8EE03374A 10.1063/1.881752 10.4324/9780203996997 10.1063/1.4727855 10.1007/BF00549720 10.1103/PhysRevB.49.4565 10.1016/j.apenergy.2005.01.002 10.1063/1.1777361 10.1016/S1359-4311(02)00039-X |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2020 Springer Nature Limited 2020. |
| Copyright_xml | – notice: Springer Nature Limited 2020 – notice: Springer Nature Limited 2020. |
| DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 |
| DOI | 10.1038/s41563-020-00852-w |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database Engineering Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1476-4660 |
| EndPage | 461 |
| ExternalDocumentID | 33288897 10_1038_s41563_020_00852_w |
| Genre | Journal Article Review |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NFIDA NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c414t-248728566b3daafab26be41e35ebe22f63181c7331836b85f3f33d0591c09dbb3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 613 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598992700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Thu Oct 02 13:29:25 EDT 2025 Mon Oct 06 17:00:01 EDT 2025 Mon Jul 21 05:25:05 EDT 2025 Sat Nov 29 03:30:32 EST 2025 Tue Nov 18 21:58:34 EST 2025 Fri Feb 21 02:40:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-248728566b3daafab26be41e35ebe22f63181c7331836b85f3f33d0591c09dbb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3968-8530 0000-0001-8233-3332 |
| PMID | 33288897 |
| PQID | 2505578591 |
| PQPubID | 27576 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2468337992 proquest_journals_2505578591 pubmed_primary_33288897 crossref_citationtrail_10_1038_s41563_020_00852_w crossref_primary_10_1038_s41563_020_00852_w springer_journals_10_1038_s41563_020_00852_w |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nat. Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2021 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Song (CR39) 2019; 8 Sharp, Bierschenk, Lyon (CR75) 2006; 94 Liu, Mao, Liu, Chen, Ren (CR46) 2018; 43 Güler, Ahiska (CR68) 2002; 22 CR36 CR79 Gao, Rowe (CR17) 2006; 83 Mahan (CR77) 1997; 51 Tamaki, Sato, Kanno (CR37) 2016; 28 Zhang (CR38) 2017; 8 CR76 CR74 Yim, Fitzke, Rosi (CR34) 1966; 1 Conn, Taylor (CR58) 1960; 107 CR73 Sun, Ikeno, Mizushima, Isikawa (CR25) 2009; 80 CR72 Zebarjadi (CR78) 2015; 106 CR71 CR70 Zhang (CR54) 2015; 25 Ziabari, Zebarjadi, Vashaee, Shakouri (CR11) 2016; 79 Ishiwata (CR21) 2013; 12 Mao (CR40) 2017; 114 Pei (CR47) 2011; 473 Sofo, Mahan (CR52) 1994; 49 Altenkirch (CR2) 1911; 12 CR6 Lenoir, Cassart, Michenaud, Scherrer, Scherrer (CR24) 1996; 57 CR8 Zhao, Tan (CR10) 2014; 66 Yim, Amith (CR28) 1972; 15 CR7 Norouzzadeh, Vashaee (CR49) 2016; 6 Bansal, Martin (CR15) 2000; 24 Jeong, Kim, Lundstrom (CR48) 2012; 111 Bian, Wang, Zhou, Shakouri (CR80) 2007; 75 Ioffe (CR33) 1956; 3 Kanno (CR41) 2018; 112 Imasato, Kang, Snyder (CR43) 2019; 12 Gallo, Chandrasekhar, Sutter (CR27) 1963; 34 Goldsmid, Douglas (CR4) 1954; 5 Bahk, Shakouri (CR57) 2016; 93 Astrain, Vián, Domı́nguez (CR61) 2003; 23 Wolfe, Smith (CR29) 1962; 1 Chung (CR26) 2000; 287 Poudel (CR35) 2008; 320 CR14 CR13 CR12 CR55 Mahan, Sales, Sharp (CR20) 1997; 50 LeBlanc, Yee, Scullin, Dames, Goodson (CR59) 2014; 32 CR53 Sinani, Gordiakova (CR5) 1956; 1 Esaki, Stiles (CR65) 1966; 16 Witkoske, Wang, Lundstrom, Askarpour, Maassen (CR50) 2017; 122 MacDonald, Mooser, Pearson, Templeton, Woods (CR19) 1959; 4 Liu (CR45) 2013; 1 Shu (CR42) 2019; 29 Wang, Hwang, Radermacher (CR63) 2009; 32 Riffat, Qiu (CR16) 2004; 24 Markov, Rezaei, Sadeghi, Esfarjani, Zebarjadi (CR56) 2019; 3 Peltier (CR1) 1834; 56 Iordanishvili, Stilbans (CR18) 1956; 1 Goldsmid (CR31) 1955; 1 Harman, Honig, Fischler, Paladino, Button (CR30) 1964; 4 CR69 CR67 Mao (CR22) 2019; 365 CR66 CR60 Chasmar, Stratton (CR51) 1959; 7 White (CR3) 1951; 70 Shi (CR44) 2019; 31 Pan (CR23) 2020; 13 Disawas, Wongwises (CR62) 2004; 27 Issi (CR64) 1979; 32 Bell (CR9) 2008; 321 Goldsmid, Sheard, Wright (CR32) 1958; 9 852_CR66 B Lenoir (852_CR24) 1996; 57 852_CR67 Z Bian (852_CR80) 2007; 75 852_CR7 P Bansal (852_CR15) 2000; 24 852_CR69 852_CR8 852_CR6 SW Song (852_CR39) 2019; 8 H Tamaki (852_CR37) 2016; 28 852_CR60 C Zhang (852_CR54) 2015; 25 R Chasmar (852_CR51) 1959; 7 M Zebarjadi (852_CR78) 2015; 106 S Ishiwata (852_CR21) 2013; 12 HJXXVII Goldsmid (852_CR31) 1955; 1 L Esaki (852_CR65) 1966; 16 J Sharp (852_CR75) 2006; 94 Y Pan (852_CR23) 2020; 13 J Mao (852_CR40) 2017; 114 EK Iordanishvili (852_CR18) 1956; 1 852_CR76 852_CR79 JC Peltier (852_CR1) 1834; 56 852_CR36 HJ Goldsmid (852_CR4) 1954; 5 D Zhao (852_CR10) 2014; 66 852_CR70 HJ Goldsmid (852_CR32) 1958; 9 852_CR71 NF Güler (852_CR68) 2002; 22 852_CR72 K Imasato (852_CR43) 2019; 12 852_CR73 852_CR74 AF Ioffe (852_CR33) 1956; 3 DKC MacDonald (852_CR19) 1959; 4 LE Bell (852_CR9) 2008; 321 D Astrain (852_CR61) 2003; 23 SS Sinani (852_CR5) 1956; 1 J Conn (852_CR58) 1960; 107 W White (852_CR3) 1951; 70 A Ziabari (852_CR11) 2016; 79 J Zhang (852_CR38) 2017; 8 R Wolfe (852_CR29) 1962; 1 YZ Pei (852_CR47) 2011; 473 P Norouzzadeh (852_CR49) 2016; 6 T Kanno (852_CR41) 2018; 112 SB Riffat (852_CR16) 2004; 24 Z Liu (852_CR46) 2018; 43 E Witkoske (852_CR50) 2017; 122 DY Chung (852_CR26) 2000; 287 S Disawas (852_CR62) 2004; 27 GD Mahan (852_CR77) 1997; 51 W Yim (852_CR28) 1972; 15 R Shu (852_CR42) 2019; 29 W Liu (852_CR45) 2013; 1 JH Bahk (852_CR57) 2016; 93 WM Yim (852_CR34) 1966; 1 C Jeong (852_CR48) 2012; 111 T Harman (852_CR30) 1964; 4 CF Gallo (852_CR27) 1963; 34 X Wang (852_CR63) 2009; 32 P Sun (852_CR25) 2009; 80 852_CR55 852_CR12 852_CR13 852_CR14 X Shi (852_CR44) 2019; 31 J Issi (852_CR64) 1979; 32 M Gao (852_CR17) 2006; 83 852_CR53 G Mahan (852_CR20) 1997; 50 S LeBlanc (852_CR59) 2014; 32 B Poudel (852_CR35) 2008; 320 M Markov (852_CR56) 2019; 3 E Altenkirch (852_CR2) 1911; 12 JO Sofo (852_CR52) 1994; 49 J Mao (852_CR22) 2019; 365 |
| References_xml | – volume: 57 start-page: 89 year: 1996 end-page: 99 ident: CR24 article-title: Transport properties of Bi-rich Bi–Sb alloys publication-title: J. Phys. Chem. Solids – ident: CR70 – ident: CR74 – volume: 66 start-page: 15 year: 2014 end-page: 24 ident: CR10 article-title: A review of thermoelectric cooling: materials, modeling and applications publication-title: Appl. Therm. Eng. – volume: 32 start-page: 585 year: 1979 end-page: 628 ident: CR64 article-title: Low temperature transport properties of the group V semimetals publication-title: Aust. J. Phys. – volume: 16 start-page: 574 year: 1966 ident: CR65 article-title: BiSb alloy tunnel junctions publication-title: Phys. Rev. Lett. – ident: CR12 – volume: 6 year: 2016 ident: CR49 article-title: Classification of valleytronics in thermoelectricity publication-title: Sci. Rep. – volume: 8 start-page: 25 year: 2019 end-page: 33 ident: CR39 article-title: Joint effect of magnesium and yttrium on enhancing thermoelectric properties of n-type Zintl Mg Y Sb Bi . publication-title: Mater. Today Phys. – volume: 24 start-page: 93 year: 2000 end-page: 107 ident: CR15 article-title: Comparative study of vapour compression, thermoelectric and absorption refrigerators publication-title: Int. J. Energy Res. – volume: 7 start-page: 52 year: 1959 end-page: 72 ident: CR51 article-title: The thermoelectric figure of merit and its relation to thermoelectric generators publication-title: Int. J. Electron. – volume: 25 start-page: 017202 year: 2015 ident: CR54 article-title: Unexpected low thermal conductivity and large power factor in Dirac semimetal Cd As publication-title: Chin. Phys. B – volume: 3 start-page: 095401 year: 2019 ident: CR56 article-title: Thermoelectric properties of semimetals publication-title: Phys. Rev. Mater. – ident: CR8 – volume: 83 start-page: 133 year: 2006 end-page: 152 ident: CR17 article-title: Experimental evaluation of prototype thermoelectric domestic-refrigerators publication-title: Appl. Energy – volume: 34 start-page: 144 year: 1963 end-page: 152 ident: CR27 article-title: Transport properties of bismuth single crystals publication-title: J. Appl. Phys. – volume: 43 start-page: 181 year: 2018 end-page: 186 ident: CR46 article-title: Nano-microstructural control of phonon engineering for thermoelectric energy harvesting publication-title: MRS Bull. – volume: 12 start-page: 965 year: 2019 end-page: 971 ident: CR43 article-title: Exceptional thermoelectric performance in Mg Sb Bi for low-grade waste heat recovery publication-title: Energy Environ. Sci. – volume: 12 start-page: 512 year: 2013 end-page: 517 ident: CR21 article-title: Extremely high electron mobility in a phonon-glass semimetal publication-title: Nat. Mater. – volume: 27 start-page: 587 year: 2004 end-page: 594 ident: CR62 article-title: Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device publication-title: Int. J. Refrig. – volume: 28 start-page: 10182 year: 2016 end-page: 10187 ident: CR37 article-title: Isotropic conduction network and defect chemistry in Mg Sb -based layered Zintl compounds with high thermoelectric performance publication-title: Adv. Mater. – ident: CR71 – volume: 4 start-page: 77 year: 1964 end-page: 79 ident: CR30 article-title: Oriented single-crystal bismuth Nernst–Ettingshausen refrigerators publication-title: Appl. Phys. Lett. – volume: 22 start-page: 1271 year: 2002 end-page: 1276 ident: CR68 article-title: Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit publication-title: Appl. Therm. Eng. – volume: 321 start-page: 1457 year: 2008 end-page: 1461 ident: CR9 article-title: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems publication-title: Science – ident: CR67 – volume: 106 start-page: 203506 year: 2015 ident: CR78 article-title: Electronic cooling using thermoelectric devices publication-title: Appl. Phys. Lett. – volume: 93 start-page: 165209 year: 2016 ident: CR57 article-title: Minority carrier blocking to enhance the thermoelectric figure of merit in narrow-band-gap semiconductors publication-title: Phys. Rev. B – volume: 112 start-page: 033903 year: 2018 ident: CR41 article-title: Enhancement of average thermoelectric figure of merit by increasing the grain-size of Mg Sb Bi Te publication-title: Appl. Phys. Lett. – volume: 473 start-page: 66 year: 2011 end-page: 69 ident: CR47 article-title: Convergence of electronic bands for high performance bulk thermoelectrics publication-title: Nature – ident: CR60 – ident: CR36 – volume: 1 start-page: 5 year: 1962 end-page: 7 ident: CR29 article-title: Effects of a magnetic field on the thermoelectric properties of a bismuth–antimony alloy publication-title: Appl. Phys. Lett. – volume: 32 start-page: 1442 year: 2009 end-page: 1451 ident: CR63 article-title: Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant publication-title: Int. J. Refrig. – volume: 94 start-page: 1602 year: 2006 end-page: 1612 ident: CR75 article-title: Overview of solid-state thermoelectric refrigerators and possible applications to on-chip thermal management publication-title: Proc. IEEE – volume: 1 start-page: 218 year: 1955 end-page: 222 ident: CR31 article-title: Thermoelectric applications of semiconductors publication-title: Int. J. Electron. – volume: 122 start-page: 175102 year: 2017 ident: CR50 article-title: Thermoelectric band engineering: the role of carrier scattering publication-title: J. Appl. Phys. – volume: 31 start-page: 1903387 year: 2019 ident: CR44 article-title: Extraordinary n-type Mg SbBi thermoelectrics enabled by yttrium doping publication-title: Adv. Mater. – volume: 4 start-page: 433 year: 1959 end-page: 446 ident: CR19 article-title: On the possibility of thermoelectric refrigeration at very low temperatures publication-title: Phil. Mag. – ident: CR66 – ident: CR72 – ident: CR14 – ident: CR53 – volume: 80 start-page: 193105 year: 2009 ident: CR25 article-title: Simultaneously optimizing the interdependent thermoelectric parameters in Ce(Ni Cu ) Al publication-title: Phys. Rev. B – volume: 70 start-page: 589 year: 1951 end-page: 591 ident: CR3 article-title: Some experiments with Peltier effect publication-title: Electr. Eng. – volume: 79 start-page: 095901 year: 2016 ident: CR11 article-title: Nanoscale solid-state cooling: a review publication-title: Rep. Prog. Phys. – volume: 320 start-page: 634 year: 2008 end-page: 638 ident: CR35 article-title: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys publication-title: Science – volume: 114 start-page: 10548 year: 2017 end-page: 10553 ident: CR40 article-title: Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg Sb -based materials publication-title: Proc. Natl Acad. Sci. USA – volume: 365 start-page: 495 year: 2019 end-page: 498 ident: CR22 article-title: High thermoelectric cooling performance of n-type Mg Bi -based materials publication-title: Science – volume: 9 start-page: 365 year: 1958 end-page: 370 ident: CR32 article-title: The performance of bismuth telluride thermojunctions publication-title: Br. J. Appl. Phys. – volume: 111 start-page: 113707 year: 2012 ident: CR48 article-title: On the best bandstructure for thermoelectric performance: a Landauer perspective publication-title: J. Appl. Phys. – volume: 12 start-page: 920 year: 1911 end-page: 924 ident: CR2 article-title: Elektrothermische Kälteerzeugung und reversible elektrische Heizung publication-title: Phys. Z. – ident: CR6 – ident: CR79 – volume: 15 start-page: 1141 year: 1972 end-page: 1165 ident: CR28 article-title: BiSb alloys for magneto-thermoelectric and thermomagnetic cooling publication-title: Solid State Electron. – volume: 107 start-page: 977 year: 1960 end-page: 982 ident: CR58 article-title: Thermoelectric and crystallographic properties of Ag Se publication-title: J. Electrochem. Soc. – volume: 29 start-page: 1807235 year: 2019 ident: CR42 article-title: Mg Sb Bi family: a promising substitute for the state-of-the-art n-type thermoelectric materials near room temperature publication-title: Adv. Funct. Mater. – volume: 24 start-page: 1979 year: 2004 end-page: 1993 ident: CR16 article-title: Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners publication-title: Appl. Therm. Eng. – ident: CR69 – volume: 1 start-page: 2318 year: 1956 end-page: 2319 ident: CR5 article-title: Solid solution Bi Te –Bi Se as a material for thermoelements publication-title: Sov. Phys. Tech. Phys. – volume: 1 start-page: 928 year: 1956 end-page: 939 ident: CR18 article-title: Thermoelectric microcoolers publication-title: Sov. Phys. Tech. Phys. – volume: 13 start-page: 1717 year: 2020 end-page: 1724 ident: CR23 article-title: Mg (Bi,Sb) single crystals towards high thermoelectric performance publication-title: Energy Environ. Sci. – ident: CR73 – volume: 287 start-page: 1024 year: 2000 end-page: 1027 ident: CR26 article-title: CsBi Te : a high-performance thermoelectric material for low-temperature applications publication-title: Science – volume: 51 start-page: 81 year: 1997 end-page: 157 ident: CR77 article-title: Good thermoelectrics publication-title: Solid State Phys. – volume: 1 start-page: 52 year: 1966 end-page: 65 ident: CR34 article-title: Thermoelectric properties of Bi Te –Sb Te –Sb Se pseudo-ternary alloys in the temperature range 77 to 300 K publication-title: J. Mater. Sci. – ident: CR13 – volume: 8 year: 2017 ident: CR38 article-title: Discovery of high-performance low-cost n-type Mg Sb -based thermoelectric materials with multi-valley conduction bands publication-title: Nat. Commun. – volume: 49 start-page: 4565 year: 1994 end-page: 4570 ident: CR52 article-title: Optimum band gap of a thermoelectric material publication-title: Phys. Rev. B – volume: 56 start-page: 371 year: 1834 end-page: 386 ident: CR1 article-title: Nouvelles expériences sur la caloricité des courants électrique publication-title: Ann. Chim. Phys. – volume: 3 start-page: 702 year: 1956 end-page: 715 ident: CR33 article-title: On thermal conduction in semiconductors publication-title: Il Nuovo Cimento – volume: 32 start-page: 313 year: 2014 end-page: 327 ident: CR59 article-title: Material and manufacturing cost considerations for thermoelectrics publication-title: Renew. Sust. Energy Rev. – ident: CR55 – ident: CR7 – ident: CR76 – volume: 75 start-page: 245208 year: 2007 ident: CR80 article-title: Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials publication-title: Phys. Rev. B – volume: 50 start-page: 42 year: 1997 end-page: 47 ident: CR20 article-title: Thermoelectric materials: new approaches to an old problem publication-title: Phys. Today – volume: 23 start-page: 2183 year: 2003 end-page: 2200 ident: CR61 article-title: Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation publication-title: Appl. Therm. Eng. – volume: 1 start-page: 13093 year: 2013 end-page: 13100 ident: CR45 article-title: Understanding of the contact of nanostructured thermoelectric n-type Bi Te Se legs for power generation applications publication-title: J. Mater. Chem. A – volume: 5 start-page: 386 year: 1954 end-page: 390 ident: CR4 article-title: The use of semiconductors in thermoelectric refrigeration publication-title: Br. J. Appl. Phys. – volume: 56 start-page: 371 year: 1834 ident: 852_CR1 publication-title: Ann. Chim. Phys. – volume: 13 start-page: 1717 year: 2020 ident: 852_CR23 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00838A – volume: 57 start-page: 89 year: 1996 ident: 852_CR24 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(95)00148-4 – volume: 24 start-page: 1979 year: 2004 ident: 852_CR16 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.02.010 – ident: 852_CR60 – volume: 27 start-page: 587 year: 2004 ident: 852_CR62 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2004.04.002 – volume: 31 start-page: 1903387 year: 2019 ident: 852_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201903387 – volume: 12 start-page: 920 year: 1911 ident: 852_CR2 publication-title: Phys. Z. – volume: 473 start-page: 66 year: 2011 ident: 852_CR47 publication-title: Nature doi: 10.1038/nature09996 – volume: 70 start-page: 589 year: 1951 ident: 852_CR3 publication-title: Electr. Eng. doi: 10.1109/EE.1951.6436699 – ident: 852_CR55 doi: 10.1002/0470068329 – ident: 852_CR73 – volume: 3 start-page: 095401 year: 2019 ident: 852_CR56 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.095401 – volume: 94 start-page: 1602 year: 2006 ident: 852_CR75 publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.879795 – volume: 4 start-page: 77 year: 1964 ident: 852_CR30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1753970 – volume: 8 year: 2017 ident: 852_CR38 publication-title: Nat. Commun. – volume: 24 start-page: 93 year: 2000 ident: 852_CR15 publication-title: Int. J. Energy Res. doi: 10.1002/(SICI)1099-114X(200002)24:2<93::AID-ER563>3.0.CO;2-6 – volume: 15 start-page: 1141 year: 1972 ident: 852_CR28 publication-title: Solid State Electron. doi: 10.1016/0038-1101(72)90173-6 – volume: 3 start-page: 702 year: 1956 ident: 852_CR33 publication-title: Il Nuovo Cimento doi: 10.1007/BF02746070 – volume: 28 start-page: 10182 year: 2016 ident: 852_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201603955 – volume: 66 start-page: 15 year: 2014 ident: 852_CR10 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.01.074 – volume: 8 start-page: 25 year: 2019 ident: 852_CR39 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2018.12.004 – ident: 852_CR69 – ident: 852_CR70 doi: 10.1201/9781420038903.ch58 – volume: 25 start-page: 017202 year: 2015 ident: 852_CR54 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/25/1/017202 – ident: 852_CR8 – volume: 29 start-page: 1807235 year: 2019 ident: 852_CR42 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807235 – volume: 365 start-page: 495 year: 2019 ident: 852_CR22 publication-title: Science doi: 10.1126/science.aax7792 – volume: 1 start-page: 13093 year: 2013 ident: 852_CR45 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta13456c – volume: 107 start-page: 977 year: 1960 ident: 852_CR58 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2427584 – ident: 852_CR12 doi: 10.1007/978-1-4899-5723-8 – volume: 122 start-page: 175102 year: 2017 ident: 852_CR50 publication-title: J. Appl. Phys. doi: 10.1063/1.4994696 – volume: 112 start-page: 033903 year: 2018 ident: 852_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5016488 – volume: 114 start-page: 10548 year: 2017 ident: 852_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1711725114 – ident: 852_CR76 – volume: 32 start-page: 313 year: 2014 ident: 852_CR59 publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2013.12.030 – ident: 852_CR72 – volume: 5 start-page: 386 year: 1954 ident: 852_CR4 publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/5/11/303 – volume: 34 start-page: 144 year: 1963 ident: 852_CR27 publication-title: J. Appl. Phys. doi: 10.1063/1.1729056 – ident: 852_CR13 – ident: 852_CR66 – volume: 7 start-page: 52 year: 1959 ident: 852_CR51 publication-title: Int. J. Electron. – volume: 75 start-page: 245208 year: 2007 ident: 852_CR80 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.245208 – volume: 32 start-page: 585 year: 1979 ident: 852_CR64 publication-title: Aust. J. Phys. doi: 10.1071/PH790585 – volume: 12 start-page: 512 year: 2013 ident: 852_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat3621 – volume: 16 start-page: 574 year: 1966 ident: 852_CR65 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.16.574 – volume: 287 start-page: 1024 year: 2000 ident: 852_CR26 publication-title: Science doi: 10.1126/science.287.5455.1024 – ident: 852_CR79 – volume: 6 year: 2016 ident: 852_CR49 publication-title: Sci. Rep. doi: 10.1038/srep22724 – volume: 51 start-page: 81 year: 1997 ident: 852_CR77 publication-title: Solid State Phys. doi: 10.1016/S0081-1947(08)60190-3 – volume: 80 start-page: 193105 year: 2009 ident: 852_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.193105 – volume: 9 start-page: 365 year: 1958 ident: 852_CR32 publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/9/9/306 – volume: 32 start-page: 1442 year: 2009 ident: 852_CR63 publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2009.03.004 – volume: 106 start-page: 203506 year: 2015 ident: 852_CR78 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4921457 – volume: 320 start-page: 634 year: 2008 ident: 852_CR35 publication-title: Science doi: 10.1126/science.1156446 – ident: 852_CR71 – volume: 4 start-page: 433 year: 1959 ident: 852_CR19 publication-title: Phil. Mag. doi: 10.1080/14786435908233413 – volume: 1 start-page: 218 year: 1955 ident: 852_CR31 publication-title: Int. J. Electron. – ident: 852_CR14 – volume: 23 start-page: 2183 year: 2003 ident: 852_CR61 publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(03)00202-3 – volume: 43 start-page: 181 year: 2018 ident: 852_CR46 publication-title: MRS Bull. doi: 10.1557/mrs.2018.7 – volume: 321 start-page: 1457 year: 2008 ident: 852_CR9 publication-title: Science doi: 10.1126/science.1158899 – ident: 852_CR6 – volume: 79 start-page: 095901 year: 2016 ident: 852_CR11 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/9/095901 – ident: 852_CR67 – volume: 93 start-page: 165209 year: 2016 ident: 852_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.165209 – volume: 12 start-page: 965 year: 2019 ident: 852_CR43 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03374A – volume: 50 start-page: 42 year: 1997 ident: 852_CR20 publication-title: Phys. Today doi: 10.1063/1.881752 – ident: 852_CR7 doi: 10.4324/9780203996997 – volume: 111 start-page: 113707 year: 2012 ident: 852_CR48 publication-title: J. Appl. Phys. doi: 10.1063/1.4727855 – volume: 1 start-page: 2318 year: 1956 ident: 852_CR5 publication-title: Sov. Phys. Tech. Phys. – volume: 1 start-page: 52 year: 1966 ident: 852_CR34 publication-title: J. Mater. Sci. doi: 10.1007/BF00549720 – ident: 852_CR53 – volume: 49 start-page: 4565 year: 1994 ident: 852_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.4565 – ident: 852_CR74 – volume: 1 start-page: 928 year: 1956 ident: 852_CR18 publication-title: Sov. Phys. Tech. Phys. – ident: 852_CR36 – volume: 83 start-page: 133 year: 2006 ident: 852_CR17 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2005.01.002 – volume: 1 start-page: 5 year: 1962 ident: 852_CR29 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1777361 – volume: 22 start-page: 1271 year: 2002 ident: 852_CR68 publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(02)00039-X |
| SSID | ssj0021556 |
| Score | 2.7343736 |
| SecondaryResourceType | review_article |
| Snippet | Solid-state thermoelectric devices can directly convert electricity into cooling or enable heat pumping through the Peltier effect. The commercialization of... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 454 |
| SubjectTerms | 639/301/1005/1007 639/301/299/2736 Biomaterials Bismuth tellurides Chemistry and Materials Science Commercialization Condensed Matter Physics Cooling Electricity Materials Science Nanotechnology Optical and Electronic Materials Peltier effects Perspective Room temperature Thermoelectric cooling Thermoelectric materials |
| Title | Thermoelectric cooling materials |
| URI | https://link.springer.com/article/10.1038/s41563-020-00852-w https://www.ncbi.nlm.nih.gov/pubmed/33288897 https://www.proquest.com/docview/2505578591 https://www.proquest.com/docview/2468337992 |
| Volume | 20 |
| WOSCitedRecordID | wos000598992700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH34_6ooI3jdsmfUxPoqII4rL4gL2VJG1F0K3uw_37ZtrsqohevARKk3aYTDIzmcl8AAdxFGRSB8hCiYoFBG2SeFoxPyyQCqBJhbICm4hbLex0krY9cOvbtMrxnlht1Fmp6Yy8SaqaCrMk_snrGyPUKIquWgiNaZihSmVBA2bOLlrt24nLZbRlfb8ojpixLLi9NuMJbPbJdaEYJt2sxpCz0XfV9MPe_BErrVTQ5eJ_iV-CBWt8uqe1tCzDVN5dgfkvJQlXwTVy03spa3ScJ-3qklB9Hl1j2NayugYPlxf351fMoigwHfjBgHHjknA0VpsSmZSFVDxSeeDnIjTzx3kRmVXta4JuRBEpDAtRCJEZq8vXXpIpJdah0S27-Sa4ilL2k1ChMm4lxwyLMMMQM0_6XpHnygF_zMBU2xLjhHTxnFahboFpzfTUMD2tmJ6OHDicjHmtC2z82XtnzODULrZ--sldB_Ynr80yodiH7Obl0PQJIhQiThLuwEY9n5PfCcERMYkdOBpP8OfHf6dl629atmGOU_5LleWzA41Bb5jvwqx-Hzz1e3swHXfiqsU9K7Tm6frs2LQ3vE1tfPcB_I3wtw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9VAFD5BMBEW4AuootZEVzqhnenjdEGMUQkEuGGBCbtxZjolJHAL91648U_5Gz2nj4uGyI6F606n0553z-MDeJdnSWlcgiI1aEXC0CZF5KyI0wp5AJqxaBqwiXwwwOPj4nAOfvW9MFxW2evERlGXteN_5JtsqnkwSxF_urgUjBrF2dUeQqNliz3_c0oh23hr9yvR972U29-OvuyIDlVAuCROJkKSiy6RvBirSmMqY2VmfRJ7ldL7SFllxOWxYyhDVJnFtFKVUiV5IbGLitJaRfs-gIWEIiGWqwN5OAvwyDa33Ux5JsiPkV2TTqRwc8yBEmdMuY8bUymmfxvCW97trcxsY_C2V_63T_UYljvXOvzcysITmPPDp7D0x8DFZxCSVIzO6xb759SFrmbMopOQ3PZWEp_D93s54irMD-uhX4fQckNCkVq0FDRLLLFKS0yxjEwcVd7bAOKeYNp1A9QZx-NMN4l8hbolsiYi64bIehrAh9k9F-34kDtXb_QE1Z0qGesbagbwdnaZlABndszQ11e0JslQqbwoZABrLf_MHqeURMQiD-Bjz1A3m__7LC_uPssbeLRzdLCv93cHey9hUXKlT1PPtAHzk9GVfwUP3fXkdDx63YhICD_um9F-A-XSRsI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BMEYewAtKEbUm-iSTbWd6OX0whoAbCWZDoia8jTPTKSHRLe4ubvxr_DrO6WXREHnjwedOp9Oee8_lA3idZ0lpXIIiNWhFwtAmReSsiNMKeQCasWgasIl8NMLj4-JoCS76Xhguq-x1YqOoy9rxP_IBm2oezFLEg6orizjaH74_-ykYQYozrT2cRssih_73nMK36buDfaL1GymHH77sfRQdwoBwSZzMhCR3XSJ5NFaVxlTGysz6JPYqpXeTssqI42PHsIaoMotppSqlSvJIYhcVpbWK9r0DK3lCfkJTNvh5EeyRnW47m_JMkE8ju4adSOFgykETZ0-5pxtTKeZ_G8Vrnu61LG1j_Ibr__NnewBrncsd7rYy8hCW_PgRrP4xiPExhCQtkx91iwl06kJXM5bRSUjufCuhG_D1Vo74BJbH9dhvQmi5UaFILVoKpiWWWKUlplhGJo4q720AcU887brB6ozv8V03CX6FuiW4JoLrhuB6HsDbxT1n7ViRG1dv98TVnYqZ6ivKBvBqcZmUA2d8zNjX57QmyVCpvChkAE9bXlo8TimJiEUewE7PXFeb__ssWzef5SXcI_7Snw5Gh8_gvuQCoKbMaRuWZ5Nz_xzuul-z0-nkRSMtIXy7bT67BG15T5I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoelectric+cooling+materials&rft.jtitle=Nature+materials&rft.au=Mao%2C+Jun&rft.au=Chen%2C+Gang&rft.au=Ren%2C+Zhifeng&rft.date=2021-04-01&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=4&rft.spage=454&rft.epage=461&rft_id=info:doi/10.1038%2Fs41563-020-00852-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41563_020_00852_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |