Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering

[Display omitted] The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the co...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Current opinion in chemical engineering Ročník 26; s. 81 - 87
Hlavní autori: De Ras, Kevin, Van de Vijver, Ruben, Galvita, Vladimir V, Marin, Guy B, Van Geem, Kevin M
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2019
ISSN:2211-3398, 2211-3398
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the coming decade and the only way to substantially reduce the associated CO2 emissions is to combine it with Carbon Capture and Utilization (CCU) and/or Carbon Capture and Storage (CCS). CCU options that do not require a lot of hydrogen and with high added value are logical step stones towards production of bulk chemicals and even fuels such as oxymethylene ethers. BF waste gas recycling and conversion will require a multisectoral approach creating new dependencies between the steel, energy, and chemical sectors. Energy efficient, cheap and CO2 free hydrogen production using green electricity is the ultimate solution to drive this transition. This hydrogen could on the long term also open the door to replace blast furnaces by hydrogen-based steel making. However, today it makes economically more sense to use thermally produced hydrogen by (bio)methane pyrolysis or steam reforming, potentially electrified and intensified, rather than from water electrolysis. Having novel and existing elements from the chemical engineers' toolbox such as artificial intelligence, catalysis and reaction engineering, process intensification principles and multiscale modeling and design, should bring these emerging technologies within reach by the end of the next decade.
AbstractList [Display omitted] The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the coming decade and the only way to substantially reduce the associated CO2 emissions is to combine it with Carbon Capture and Utilization (CCU) and/or Carbon Capture and Storage (CCS). CCU options that do not require a lot of hydrogen and with high added value are logical step stones towards production of bulk chemicals and even fuels such as oxymethylene ethers. BF waste gas recycling and conversion will require a multisectoral approach creating new dependencies between the steel, energy, and chemical sectors. Energy efficient, cheap and CO2 free hydrogen production using green electricity is the ultimate solution to drive this transition. This hydrogen could on the long term also open the door to replace blast furnaces by hydrogen-based steel making. However, today it makes economically more sense to use thermally produced hydrogen by (bio)methane pyrolysis or steam reforming, potentially electrified and intensified, rather than from water electrolysis. Having novel and existing elements from the chemical engineers' toolbox such as artificial intelligence, catalysis and reaction engineering, process intensification principles and multiscale modeling and design, should bring these emerging technologies within reach by the end of the next decade.
Author Galvita, Vladimir V
Van de Vijver, Ruben
De Ras, Kevin
Marin, Guy B
Van Geem, Kevin M
Author_xml – sequence: 1
  givenname: Kevin
  surname: De Ras
  fullname: De Ras, Kevin
– sequence: 2
  givenname: Ruben
  surname: Van de Vijver
  fullname: Van de Vijver, Ruben
– sequence: 3
  givenname: Vladimir V
  surname: Galvita
  fullname: Galvita, Vladimir V
– sequence: 4
  givenname: Guy B
  surname: Marin
  fullname: Marin, Guy B
– sequence: 5
  givenname: Kevin M
  surname: Van Geem
  fullname: Van Geem, Kevin M
  email: Kevin.VanGeem@UGent.be
BookMark eNqFkE1LAzEQhoNUsNb-Ai_7B3ZN9iO7K3iQ4hcUvOg5jMmkTd1mlyQr1F9v2noQDzoMzDvDPAPznpOJ7S0ScsloxijjV5tM9nKNWU5Zm9GYlJ2QaZ4zlhZF20x-6DMy935DY1SctWU9Je8LcG-9TSQMYXSYgFXJGExnPiGYODc2CWtMfEDsYqNGH9zuOpFr6Dq0K_QHoh-G3oXRmmDiRPcuLuDWSOiSuGQsojN2dUFONXQe5991Rl7v714Wj-ny-eFpcbtMZcnKkDINNW8k1KoFqnmrua5KaCivZAF5tRdQUU1lU5WKFQAtrXVT1UoDB6Z4MSPt8a50vfcOtZAmHN4JDkwnGBV748RGHIwTe-MEjUlZZItf7ODMFtzuH-rmSGF868OgE14atBKVcSiDUL35k_8C1HaM-w
CitedBy_id crossref_primary_10_1016_j_psep_2024_04_107
crossref_primary_10_1186_s13068_024_02589_z
crossref_primary_10_1007_s40033_025_00923_9
crossref_primary_10_1016_j_jechem_2021_12_042
crossref_primary_10_1016_j_biteb_2023_101544
crossref_primary_10_1016_j_ccst_2025_100387
crossref_primary_10_1016_j_jclepro_2021_129843
crossref_primary_10_3390_met14010127
crossref_primary_10_3390_su15097652
crossref_primary_10_3390_ma15062008
crossref_primary_10_1016_j_fuel_2022_126533
crossref_primary_10_1016_j_fuel_2021_121393
crossref_primary_10_1016_j_rser_2021_110846
crossref_primary_10_1016_j_combustflame_2023_112792
crossref_primary_10_1016_j_seppur_2023_125993
crossref_primary_10_3390_pr8101292
crossref_primary_10_1016_j_icheatmasstransfer_2024_108165
crossref_primary_10_1016_j_jclepro_2022_134038
crossref_primary_10_1016_j_fuel_2024_131244
crossref_primary_10_1016_j_chemosphere_2021_132274
crossref_primary_10_1016_j_seppur_2022_121863
crossref_primary_10_1002_srin_202300715
crossref_primary_10_1016_j_enconman_2024_118141
crossref_primary_10_1016_j_jclepro_2020_123558
crossref_primary_10_1515_reveh_2022_0105
crossref_primary_10_1016_j_psep_2021_01_045
crossref_primary_10_1016_j_scitotenv_2021_146776
crossref_primary_10_1038_s44286_024_00063_z
crossref_primary_10_1002_cite_202400052
crossref_primary_10_1002_cite_202200118
crossref_primary_10_1016_j_biortech_2020_124236
crossref_primary_10_1080_19392699_2024_2305940
crossref_primary_10_1016_j_jclepro_2023_135997
crossref_primary_10_1016_j_jallcom_2025_179355
crossref_primary_10_3390_en14102741
crossref_primary_10_1016_j_joei_2022_07_002
crossref_primary_10_3390_sym12071102
crossref_primary_10_1016_j_fuel_2021_121017
crossref_primary_10_1093_ijlct_ctaf106
crossref_primary_10_1007_s11157_023_09649_0
crossref_primary_10_1016_j_combustflame_2021_111914
crossref_primary_10_1007_s12209_020_00246_8
crossref_primary_10_1016_j_rser_2021_111710
crossref_primary_10_1039_D1CY00922B
crossref_primary_10_1186_s13068_023_02336_w
crossref_primary_10_1021_acssuschemeng_5c00741
crossref_primary_10_1051_e3sconf_202339101046
crossref_primary_10_3390_en18010148
crossref_primary_10_3389_fmicb_2022_907577
crossref_primary_10_1007_s11814_022_1331_9
crossref_primary_10_1002_aic_17520
crossref_primary_10_1007_s11663_023_02819_z
crossref_primary_10_1016_j_jcou_2021_101456
crossref_primary_10_1088_1361_648X_ad4432
crossref_primary_10_1016_j_combustflame_2025_114121
crossref_primary_10_1109_TCYB_2023_3298838
crossref_primary_10_1016_j_combustflame_2025_114122
crossref_primary_10_1016_j_fuel_2025_136149
crossref_primary_10_1016_j_powtec_2022_117226
crossref_primary_10_1016_j_ccst_2023_100136
crossref_primary_10_1016_j_proci_2022_07_069
crossref_primary_10_1016_j_fuel_2023_128045
crossref_primary_10_3390_met12061023
crossref_primary_10_3390_en16010538
crossref_primary_10_1016_j_jclepro_2022_133932
crossref_primary_10_3390_mca29030030
crossref_primary_10_1016_j_engeos_2025_100408
crossref_primary_10_1016_j_erss_2022_102565
Cites_doi 10.20964/2018.02.26
10.1016/j.rser.2017.01.011
10.1038/s41576-019-0122-6
10.1146/annurev-environ-032112-095222
10.1016/j.egypro.2013.06.046
10.1016/j.apenergy.2014.06.002
10.1016/j.cclet.2018.03.017
10.1186/s42480-019-0007-7
10.1016/j.chempr.2017.09.018
10.5194/essd-10-2141-2018
10.1016/j.wasman.2016.09.011
10.1021/acs.est.6b00627
10.1016/j.seppur.2017.11.063
10.1002/cite.201800017
10.1021/acs.iecr.5b03215
10.1126/science.aas9793
10.1126/science.aax5179
10.1007/s41061-017-0107-x
10.1016/j.powtec.2016.11.011
10.1016/j.energy.2016.02.056
10.1021/acs.iecr.8b05577
10.1016/S1872-2067(17)62949-8
10.1126/science.aaw8775
10.1016/j.cbpa.2017.10.024
10.1002/cssc.201900100
10.1039/C3CS60395D
10.1088/1748-9326/11/7/075002
10.1016/j.apenergy.2017.02.012
10.1002/cite.201800019
10.1039/C8EE00097B
10.3389/fmicb.2016.00694
10.1016/j.jechem.2017.07.003
10.3390/fermentation3020028
10.3390/su10020478
10.1016/j.renene.2018.10.091
10.1016/j.carbon.2019.05.041
10.1016/j.jcou.2018.11.008
10.1073/pnas.1821029116
10.1016/j.apenergy.2019.01.001
10.1016/j.egypro.2017.07.152
10.1016/j.rser.2015.10.101
10.1126/science.aah7161
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.coche.2019.09.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2211-3398
EndPage 87
ExternalDocumentID 10_1016_j_coche_2019_09_001
S221133981930036X
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
ENUVR
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
KOM
M41
MO0
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SPC
SPCBC
SSG
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c414t-1fa768ca7d9a0f69f6f54a8065c3a258065a50f0c854d13aa907f857dfa6a1d63
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503208700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2211-3398
IngestDate Wed Nov 05 20:34:37 EST 2025
Tue Nov 18 22:42:20 EST 2025
Fri Feb 23 02:48:53 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-1fa768ca7d9a0f69f6f54a8065c3a258065a50f0c854d13aa907f857dfa6a1d63
OpenAccessLink https://ars.els-cdn.com/content/image/1-s2.0-S221133981930036X-fx1_lrg.jpg
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_coche_2019_09_001
crossref_primary_10_1016_j_coche_2019_09_001
elsevier_sciencedirect_doi_10_1016_j_coche_2019_09_001
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationTitle Current opinion in chemical engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Guoxing Chen, Godfroid, Snyders (bib0215) 2018
(bib0020) 2019
Pieja, Morse, Cal (bib0230) 2017; 41
Wismann, Engbæk, Vendelbo, Bendixen, Eriksen, Aasberg-Petersen, Frandsen, Chorkendorff, Mortensen (bib0085) 2019; 364
Yildirim, Nölker, Büker, Kleinschmidt (bib0150) 2018; 90
ThyssenKrupp (bib0140) 2019
Bareiss, de la Rua, Mockl, Hamacher (bib0105) 2019; 237
Creamer, Gao (bib0245) 2016; 50
Buelens, Galvita, Poelman, Detavernier, Marin (bib0050) 2016; 354
Ogawa, Takeuchi, Kajikawa (bib0115) 2018; 10
Rajendran, Browne, Murphy (bib0090) 2019; 133
ArcelorMittal Belgium NV (bib0180) 2017
Kennedy, Sabag, Gladek, Thorin, Mason, Moroney, Schlueter, Winkelman, Jong, Heeres, Graaf (bib0030) 2017
Schalenbach, Zeradjanin, Kasian, Cherevko, Mayrhofer (bib0120) 2018; 13
Villadsen, Fosbøl, Angelidaki, Woodley, Nielsen, Møller (bib0225) 2019; 12
Eraslan, Avsec, Gagneur, Theis (bib0270) 2019; 20
Saad, Williams (bib0265) 2016; 58
Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, Pongratz, Pickers, Korsbakken, Peters, Canadell (bib0010) 2018; 10
Knitterscheidt (bib0065) 2019
Rahimi, Kang, Gelinas, Menon, Gordon, Metiu, McFarland (bib0075) 2019; 151
Dong, Razzaq, Hu, Ding (bib0195) 2017; 375
Chi, Yu (bib0130) 2018; 39
Coutanceau, Baranton, Audichon (bib0095) 2018
McGurk, Martín, Brandani, Sweatman, Fan (bib0255) 2017; 192
Davis, Lewis, Shaner, Aggarwal, Arent, Azevedo, Benson, Bradley, Brouwer, Chiang (bib0135) 2018; 360
Schittkowski, Ruland, Laudenschleger, Girod, Kähler, Kaluza, Muhler, Schlögl (bib0145) 2018; 90
Fulk, Rochelle (bib0240) 2013; 37
Quader, Ahmed, Dawal, Nukman (bib0035) 2016; 55
Carmo, Stolten (bib0100) 2019
Liew, Martin, Tappel, Heijstra, Mihalcea, Kopke (bib0175) 2016; 7
van Vuuren, van Soest, Riahi, Clarke, Krey, Kriegler, Rogelj, Schaeffer, Tavoni (bib0005) 2016; 11
Pakhare, Spivey (bib0055) 2014; 43
Zhao, Su, Cui (bib0235) 2016; 102
Spurgeon, Kumar (bib0190) 2018; 11
Katelhon, Meys, Deutz, Suh, Bardow (bib0045) 2019; 116
Caillat (bib0025) 2017; 120
Phillips, Huhnke, Atiyeh (bib0170) 2017; 3
Ramírez-Santos, Castel, Favre (bib0070) 2018; 194
Rahman, Aziz, Saidur, Abu Bakar, Hainin, Putrajaya, Hassan (bib0040) 2017; 71
(bib0015) 2019
Coninck, Benson (bib0260) 2014; 39
Whang, Lim, Choi, Lee, Lee (bib0200) 2019; 1
Yoon, Lee, Wong (bib0205) 2017; 3
Tjandra, Huang (bib0210) 2018; 29
Chen, Yin, Ma (bib0160) 2014; 136
Mokhatab, Poe, Mak (bib0155) 2015
Idakiev, Lazarova, Bück, Tsotsas, Mörl (bib0250) 2017; 306
Burre, Bongartz, Mitsos (bib0185) 2019; 58
Buelens, Dharanipragada, Poelman, Zhou, Marin, Galvita (bib0220) 2019; 29
Van Geem, Galvita, Marin (bib0080) 2019; 364
Zhang, Song, Wang, Bao (bib0125) 2017; 26
Handler, Shonnard, Griffing, Lai, Palou-Rivera (bib0165) 2016; 55
ArcelorMittal (bib0060) 2019
Maric, Yu (bib0110) 2018
Villadsen (10.1016/j.coche.2019.09.001_sbref0225) 2019; 12
Schittkowski (10.1016/j.coche.2019.09.001_sbref0145) 2018; 90
Yoon (10.1016/j.coche.2019.09.001_bib0205) 2017; 3
Ogawa (10.1016/j.coche.2019.09.001_bib0115) 2018; 10
Rajendran (10.1016/j.coche.2019.09.001_bib0090) 2019; 133
Van Geem (10.1016/j.coche.2019.09.001_bib0080) 2019; 364
Zhao (10.1016/j.coche.2019.09.001_bib0235) 2016; 102
Mokhatab (10.1016/j.coche.2019.09.001_bib0155) 2015
Coninck (10.1016/j.coche.2019.09.001_bib0260) 2014; 39
Creamer (10.1016/j.coche.2019.09.001_bib0245) 2016; 50
Burre (10.1016/j.coche.2019.09.001_bib0185) 2019; 58
Chi (10.1016/j.coche.2019.09.001_sbref0130) 2018; 39
Spurgeon (10.1016/j.coche.2019.09.001_bib0190) 2018; 11
Pakhare (10.1016/j.coche.2019.09.001_bib0055) 2014; 43
Zhang (10.1016/j.coche.2019.09.001_bib0125) 2017; 26
Davis (10.1016/j.coche.2019.09.001_bib0135) 2018; 360
Yildirim (10.1016/j.coche.2019.09.001_bib0150) 2018; 90
Carmo (10.1016/j.coche.2019.09.001_bib0100) 2019
Schalenbach (10.1016/j.coche.2019.09.001_bib0120) 2018; 13
Rahman (10.1016/j.coche.2019.09.001_sbref0040) 2017; 71
Eraslan (10.1016/j.coche.2019.09.001_bib0270) 2019; 20
Bareiss (10.1016/j.coche.2019.09.001_bib0105) 2019; 237
Tjandra (10.1016/j.coche.2019.09.001_bib0210) 2018; 29
(10.1016/j.coche.2019.09.001_bib0020) 2019
ArcelorMittal Belgium NV (10.1016/j.coche.2019.09.001_bib0180) 2017
Buelens (10.1016/j.coche.2019.09.001_bib0050) 2016; 354
Handler (10.1016/j.coche.2019.09.001_bib0165) 2016; 55
Katelhon (10.1016/j.coche.2019.09.001_bib0045) 2019; 116
Whang (10.1016/j.coche.2019.09.001_bib0200) 2019; 1
Buelens (10.1016/j.coche.2019.09.001_bib0220) 2019; 29
Pieja (10.1016/j.coche.2019.09.001_bib0230) 2017; 41
Maric (10.1016/j.coche.2019.09.001_bib0110) 2018
Kennedy (10.1016/j.coche.2019.09.001_bib0030) 2017
ThyssenKrupp (10.1016/j.coche.2019.09.001_bib0140) 2019
Rahimi (10.1016/j.coche.2019.09.001_bib0075) 2019; 151
Fulk (10.1016/j.coche.2019.09.001_bib0240) 2013; 37
Caillat (10.1016/j.coche.2019.09.001_bib0025) 2017; 120
Wismann (10.1016/j.coche.2019.09.001_bib0085) 2019; 364
ArcelorMittal (10.1016/j.coche.2019.09.001_bib0060) 2019
Dong (10.1016/j.coche.2019.09.001_bib0195) 2017; 375
(10.1016/j.coche.2019.09.001_sbref0015) 2019
Phillips (10.1016/j.coche.2019.09.001_sbref0170) 2017; 3
Liew (10.1016/j.coche.2019.09.001_bib0175) 2016; 7
Guoxing Chen (10.1016/j.coche.2019.09.001_bib0215) 2018
Knitterscheidt (10.1016/j.coche.2019.09.001_bib0065) 2019
McGurk (10.1016/j.coche.2019.09.001_bib0255) 2017; 192
Coutanceau (10.1016/j.coche.2019.09.001_bib0095) 2018
Quader (10.1016/j.coche.2019.09.001_bib0035) 2016; 55
Ramírez-Santos (10.1016/j.coche.2019.09.001_sbref0070) 2018; 194
Saad (10.1016/j.coche.2019.09.001_bib0265) 2016; 58
Chen (10.1016/j.coche.2019.09.001_bib0160) 2014; 136
Idakiev (10.1016/j.coche.2019.09.001_bib0250) 2017; 306
van Vuuren (10.1016/j.coche.2019.09.001_bib0005) 2016; 11
Le Quéré (10.1016/j.coche.2019.09.001_bib0010) 2018; 10
References_xml – volume: 194
  start-page: 425
  year: 2018
  end-page: 442
  ident: bib0070
  article-title: A review of gas separation technologies within emission reduction programs in the iron and steel sector: current application and development perspectives
  publication-title: Sep Purif Technol
– volume: 116
  start-page: 11187
  year: 2019
  end-page: 11194
  ident: bib0045
  article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry
  publication-title: Proc Natl Acad Sci U SA
– volume: 39
  start-page: 390
  year: 2018
  end-page: 394
  ident: bib0130
  article-title: Water electrolysis based on renewable energy for hydrogen production
  publication-title: Chin J Catal
– year: 2018
  ident: bib0215
  article-title: Progress in plasma-assisted catalysis for carbon dioxide reduction
  publication-title: Plasma Chemistry and Gas Conversion Gas Convers
– volume: 90
  start-page: 1529
  year: 2018
  end-page: 1535
  ident: bib0150
  article-title: Chemical conversion of steel mill gases to urea: an analysis of plant capacity
  publication-title: Chem Ing Tech
– volume: 10
  start-page: 2141
  year: 2018
  end-page: 2194
  ident: bib0010
  article-title: Global carbon budget 2018
  publication-title: Earth Syst Sci Data
– volume: 354
  start-page: 449
  year: 2016
  end-page: 452
  ident: bib0050
  article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle
  publication-title: Science
– year: 2019
  ident: bib0065
  article-title: ThyssenKrupp steels itself for a carbon-free future
  publication-title: Handelsblatt
– volume: 55
  start-page: 537
  year: 2016
  end-page: 549
  ident: bib0035
  article-title: Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program
  publication-title: Renewable Sustainable Energy Rev
– volume: 237
  start-page: 862
  year: 2019
  end-page: 872
  ident: bib0105
  article-title: Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems
  publication-title: Appl Energy
– volume: 12
  start-page: 2147
  year: 2019
  end-page: 2153
  ident: bib0225
  article-title: The potential of biogas; the solution to energy storage
  publication-title: ChemSusChem
– volume: 192
  start-page: 126
  year: 2017
  end-page: 133
  ident: bib0255
  article-title: Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture
  publication-title: Appl Energy
– start-page: 181
  year: 2015
  end-page: 222
  ident: bib0155
  article-title: Chapter 6 - natural gas treating
  publication-title: Handbook of Natural Gas Transmission and Processing
– volume: 3
  start-page: 717
  year: 2017
  end-page: 718
  ident: bib0205
  article-title: Electrocatalytic reduction of carbon dioxide
  publication-title: Chem
– volume: 13
  start-page: 1173
  year: 2018
  end-page: 1226
  ident: bib0120
  article-title: A perspective on low-temperature water electrolysis - challenges in alkaline and acidic technology
  publication-title: Int J Electrochem Sci
– volume: 43
  start-page: 7813
  year: 2014
  end-page: 7837
  ident: bib0055
  article-title: A review of dry (CO2) reforming of methane over noble metal catalysts
  publication-title: Chem Soc Rev
– volume: 1
  start-page: 9
  year: 2019
  ident: bib0200
  article-title: Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals
  publication-title: BMC Chem Eng
– volume: 11
  year: 2016
  ident: bib0005
  article-title: Carbon budgets and energy transition pathways
  publication-title: Environ Res Lett
– volume: 7
  start-page: 694
  year: 2016
  ident: bib0175
  article-title: Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
  publication-title: Front Microbiol
– volume: 50
  start-page: 7276
  year: 2016
  end-page: 7289
  ident: bib0245
  article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review
  publication-title: Environ Sci Technol
– volume: 29
  start-page: 734
  year: 2018
  end-page: 746
  ident: bib0210
  article-title: Photocatalytic carbon dioxide reduction by photocatalyst innovation
  publication-title: Chin Chem Lett
– volume: 55
  start-page: 3253
  year: 2016
  end-page: 3261
  ident: bib0165
  article-title: Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks
  publication-title: Ind Eng Chem Res
– year: 2019
  ident: bib0020
  article-title: World Steel Association, Fact Sheet: Energy Use in the Steel Industry
– year: 2017
  ident: bib0180
  article-title: Periodic Reporting for Period 2 - STEELANOL (Production of Sustainable, Advanced bio-ethANOL Through an Innovative Gas-fermentation Process Using Exhaust Gases Emitted in the STEEL Industry)
– year: 2019
  ident: bib0060
  article-title: World First for Steel: ArcelorMittal Investigates the Industrial Use of Pure Hydrogen
– volume: 10
  start-page: 478
  year: 2018
  ident: bib0115
  article-title: Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research
  publication-title: Sustainability
– volume: 151
  start-page: 181
  year: 2019
  end-page: 191
  ident: bib0075
  article-title: Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts
  publication-title: Carbon
– year: 2018
  ident: bib0110
  article-title: Proton Exchange Membrane Water Electrolysis as a Promising Technology for Hydrogen Production and Energy Storage
– volume: 29
  start-page: 36
  year: 2019
  end-page: 45
  ident: bib0220
  article-title: Exploring the stability of Fe2O3-MgAl2O4 oxygen storage materials for CO production from CO2
  publication-title: J Co2 Util
– volume: 3
  start-page: 28
  year: 2017
  ident: bib0170
  article-title: Syngas fermentation: a microbial conversion process of gaseous substrates to various products
  publication-title: Fermentation
– volume: 136
  start-page: 1174
  year: 2014
  end-page: 1183
  ident: bib0160
  article-title: A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions
  publication-title: Appl Energy
– start-page: 17
  year: 2018
  end-page: 62
  ident: bib0095
  article-title: Chapter 3 - hydrogen production from water electrolysis
  publication-title: Hydrogen Electrochemical Production
– volume: 39
  start-page: 243
  year: 2014
  end-page: 270
  ident: bib0260
  article-title: Carbon dioxide capture and storage: issues and prospects
  publication-title: Annu Rev Environ Resour
– volume: 37
  start-page: 1706
  year: 2013
  end-page: 1719
  ident: bib0240
  article-title: Modeling aerosols in amine-based CO2 capture
  publication-title: Energy Procedia
– volume: 20
  start-page: 389
  year: 2019
  end-page: 403
  ident: bib0270
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat Rev Genet
– volume: 90
  start-page: 1419
  year: 2018
  end-page: 1429
  ident: bib0145
  article-title: Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst
  publication-title: Chem Ing Tech
– volume: 364
  start-page: 734
  year: 2019
  end-page: 735
  ident: bib0080
  article-title: Making chemicals with electricity
  publication-title: Science
– volume: 306
  start-page: 26
  year: 2017
  end-page: 33
  ident: bib0250
  article-title: Inductive heating of fluidized beds: drying of particulate solids
  publication-title: Powder Technol
– volume: 58
  start-page: 5567
  year: 2019
  end-page: 5578
  ident: bib0185
  article-title: Production of oxymethylene dimethyl ethers from hydrogen and Carbon Dioxide—part II: modeling and analysis for OME3–5
  publication-title: Ind Eng Chem Res
– volume: 26
  start-page: 839
  year: 2017
  end-page: 853
  ident: bib0125
  article-title: Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes
  publication-title: J Energy Chem
– year: 2019
  ident: bib0015
  article-title: World Steel Association, Steel’s Contribution to a Low Carbon Future and Climate Resilient Societies
– volume: 11
  start-page: 1536
  year: 2018
  end-page: 1551
  ident: bib0190
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products
  publication-title: Energy Environ Sci
– volume: 360
  start-page: 1419-+
  year: 2018
  ident: bib0135
  article-title: Net-zero emissions energy systems
  publication-title: Science
– volume: 120
  start-page: 20
  year: 2017
  end-page: 27
  ident: bib0025
  article-title: Burners in the steel industry: utilization of by-product combustion gases in reheating furnaces and annealing lines
  publication-title: Energy Procedia
– volume: 58
  start-page: 214
  year: 2016
  end-page: 220
  ident: bib0265
  article-title: Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases
  publication-title: Waste Manag
– volume: 375
  start-page: 23
  year: 2017
  ident: bib0195
  article-title: Homogeneous reduction of carbon dioxide with hydrogen
  publication-title: Top Curr Chem
– year: 2017
  ident: bib0030
  article-title: CORESYM: CarbOnmonoxide RE-use through industrial SYMbiosis between steel and chemical industries
– volume: 364
  start-page: 756
  year: 2019
  end-page: 759
  ident: bib0085
  article-title: Electrified methane reforming: a compact approach to greener industrial hydrogen production
  publication-title: Science
– volume: 71
  start-page: 112
  year: 2017
  end-page: 126
  ident: bib0040
  article-title: Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future
  publication-title: Renewable Sustainable Energy Rev
– start-page: 165
  year: 2019
  end-page: 199
  ident: bib0100
  article-title: Chapter 4 - energy storage using hydrogen produced from excess renewable electricity: power to hydrogen
  publication-title: Science and Engineering of Hydrogen-Based Energy Technologies
– year: 2019
  ident: bib0140
  article-title: Carbon2Chem: Turning Emissions into Valuable Materials
– volume: 102
  start-page: 106
  year: 2016
  end-page: 117
  ident: bib0235
  article-title: Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: process intensification and performance characteristics
  publication-title: Energy
– volume: 41
  start-page: 123
  year: 2017
  end-page: 131
  ident: bib0230
  article-title: Methane to bioproducts: the future of the bioeconomy?
  publication-title: Curr Opin Chem Biol
– volume: 133
  start-page: 951
  year: 2019
  end-page: 963
  ident: bib0090
  article-title: What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?
  publication-title: Renew Energy
– volume: 13
  start-page: 1173
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0120
  article-title: A perspective on low-temperature water electrolysis - challenges in alkaline and acidic technology
  publication-title: Int J Electrochem Sci
  doi: 10.20964/2018.02.26
– volume: 71
  start-page: 112
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_sbref0040
  article-title: Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2017.01.011
– volume: 20
  start-page: 389
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0270
  article-title: Deep learning: new computational modelling techniques for genomics
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0122-6
– volume: 39
  start-page: 243
  year: 2014
  ident: 10.1016/j.coche.2019.09.001_bib0260
  article-title: Carbon dioxide capture and storage: issues and prospects
  publication-title: Annu Rev Environ Resour
  doi: 10.1146/annurev-environ-032112-095222
– year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0060
– volume: 37
  start-page: 1706
  year: 2013
  ident: 10.1016/j.coche.2019.09.001_bib0240
  article-title: Modeling aerosols in amine-based CO2 capture
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.06.046
– volume: 136
  start-page: 1174
  year: 2014
  ident: 10.1016/j.coche.2019.09.001_bib0160
  article-title: A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.06.002
– volume: 29
  start-page: 734
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0210
  article-title: Photocatalytic carbon dioxide reduction by photocatalyst innovation
  publication-title: Chin Chem Lett
  doi: 10.1016/j.cclet.2018.03.017
– year: 2019
  ident: 10.1016/j.coche.2019.09.001_sbref0015
– volume: 1
  start-page: 9
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0200
  article-title: Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals
  publication-title: BMC Chem Eng
  doi: 10.1186/s42480-019-0007-7
– volume: 3
  start-page: 717
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0205
  article-title: Electrocatalytic reduction of carbon dioxide
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.09.018
– year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0110
– volume: 10
  start-page: 2141
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0010
  article-title: Global carbon budget 2018
  publication-title: Earth Syst Sci Data
  doi: 10.5194/essd-10-2141-2018
– volume: 58
  start-page: 214
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0265
  article-title: Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.09.011
– volume: 50
  start-page: 7276
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0245
  article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b00627
– year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0030
– start-page: 17
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0095
  article-title: Chapter 3 - hydrogen production from water electrolysis
– volume: 194
  start-page: 425
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_sbref0070
  article-title: A review of gas separation technologies within emission reduction programs in the iron and steel sector: current application and development perspectives
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2017.11.063
– volume: 90
  start-page: 1419
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_sbref0145
  article-title: Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800017
– volume: 55
  start-page: 3253
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0165
  article-title: Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.5b03215
– volume: 360
  start-page: 1419-+
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0135
  article-title: Net-zero emissions energy systems
  publication-title: Science
  doi: 10.1126/science.aas9793
– volume: 364
  start-page: 734
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0080
  article-title: Making chemicals with electricity
  publication-title: Science
  doi: 10.1126/science.aax5179
– volume: 375
  start-page: 23
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0195
  article-title: Homogeneous reduction of carbon dioxide with hydrogen
  publication-title: Top Curr Chem
  doi: 10.1007/s41061-017-0107-x
– volume: 306
  start-page: 26
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0250
  article-title: Inductive heating of fluidized beds: drying of particulate solids
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2016.11.011
– volume: 102
  start-page: 106
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0235
  article-title: Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: process intensification and performance characteristics
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.056
– volume: 58
  start-page: 5567
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0185
  article-title: Production of oxymethylene dimethyl ethers from hydrogen and Carbon Dioxide—part II: modeling and analysis for OME3–5
  publication-title: Ind Eng Chem Res
  doi: 10.1021/acs.iecr.8b05577
– volume: 39
  start-page: 390
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_sbref0130
  article-title: Water electrolysis based on renewable energy for hydrogen production
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(17)62949-8
– volume: 364
  start-page: 756
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0085
  article-title: Electrified methane reforming: a compact approach to greener industrial hydrogen production
  publication-title: Science
  doi: 10.1126/science.aaw8775
– start-page: 165
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0100
  article-title: Chapter 4 - energy storage using hydrogen produced from excess renewable electricity: power to hydrogen
– start-page: 181
  year: 2015
  ident: 10.1016/j.coche.2019.09.001_bib0155
  article-title: Chapter 6 - natural gas treating
– volume: 41
  start-page: 123
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0230
  article-title: Methane to bioproducts: the future of the bioeconomy?
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2017.10.024
– volume: 12
  start-page: 2147
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_sbref0225
  article-title: The potential of biogas; the solution to energy storage
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900100
– volume: 43
  start-page: 7813
  year: 2014
  ident: 10.1016/j.coche.2019.09.001_bib0055
  article-title: A review of dry (CO2) reforming of methane over noble metal catalysts
  publication-title: Chem Soc Rev
  doi: 10.1039/C3CS60395D
– volume: 11
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0005
  article-title: Carbon budgets and energy transition pathways
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/11/7/075002
– year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0180
– volume: 192
  start-page: 126
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0255
  article-title: Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.02.012
– volume: 90
  start-page: 1529
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0150
  article-title: Chemical conversion of steel mill gases to urea: an analysis of plant capacity
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.201800019
– volume: 11
  start-page: 1536
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0190
  article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products
  publication-title: Energy Environ Sci
  doi: 10.1039/C8EE00097B
– volume: 7
  start-page: 694
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0175
  article-title: Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.00694
– volume: 26
  start-page: 839
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0125
  article-title: Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2017.07.003
– volume: 3
  start-page: 28
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_sbref0170
  article-title: Syngas fermentation: a microbial conversion process of gaseous substrates to various products
  publication-title: Fermentation
  doi: 10.3390/fermentation3020028
– volume: 10
  start-page: 478
  year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0115
  article-title: Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research
  publication-title: Sustainability
  doi: 10.3390/su10020478
– volume: 133
  start-page: 951
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0090
  article-title: What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse?
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.10.091
– volume: 151
  start-page: 181
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0075
  article-title: Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.05.041
– volume: 29
  start-page: 36
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0220
  article-title: Exploring the stability of Fe2O3-MgAl2O4 oxygen storage materials for CO production from CO2
  publication-title: J Co2 Util
  doi: 10.1016/j.jcou.2018.11.008
– year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0065
  article-title: ThyssenKrupp steels itself for a carbon-free future
– volume: 116
  start-page: 11187
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0045
  article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry
  publication-title: Proc Natl Acad Sci U SA
  doi: 10.1073/pnas.1821029116
– year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0140
– volume: 237
  start-page: 862
  year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0105
  article-title: Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.001
– volume: 120
  start-page: 20
  year: 2017
  ident: 10.1016/j.coche.2019.09.001_bib0025
  article-title: Burners in the steel industry: utilization of by-product combustion gases in reheating furnaces and annealing lines
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.152
– volume: 55
  start-page: 537
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0035
  article-title: Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program
  publication-title: Renewable Sustainable Energy Rev
  doi: 10.1016/j.rser.2015.10.101
– year: 2018
  ident: 10.1016/j.coche.2019.09.001_bib0215
  article-title: Progress in plasma-assisted catalysis for carbon dioxide reduction
– year: 2019
  ident: 10.1016/j.coche.2019.09.001_bib0020
– volume: 354
  start-page: 449
  year: 2016
  ident: 10.1016/j.coche.2019.09.001_bib0050
  article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle
  publication-title: Science
  doi: 10.1126/science.aah7161
SSID ssj0000561947
Score 2.4818537
SecondaryResourceType review_article
Snippet [Display omitted] The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 81
Title Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering
URI https://dx.doi.org/10.1016/j.coche.2019.09.001
Volume 26
WOSCitedRecordID wos000503208700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2211-3398
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000561947
  issn: 2211-3398
  databaseCode: AIEXJ
  dateStart: 20111001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt5IqcTaxza2qSnmICpWy2ls0cRwp25Cult1V-WP8PsaxnaS0VIDEJYqsdRx5vvWMnW--IeRlGaLXywsWFEkkAtx_8QDQ7wW5FqBECJwVttgEPzoSs5n8NBr98Lkwm5o3jTg_l4v_ampsQ2Ob1Nm_MHf3UGzAezQ6XtHseP0jw-_DMkeTKlh0HwdwtNrlW3peIxpXG7mNtnBHq_qkfFkVq9p8tjCR-bppFVdbMqLy2gK61zAcxrZe6smkYLmRftvFhM5659hmk31A59xhdAqGnrszreaOW3q8zvt0tUOoN5UNeKc1FNXXatnTdD_ivr9dRA_X3101aXeeEclfuCFdok3PasK1kDGjthjbgtW7-oo2t5iz4Wpsi8Fc8OuXPIY9vJijwXFKDNVP7loJ095BdrTFz2ZIMyJGvUbIZ3aDbDGeSDEmW3vvDmbvu9M9sy-TbXW77i295FVLLrw02tVh0SDUOblL7rg9Ct2z2LpHRrq5T24PlCsfkFOLMupQRhExdIAyWjUUUUZblFGPste0x1jb4wLGKGKMesDQAWAeki9vDk723waubkegJtFkFUQl4CZWAS8khGUqy7RMJmC-4KsYWGJuIAnLUIlkUkQxgAx5KRJelJBCVKTxIzJuzhr9mFA-YVyHXLICH5GHgNF0zoVOdKyACZVsE-anLVNO1N7UVqkzz16cZ-1cZ2aus1AaDuc2edV1WlhNl-t_nnp7ZC4steFmhhi6ruOTf-34lNzq_xnPyHi1XOvn5KbarKpvyxcOaz8B79-3Bw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+capture+and+utilization+in+the+steel+industry%3A+challenges+and+opportunities+for+chemical+engineering&rft.jtitle=Current+opinion+in+chemical+engineering&rft.au=De+Ras%2C+Kevin&rft.au=Van+de+Vijver%2C+Ruben&rft.au=Galvita%2C+Vladimir+V&rft.au=Marin%2C+Guy+B&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-3398&rft.eissn=2211-3398&rft.volume=26&rft.spage=81&rft.epage=87&rft_id=info:doi/10.1016%2Fj.coche.2019.09.001&rft.externalDocID=S221133981930036X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3398&client=summon