Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering
[Display omitted] The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the co...
Uložené v:
| Vydané v: | Current opinion in chemical engineering Ročník 26; s. 81 - 87 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2019
|
| ISSN: | 2211-3398, 2211-3398 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the coming decade and the only way to substantially reduce the associated CO2 emissions is to combine it with Carbon Capture and Utilization (CCU) and/or Carbon Capture and Storage (CCS). CCU options that do not require a lot of hydrogen and with high added value are logical step stones towards production of bulk chemicals and even fuels such as oxymethylene ethers. BF waste gas recycling and conversion will require a multisectoral approach creating new dependencies between the steel, energy, and chemical sectors. Energy efficient, cheap and CO2 free hydrogen production using green electricity is the ultimate solution to drive this transition. This hydrogen could on the long term also open the door to replace blast furnaces by hydrogen-based steel making. However, today it makes economically more sense to use thermally produced hydrogen by (bio)methane pyrolysis or steam reforming, potentially electrified and intensified, rather than from water electrolysis. Having novel and existing elements from the chemical engineers' toolbox such as artificial intelligence, catalysis and reaction engineering, process intensification principles and multiscale modeling and design, should bring these emerging technologies within reach by the end of the next decade. |
|---|---|
| AbstractList | [Display omitted]
The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how the steel industry will evolve in the coming decades. The blast furnace (BF) technology will continue to dominate steel production in the coming decade and the only way to substantially reduce the associated CO2 emissions is to combine it with Carbon Capture and Utilization (CCU) and/or Carbon Capture and Storage (CCS). CCU options that do not require a lot of hydrogen and with high added value are logical step stones towards production of bulk chemicals and even fuels such as oxymethylene ethers. BF waste gas recycling and conversion will require a multisectoral approach creating new dependencies between the steel, energy, and chemical sectors. Energy efficient, cheap and CO2 free hydrogen production using green electricity is the ultimate solution to drive this transition. This hydrogen could on the long term also open the door to replace blast furnaces by hydrogen-based steel making. However, today it makes economically more sense to use thermally produced hydrogen by (bio)methane pyrolysis or steam reforming, potentially electrified and intensified, rather than from water electrolysis. Having novel and existing elements from the chemical engineers' toolbox such as artificial intelligence, catalysis and reaction engineering, process intensification principles and multiscale modeling and design, should bring these emerging technologies within reach by the end of the next decade. |
| Author | Galvita, Vladimir V Van de Vijver, Ruben De Ras, Kevin Marin, Guy B Van Geem, Kevin M |
| Author_xml | – sequence: 1 givenname: Kevin surname: De Ras fullname: De Ras, Kevin – sequence: 2 givenname: Ruben surname: Van de Vijver fullname: Van de Vijver, Ruben – sequence: 3 givenname: Vladimir V surname: Galvita fullname: Galvita, Vladimir V – sequence: 4 givenname: Guy B surname: Marin fullname: Marin, Guy B – sequence: 5 givenname: Kevin M surname: Van Geem fullname: Van Geem, Kevin M email: Kevin.VanGeem@UGent.be |
| BookMark | eNqFkE1LAzEQhoNUsNb-Ai_7B3ZN9iO7K3iQ4hcUvOg5jMmkTd1mlyQr1F9v2noQDzoMzDvDPAPznpOJ7S0ScsloxijjV5tM9nKNWU5Zm9GYlJ2QaZ4zlhZF20x-6DMy935DY1SctWU9Je8LcG-9TSQMYXSYgFXJGExnPiGYODc2CWtMfEDsYqNGH9zuOpFr6Dq0K_QHoh-G3oXRmmDiRPcuLuDWSOiSuGQsojN2dUFONXQe5991Rl7v714Wj-ny-eFpcbtMZcnKkDINNW8k1KoFqnmrua5KaCivZAF5tRdQUU1lU5WKFQAtrXVT1UoDB6Z4MSPt8a50vfcOtZAmHN4JDkwnGBV748RGHIwTe-MEjUlZZItf7ODMFtzuH-rmSGF868OgE14atBKVcSiDUL35k_8C1HaM-w |
| CitedBy_id | crossref_primary_10_1016_j_psep_2024_04_107 crossref_primary_10_1186_s13068_024_02589_z crossref_primary_10_1007_s40033_025_00923_9 crossref_primary_10_1016_j_jechem_2021_12_042 crossref_primary_10_1016_j_biteb_2023_101544 crossref_primary_10_1016_j_ccst_2025_100387 crossref_primary_10_1016_j_jclepro_2021_129843 crossref_primary_10_3390_met14010127 crossref_primary_10_3390_su15097652 crossref_primary_10_3390_ma15062008 crossref_primary_10_1016_j_fuel_2022_126533 crossref_primary_10_1016_j_fuel_2021_121393 crossref_primary_10_1016_j_rser_2021_110846 crossref_primary_10_1016_j_combustflame_2023_112792 crossref_primary_10_1016_j_seppur_2023_125993 crossref_primary_10_3390_pr8101292 crossref_primary_10_1016_j_icheatmasstransfer_2024_108165 crossref_primary_10_1016_j_jclepro_2022_134038 crossref_primary_10_1016_j_fuel_2024_131244 crossref_primary_10_1016_j_chemosphere_2021_132274 crossref_primary_10_1016_j_seppur_2022_121863 crossref_primary_10_1002_srin_202300715 crossref_primary_10_1016_j_enconman_2024_118141 crossref_primary_10_1016_j_jclepro_2020_123558 crossref_primary_10_1515_reveh_2022_0105 crossref_primary_10_1016_j_psep_2021_01_045 crossref_primary_10_1016_j_scitotenv_2021_146776 crossref_primary_10_1038_s44286_024_00063_z crossref_primary_10_1002_cite_202400052 crossref_primary_10_1002_cite_202200118 crossref_primary_10_1016_j_biortech_2020_124236 crossref_primary_10_1080_19392699_2024_2305940 crossref_primary_10_1016_j_jclepro_2023_135997 crossref_primary_10_1016_j_jallcom_2025_179355 crossref_primary_10_3390_en14102741 crossref_primary_10_1016_j_joei_2022_07_002 crossref_primary_10_3390_sym12071102 crossref_primary_10_1016_j_fuel_2021_121017 crossref_primary_10_1093_ijlct_ctaf106 crossref_primary_10_1007_s11157_023_09649_0 crossref_primary_10_1016_j_combustflame_2021_111914 crossref_primary_10_1007_s12209_020_00246_8 crossref_primary_10_1016_j_rser_2021_111710 crossref_primary_10_1039_D1CY00922B crossref_primary_10_1186_s13068_023_02336_w crossref_primary_10_1021_acssuschemeng_5c00741 crossref_primary_10_1051_e3sconf_202339101046 crossref_primary_10_3390_en18010148 crossref_primary_10_3389_fmicb_2022_907577 crossref_primary_10_1007_s11814_022_1331_9 crossref_primary_10_1002_aic_17520 crossref_primary_10_1007_s11663_023_02819_z crossref_primary_10_1016_j_jcou_2021_101456 crossref_primary_10_1088_1361_648X_ad4432 crossref_primary_10_1016_j_combustflame_2025_114121 crossref_primary_10_1109_TCYB_2023_3298838 crossref_primary_10_1016_j_combustflame_2025_114122 crossref_primary_10_1016_j_fuel_2025_136149 crossref_primary_10_1016_j_powtec_2022_117226 crossref_primary_10_1016_j_ccst_2023_100136 crossref_primary_10_1016_j_proci_2022_07_069 crossref_primary_10_1016_j_fuel_2023_128045 crossref_primary_10_3390_met12061023 crossref_primary_10_3390_en16010538 crossref_primary_10_1016_j_jclepro_2022_133932 crossref_primary_10_3390_mca29030030 crossref_primary_10_1016_j_engeos_2025_100408 crossref_primary_10_1016_j_erss_2022_102565 |
| Cites_doi | 10.20964/2018.02.26 10.1016/j.rser.2017.01.011 10.1038/s41576-019-0122-6 10.1146/annurev-environ-032112-095222 10.1016/j.egypro.2013.06.046 10.1016/j.apenergy.2014.06.002 10.1016/j.cclet.2018.03.017 10.1186/s42480-019-0007-7 10.1016/j.chempr.2017.09.018 10.5194/essd-10-2141-2018 10.1016/j.wasman.2016.09.011 10.1021/acs.est.6b00627 10.1016/j.seppur.2017.11.063 10.1002/cite.201800017 10.1021/acs.iecr.5b03215 10.1126/science.aas9793 10.1126/science.aax5179 10.1007/s41061-017-0107-x 10.1016/j.powtec.2016.11.011 10.1016/j.energy.2016.02.056 10.1021/acs.iecr.8b05577 10.1016/S1872-2067(17)62949-8 10.1126/science.aaw8775 10.1016/j.cbpa.2017.10.024 10.1002/cssc.201900100 10.1039/C3CS60395D 10.1088/1748-9326/11/7/075002 10.1016/j.apenergy.2017.02.012 10.1002/cite.201800019 10.1039/C8EE00097B 10.3389/fmicb.2016.00694 10.1016/j.jechem.2017.07.003 10.3390/fermentation3020028 10.3390/su10020478 10.1016/j.renene.2018.10.091 10.1016/j.carbon.2019.05.041 10.1016/j.jcou.2018.11.008 10.1073/pnas.1821029116 10.1016/j.apenergy.2019.01.001 10.1016/j.egypro.2017.07.152 10.1016/j.rser.2015.10.101 10.1126/science.aah7161 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.coche.2019.09.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2211-3398 |
| EndPage | 87 |
| ExternalDocumentID | 10_1016_j_coche_2019_09_001 S221133981930036X |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC EFLBG EJD ENUVR FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ KOM M41 MO0 O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SPC SPCBC SSG SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c414t-1fa768ca7d9a0f69f6f54a8065c3a258065a50f0c854d13aa907f857dfa6a1d63 |
| ISICitedReferencesCount | 89 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000503208700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2211-3398 |
| IngestDate | Wed Nov 05 20:34:37 EST 2025 Tue Nov 18 22:42:20 EST 2025 Fri Feb 23 02:48:53 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c414t-1fa768ca7d9a0f69f6f54a8065c3a258065a50f0c854d13aa907f857dfa6a1d63 |
| OpenAccessLink | https://ars.els-cdn.com/content/image/1-s2.0-S221133981930036X-fx1_lrg.jpg |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_coche_2019_09_001 crossref_primary_10_1016_j_coche_2019_09_001 elsevier_sciencedirect_doi_10_1016_j_coche_2019_09_001 |
| PublicationCentury | 2000 |
| PublicationDate | December 2019 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: December 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Current opinion in chemical engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Guoxing Chen, Godfroid, Snyders (bib0215) 2018 (bib0020) 2019 Pieja, Morse, Cal (bib0230) 2017; 41 Wismann, Engbæk, Vendelbo, Bendixen, Eriksen, Aasberg-Petersen, Frandsen, Chorkendorff, Mortensen (bib0085) 2019; 364 Yildirim, Nölker, Büker, Kleinschmidt (bib0150) 2018; 90 ThyssenKrupp (bib0140) 2019 Bareiss, de la Rua, Mockl, Hamacher (bib0105) 2019; 237 Creamer, Gao (bib0245) 2016; 50 Buelens, Galvita, Poelman, Detavernier, Marin (bib0050) 2016; 354 Ogawa, Takeuchi, Kajikawa (bib0115) 2018; 10 Rajendran, Browne, Murphy (bib0090) 2019; 133 ArcelorMittal Belgium NV (bib0180) 2017 Kennedy, Sabag, Gladek, Thorin, Mason, Moroney, Schlueter, Winkelman, Jong, Heeres, Graaf (bib0030) 2017 Schalenbach, Zeradjanin, Kasian, Cherevko, Mayrhofer (bib0120) 2018; 13 Villadsen, Fosbøl, Angelidaki, Woodley, Nielsen, Møller (bib0225) 2019; 12 Eraslan, Avsec, Gagneur, Theis (bib0270) 2019; 20 Saad, Williams (bib0265) 2016; 58 Le Quéré, Andrew, Friedlingstein, Sitch, Hauck, Pongratz, Pickers, Korsbakken, Peters, Canadell (bib0010) 2018; 10 Knitterscheidt (bib0065) 2019 Rahimi, Kang, Gelinas, Menon, Gordon, Metiu, McFarland (bib0075) 2019; 151 Dong, Razzaq, Hu, Ding (bib0195) 2017; 375 Chi, Yu (bib0130) 2018; 39 Coutanceau, Baranton, Audichon (bib0095) 2018 McGurk, Martín, Brandani, Sweatman, Fan (bib0255) 2017; 192 Davis, Lewis, Shaner, Aggarwal, Arent, Azevedo, Benson, Bradley, Brouwer, Chiang (bib0135) 2018; 360 Schittkowski, Ruland, Laudenschleger, Girod, Kähler, Kaluza, Muhler, Schlögl (bib0145) 2018; 90 Fulk, Rochelle (bib0240) 2013; 37 Quader, Ahmed, Dawal, Nukman (bib0035) 2016; 55 Carmo, Stolten (bib0100) 2019 Liew, Martin, Tappel, Heijstra, Mihalcea, Kopke (bib0175) 2016; 7 van Vuuren, van Soest, Riahi, Clarke, Krey, Kriegler, Rogelj, Schaeffer, Tavoni (bib0005) 2016; 11 Pakhare, Spivey (bib0055) 2014; 43 Zhao, Su, Cui (bib0235) 2016; 102 Spurgeon, Kumar (bib0190) 2018; 11 Katelhon, Meys, Deutz, Suh, Bardow (bib0045) 2019; 116 Caillat (bib0025) 2017; 120 Phillips, Huhnke, Atiyeh (bib0170) 2017; 3 Ramírez-Santos, Castel, Favre (bib0070) 2018; 194 Rahman, Aziz, Saidur, Abu Bakar, Hainin, Putrajaya, Hassan (bib0040) 2017; 71 (bib0015) 2019 Coninck, Benson (bib0260) 2014; 39 Whang, Lim, Choi, Lee, Lee (bib0200) 2019; 1 Yoon, Lee, Wong (bib0205) 2017; 3 Tjandra, Huang (bib0210) 2018; 29 Chen, Yin, Ma (bib0160) 2014; 136 Mokhatab, Poe, Mak (bib0155) 2015 Idakiev, Lazarova, Bück, Tsotsas, Mörl (bib0250) 2017; 306 Burre, Bongartz, Mitsos (bib0185) 2019; 58 Buelens, Dharanipragada, Poelman, Zhou, Marin, Galvita (bib0220) 2019; 29 Van Geem, Galvita, Marin (bib0080) 2019; 364 Zhang, Song, Wang, Bao (bib0125) 2017; 26 Handler, Shonnard, Griffing, Lai, Palou-Rivera (bib0165) 2016; 55 ArcelorMittal (bib0060) 2019 Maric, Yu (bib0110) 2018 Villadsen (10.1016/j.coche.2019.09.001_sbref0225) 2019; 12 Schittkowski (10.1016/j.coche.2019.09.001_sbref0145) 2018; 90 Yoon (10.1016/j.coche.2019.09.001_bib0205) 2017; 3 Ogawa (10.1016/j.coche.2019.09.001_bib0115) 2018; 10 Rajendran (10.1016/j.coche.2019.09.001_bib0090) 2019; 133 Van Geem (10.1016/j.coche.2019.09.001_bib0080) 2019; 364 Zhao (10.1016/j.coche.2019.09.001_bib0235) 2016; 102 Mokhatab (10.1016/j.coche.2019.09.001_bib0155) 2015 Coninck (10.1016/j.coche.2019.09.001_bib0260) 2014; 39 Creamer (10.1016/j.coche.2019.09.001_bib0245) 2016; 50 Burre (10.1016/j.coche.2019.09.001_bib0185) 2019; 58 Chi (10.1016/j.coche.2019.09.001_sbref0130) 2018; 39 Spurgeon (10.1016/j.coche.2019.09.001_bib0190) 2018; 11 Pakhare (10.1016/j.coche.2019.09.001_bib0055) 2014; 43 Zhang (10.1016/j.coche.2019.09.001_bib0125) 2017; 26 Davis (10.1016/j.coche.2019.09.001_bib0135) 2018; 360 Yildirim (10.1016/j.coche.2019.09.001_bib0150) 2018; 90 Carmo (10.1016/j.coche.2019.09.001_bib0100) 2019 Schalenbach (10.1016/j.coche.2019.09.001_bib0120) 2018; 13 Rahman (10.1016/j.coche.2019.09.001_sbref0040) 2017; 71 Eraslan (10.1016/j.coche.2019.09.001_bib0270) 2019; 20 Bareiss (10.1016/j.coche.2019.09.001_bib0105) 2019; 237 Tjandra (10.1016/j.coche.2019.09.001_bib0210) 2018; 29 (10.1016/j.coche.2019.09.001_bib0020) 2019 ArcelorMittal Belgium NV (10.1016/j.coche.2019.09.001_bib0180) 2017 Buelens (10.1016/j.coche.2019.09.001_bib0050) 2016; 354 Handler (10.1016/j.coche.2019.09.001_bib0165) 2016; 55 Katelhon (10.1016/j.coche.2019.09.001_bib0045) 2019; 116 Whang (10.1016/j.coche.2019.09.001_bib0200) 2019; 1 Buelens (10.1016/j.coche.2019.09.001_bib0220) 2019; 29 Pieja (10.1016/j.coche.2019.09.001_bib0230) 2017; 41 Maric (10.1016/j.coche.2019.09.001_bib0110) 2018 Kennedy (10.1016/j.coche.2019.09.001_bib0030) 2017 ThyssenKrupp (10.1016/j.coche.2019.09.001_bib0140) 2019 Rahimi (10.1016/j.coche.2019.09.001_bib0075) 2019; 151 Fulk (10.1016/j.coche.2019.09.001_bib0240) 2013; 37 Caillat (10.1016/j.coche.2019.09.001_bib0025) 2017; 120 Wismann (10.1016/j.coche.2019.09.001_bib0085) 2019; 364 ArcelorMittal (10.1016/j.coche.2019.09.001_bib0060) 2019 Dong (10.1016/j.coche.2019.09.001_bib0195) 2017; 375 (10.1016/j.coche.2019.09.001_sbref0015) 2019 Phillips (10.1016/j.coche.2019.09.001_sbref0170) 2017; 3 Liew (10.1016/j.coche.2019.09.001_bib0175) 2016; 7 Guoxing Chen (10.1016/j.coche.2019.09.001_bib0215) 2018 Knitterscheidt (10.1016/j.coche.2019.09.001_bib0065) 2019 McGurk (10.1016/j.coche.2019.09.001_bib0255) 2017; 192 Coutanceau (10.1016/j.coche.2019.09.001_bib0095) 2018 Quader (10.1016/j.coche.2019.09.001_bib0035) 2016; 55 Ramírez-Santos (10.1016/j.coche.2019.09.001_sbref0070) 2018; 194 Saad (10.1016/j.coche.2019.09.001_bib0265) 2016; 58 Chen (10.1016/j.coche.2019.09.001_bib0160) 2014; 136 Idakiev (10.1016/j.coche.2019.09.001_bib0250) 2017; 306 van Vuuren (10.1016/j.coche.2019.09.001_bib0005) 2016; 11 Le Quéré (10.1016/j.coche.2019.09.001_bib0010) 2018; 10 |
| References_xml | – volume: 194 start-page: 425 year: 2018 end-page: 442 ident: bib0070 article-title: A review of gas separation technologies within emission reduction programs in the iron and steel sector: current application and development perspectives publication-title: Sep Purif Technol – volume: 116 start-page: 11187 year: 2019 end-page: 11194 ident: bib0045 article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry publication-title: Proc Natl Acad Sci U SA – volume: 39 start-page: 390 year: 2018 end-page: 394 ident: bib0130 article-title: Water electrolysis based on renewable energy for hydrogen production publication-title: Chin J Catal – year: 2018 ident: bib0215 article-title: Progress in plasma-assisted catalysis for carbon dioxide reduction publication-title: Plasma Chemistry and Gas Conversion Gas Convers – volume: 90 start-page: 1529 year: 2018 end-page: 1535 ident: bib0150 article-title: Chemical conversion of steel mill gases to urea: an analysis of plant capacity publication-title: Chem Ing Tech – volume: 10 start-page: 2141 year: 2018 end-page: 2194 ident: bib0010 article-title: Global carbon budget 2018 publication-title: Earth Syst Sci Data – volume: 354 start-page: 449 year: 2016 end-page: 452 ident: bib0050 article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle publication-title: Science – year: 2019 ident: bib0065 article-title: ThyssenKrupp steels itself for a carbon-free future publication-title: Handelsblatt – volume: 55 start-page: 537 year: 2016 end-page: 549 ident: bib0035 article-title: Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program publication-title: Renewable Sustainable Energy Rev – volume: 237 start-page: 862 year: 2019 end-page: 872 ident: bib0105 article-title: Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems publication-title: Appl Energy – volume: 12 start-page: 2147 year: 2019 end-page: 2153 ident: bib0225 article-title: The potential of biogas; the solution to energy storage publication-title: ChemSusChem – volume: 192 start-page: 126 year: 2017 end-page: 133 ident: bib0255 article-title: Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture publication-title: Appl Energy – start-page: 181 year: 2015 end-page: 222 ident: bib0155 article-title: Chapter 6 - natural gas treating publication-title: Handbook of Natural Gas Transmission and Processing – volume: 3 start-page: 717 year: 2017 end-page: 718 ident: bib0205 article-title: Electrocatalytic reduction of carbon dioxide publication-title: Chem – volume: 13 start-page: 1173 year: 2018 end-page: 1226 ident: bib0120 article-title: A perspective on low-temperature water electrolysis - challenges in alkaline and acidic technology publication-title: Int J Electrochem Sci – volume: 43 start-page: 7813 year: 2014 end-page: 7837 ident: bib0055 article-title: A review of dry (CO2) reforming of methane over noble metal catalysts publication-title: Chem Soc Rev – volume: 1 start-page: 9 year: 2019 ident: bib0200 article-title: Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals publication-title: BMC Chem Eng – volume: 11 year: 2016 ident: bib0005 article-title: Carbon budgets and energy transition pathways publication-title: Environ Res Lett – volume: 7 start-page: 694 year: 2016 ident: bib0175 article-title: Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks publication-title: Front Microbiol – volume: 50 start-page: 7276 year: 2016 end-page: 7289 ident: bib0245 article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review publication-title: Environ Sci Technol – volume: 29 start-page: 734 year: 2018 end-page: 746 ident: bib0210 article-title: Photocatalytic carbon dioxide reduction by photocatalyst innovation publication-title: Chin Chem Lett – volume: 55 start-page: 3253 year: 2016 end-page: 3261 ident: bib0165 article-title: Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks publication-title: Ind Eng Chem Res – year: 2019 ident: bib0020 article-title: World Steel Association, Fact Sheet: Energy Use in the Steel Industry – year: 2017 ident: bib0180 article-title: Periodic Reporting for Period 2 - STEELANOL (Production of Sustainable, Advanced bio-ethANOL Through an Innovative Gas-fermentation Process Using Exhaust Gases Emitted in the STEEL Industry) – year: 2019 ident: bib0060 article-title: World First for Steel: ArcelorMittal Investigates the Industrial Use of Pure Hydrogen – volume: 10 start-page: 478 year: 2018 ident: bib0115 article-title: Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research publication-title: Sustainability – volume: 151 start-page: 181 year: 2019 end-page: 191 ident: bib0075 article-title: Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts publication-title: Carbon – year: 2018 ident: bib0110 article-title: Proton Exchange Membrane Water Electrolysis as a Promising Technology for Hydrogen Production and Energy Storage – volume: 29 start-page: 36 year: 2019 end-page: 45 ident: bib0220 article-title: Exploring the stability of Fe2O3-MgAl2O4 oxygen storage materials for CO production from CO2 publication-title: J Co2 Util – volume: 3 start-page: 28 year: 2017 ident: bib0170 article-title: Syngas fermentation: a microbial conversion process of gaseous substrates to various products publication-title: Fermentation – volume: 136 start-page: 1174 year: 2014 end-page: 1183 ident: bib0160 article-title: A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions publication-title: Appl Energy – start-page: 17 year: 2018 end-page: 62 ident: bib0095 article-title: Chapter 3 - hydrogen production from water electrolysis publication-title: Hydrogen Electrochemical Production – volume: 39 start-page: 243 year: 2014 end-page: 270 ident: bib0260 article-title: Carbon dioxide capture and storage: issues and prospects publication-title: Annu Rev Environ Resour – volume: 37 start-page: 1706 year: 2013 end-page: 1719 ident: bib0240 article-title: Modeling aerosols in amine-based CO2 capture publication-title: Energy Procedia – volume: 20 start-page: 389 year: 2019 end-page: 403 ident: bib0270 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat Rev Genet – volume: 90 start-page: 1419 year: 2018 end-page: 1429 ident: bib0145 article-title: Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst publication-title: Chem Ing Tech – volume: 364 start-page: 734 year: 2019 end-page: 735 ident: bib0080 article-title: Making chemicals with electricity publication-title: Science – volume: 306 start-page: 26 year: 2017 end-page: 33 ident: bib0250 article-title: Inductive heating of fluidized beds: drying of particulate solids publication-title: Powder Technol – volume: 58 start-page: 5567 year: 2019 end-page: 5578 ident: bib0185 article-title: Production of oxymethylene dimethyl ethers from hydrogen and Carbon Dioxide—part II: modeling and analysis for OME3–5 publication-title: Ind Eng Chem Res – volume: 26 start-page: 839 year: 2017 end-page: 853 ident: bib0125 article-title: Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes publication-title: J Energy Chem – year: 2019 ident: bib0015 article-title: World Steel Association, Steel’s Contribution to a Low Carbon Future and Climate Resilient Societies – volume: 11 start-page: 1536 year: 2018 end-page: 1551 ident: bib0190 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products publication-title: Energy Environ Sci – volume: 360 start-page: 1419-+ year: 2018 ident: bib0135 article-title: Net-zero emissions energy systems publication-title: Science – volume: 120 start-page: 20 year: 2017 end-page: 27 ident: bib0025 article-title: Burners in the steel industry: utilization of by-product combustion gases in reheating furnaces and annealing lines publication-title: Energy Procedia – volume: 58 start-page: 214 year: 2016 end-page: 220 ident: bib0265 article-title: Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases publication-title: Waste Manag – volume: 375 start-page: 23 year: 2017 ident: bib0195 article-title: Homogeneous reduction of carbon dioxide with hydrogen publication-title: Top Curr Chem – year: 2017 ident: bib0030 article-title: CORESYM: CarbOnmonoxide RE-use through industrial SYMbiosis between steel and chemical industries – volume: 364 start-page: 756 year: 2019 end-page: 759 ident: bib0085 article-title: Electrified methane reforming: a compact approach to greener industrial hydrogen production publication-title: Science – volume: 71 start-page: 112 year: 2017 end-page: 126 ident: bib0040 article-title: Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future publication-title: Renewable Sustainable Energy Rev – start-page: 165 year: 2019 end-page: 199 ident: bib0100 article-title: Chapter 4 - energy storage using hydrogen produced from excess renewable electricity: power to hydrogen publication-title: Science and Engineering of Hydrogen-Based Energy Technologies – year: 2019 ident: bib0140 article-title: Carbon2Chem: Turning Emissions into Valuable Materials – volume: 102 start-page: 106 year: 2016 end-page: 117 ident: bib0235 article-title: Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: process intensification and performance characteristics publication-title: Energy – volume: 41 start-page: 123 year: 2017 end-page: 131 ident: bib0230 article-title: Methane to bioproducts: the future of the bioeconomy? publication-title: Curr Opin Chem Biol – volume: 133 start-page: 951 year: 2019 end-page: 963 ident: bib0090 article-title: What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse? publication-title: Renew Energy – volume: 13 start-page: 1173 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0120 article-title: A perspective on low-temperature water electrolysis - challenges in alkaline and acidic technology publication-title: Int J Electrochem Sci doi: 10.20964/2018.02.26 – volume: 71 start-page: 112 year: 2017 ident: 10.1016/j.coche.2019.09.001_sbref0040 article-title: Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2017.01.011 – volume: 20 start-page: 389 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0270 article-title: Deep learning: new computational modelling techniques for genomics publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0122-6 – volume: 39 start-page: 243 year: 2014 ident: 10.1016/j.coche.2019.09.001_bib0260 article-title: Carbon dioxide capture and storage: issues and prospects publication-title: Annu Rev Environ Resour doi: 10.1146/annurev-environ-032112-095222 – year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0060 – volume: 37 start-page: 1706 year: 2013 ident: 10.1016/j.coche.2019.09.001_bib0240 article-title: Modeling aerosols in amine-based CO2 capture publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.06.046 – volume: 136 start-page: 1174 year: 2014 ident: 10.1016/j.coche.2019.09.001_bib0160 article-title: A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.06.002 – volume: 29 start-page: 734 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0210 article-title: Photocatalytic carbon dioxide reduction by photocatalyst innovation publication-title: Chin Chem Lett doi: 10.1016/j.cclet.2018.03.017 – year: 2019 ident: 10.1016/j.coche.2019.09.001_sbref0015 – volume: 1 start-page: 9 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0200 article-title: Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals publication-title: BMC Chem Eng doi: 10.1186/s42480-019-0007-7 – volume: 3 start-page: 717 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0205 article-title: Electrocatalytic reduction of carbon dioxide publication-title: Chem doi: 10.1016/j.chempr.2017.09.018 – year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0110 – volume: 10 start-page: 2141 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0010 article-title: Global carbon budget 2018 publication-title: Earth Syst Sci Data doi: 10.5194/essd-10-2141-2018 – volume: 58 start-page: 214 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0265 article-title: Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases publication-title: Waste Manag doi: 10.1016/j.wasman.2016.09.011 – volume: 50 start-page: 7276 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0245 article-title: Carbon-based adsorbents for postcombustion CO2 capture: a critical review publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b00627 – year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0030 – start-page: 17 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0095 article-title: Chapter 3 - hydrogen production from water electrolysis – volume: 194 start-page: 425 year: 2018 ident: 10.1016/j.coche.2019.09.001_sbref0070 article-title: A review of gas separation technologies within emission reduction programs in the iron and steel sector: current application and development perspectives publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2017.11.063 – volume: 90 start-page: 1419 year: 2018 ident: 10.1016/j.coche.2019.09.001_sbref0145 article-title: Methanol synthesis from steel mill exhaust gases: challenges for the industrial Cu/ZnO/Al2O3 catalyst publication-title: Chem Ing Tech doi: 10.1002/cite.201800017 – volume: 55 start-page: 3253 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0165 article-title: Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.5b03215 – volume: 360 start-page: 1419-+ year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0135 article-title: Net-zero emissions energy systems publication-title: Science doi: 10.1126/science.aas9793 – volume: 364 start-page: 734 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0080 article-title: Making chemicals with electricity publication-title: Science doi: 10.1126/science.aax5179 – volume: 375 start-page: 23 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0195 article-title: Homogeneous reduction of carbon dioxide with hydrogen publication-title: Top Curr Chem doi: 10.1007/s41061-017-0107-x – volume: 306 start-page: 26 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0250 article-title: Inductive heating of fluidized beds: drying of particulate solids publication-title: Powder Technol doi: 10.1016/j.powtec.2016.11.011 – volume: 102 start-page: 106 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0235 article-title: Post-combustion CO2 capture with ammonia by vortex flow-based multistage spraying: process intensification and performance characteristics publication-title: Energy doi: 10.1016/j.energy.2016.02.056 – volume: 58 start-page: 5567 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0185 article-title: Production of oxymethylene dimethyl ethers from hydrogen and Carbon Dioxide—part II: modeling and analysis for OME3–5 publication-title: Ind Eng Chem Res doi: 10.1021/acs.iecr.8b05577 – volume: 39 start-page: 390 year: 2018 ident: 10.1016/j.coche.2019.09.001_sbref0130 article-title: Water electrolysis based on renewable energy for hydrogen production publication-title: Chin J Catal doi: 10.1016/S1872-2067(17)62949-8 – volume: 364 start-page: 756 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0085 article-title: Electrified methane reforming: a compact approach to greener industrial hydrogen production publication-title: Science doi: 10.1126/science.aaw8775 – start-page: 165 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0100 article-title: Chapter 4 - energy storage using hydrogen produced from excess renewable electricity: power to hydrogen – start-page: 181 year: 2015 ident: 10.1016/j.coche.2019.09.001_bib0155 article-title: Chapter 6 - natural gas treating – volume: 41 start-page: 123 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0230 article-title: Methane to bioproducts: the future of the bioeconomy? publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2017.10.024 – volume: 12 start-page: 2147 year: 2019 ident: 10.1016/j.coche.2019.09.001_sbref0225 article-title: The potential of biogas; the solution to energy storage publication-title: ChemSusChem doi: 10.1002/cssc.201900100 – volume: 43 start-page: 7813 year: 2014 ident: 10.1016/j.coche.2019.09.001_bib0055 article-title: A review of dry (CO2) reforming of methane over noble metal catalysts publication-title: Chem Soc Rev doi: 10.1039/C3CS60395D – volume: 11 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0005 article-title: Carbon budgets and energy transition pathways publication-title: Environ Res Lett doi: 10.1088/1748-9326/11/7/075002 – year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0180 – volume: 192 start-page: 126 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0255 article-title: Microwave swing regeneration of aqueous monoethanolamine for post-combustion CO2 capture publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.02.012 – volume: 90 start-page: 1529 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0150 article-title: Chemical conversion of steel mill gases to urea: an analysis of plant capacity publication-title: Chem Ing Tech doi: 10.1002/cite.201800019 – volume: 11 start-page: 1536 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0190 article-title: A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products publication-title: Energy Environ Sci doi: 10.1039/C8EE00097B – volume: 7 start-page: 694 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0175 article-title: Gas fermentation-A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks publication-title: Front Microbiol doi: 10.3389/fmicb.2016.00694 – volume: 26 start-page: 839 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0125 article-title: Co-electrolysis of CO2 and H2O in high-temperature solid oxide electrolysis cells: recent advance in cathodes publication-title: J Energy Chem doi: 10.1016/j.jechem.2017.07.003 – volume: 3 start-page: 28 year: 2017 ident: 10.1016/j.coche.2019.09.001_sbref0170 article-title: Syngas fermentation: a microbial conversion process of gaseous substrates to various products publication-title: Fermentation doi: 10.3390/fermentation3020028 – volume: 10 start-page: 478 year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0115 article-title: Analysis of trends and emerging technologies in water electrolysis research based on a computational method: a comparison with fuel cell research publication-title: Sustainability doi: 10.3390/su10020478 – volume: 133 start-page: 951 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0090 article-title: What is the level of incentivisation required for biomethane upgrading technologies with carbon capture and reuse? publication-title: Renew Energy doi: 10.1016/j.renene.2018.10.091 – volume: 151 start-page: 181 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0075 article-title: Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts publication-title: Carbon doi: 10.1016/j.carbon.2019.05.041 – volume: 29 start-page: 36 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0220 article-title: Exploring the stability of Fe2O3-MgAl2O4 oxygen storage materials for CO production from CO2 publication-title: J Co2 Util doi: 10.1016/j.jcou.2018.11.008 – year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0065 article-title: ThyssenKrupp steels itself for a carbon-free future – volume: 116 start-page: 11187 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0045 article-title: Climate change mitigation potential of carbon capture and utilization in the chemical industry publication-title: Proc Natl Acad Sci U SA doi: 10.1073/pnas.1821029116 – year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0140 – volume: 237 start-page: 862 year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0105 article-title: Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.001 – volume: 120 start-page: 20 year: 2017 ident: 10.1016/j.coche.2019.09.001_bib0025 article-title: Burners in the steel industry: utilization of by-product combustion gases in reheating furnaces and annealing lines publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.152 – volume: 55 start-page: 537 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0035 article-title: Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program publication-title: Renewable Sustainable Energy Rev doi: 10.1016/j.rser.2015.10.101 – year: 2018 ident: 10.1016/j.coche.2019.09.001_bib0215 article-title: Progress in plasma-assisted catalysis for carbon dioxide reduction – year: 2019 ident: 10.1016/j.coche.2019.09.001_bib0020 – volume: 354 start-page: 449 year: 2016 ident: 10.1016/j.coche.2019.09.001_bib0050 article-title: Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle publication-title: Science doi: 10.1126/science.aah7161 |
| SSID | ssj0000561947 |
| Score | 2.4818537 |
| SecondaryResourceType | review_article |
| Snippet | [Display omitted]
The availability of green electricity, changes to the Emission Trading Scheme (ETS) system and technological breakthroughs will determine how... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 81 |
| Title | Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering |
| URI | https://dx.doi.org/10.1016/j.coche.2019.09.001 |
| Volume | 26 |
| WOSCitedRecordID | wos000503208700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2211-3398 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000561947 issn: 2211-3398 databaseCode: AIEXJ dateStart: 20111001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQc4IJ6ivOQDt5IqcTaxza2qSnmICpWy2ls0cRwp25Cult1V-WP8PsaxnaS0VIDEJYqsdRx5vvWMnW--IeRlGaLXywsWFEkkAtx_8QDQ7wW5FqBECJwVttgEPzoSs5n8NBr98Lkwm5o3jTg_l4v_ampsQ2Ob1Nm_MHf3UGzAezQ6XtHseP0jw-_DMkeTKlh0HwdwtNrlW3peIxpXG7mNtnBHq_qkfFkVq9p8tjCR-bppFVdbMqLy2gK61zAcxrZe6smkYLmRftvFhM5659hmk31A59xhdAqGnrszreaOW3q8zvt0tUOoN5UNeKc1FNXXatnTdD_ivr9dRA_X3101aXeeEclfuCFdok3PasK1kDGjthjbgtW7-oo2t5iz4Wpsi8Fc8OuXPIY9vJijwXFKDNVP7loJ095BdrTFz2ZIMyJGvUbIZ3aDbDGeSDEmW3vvDmbvu9M9sy-TbXW77i295FVLLrw02tVh0SDUOblL7rg9Ct2z2LpHRrq5T24PlCsfkFOLMupQRhExdIAyWjUUUUZblFGPste0x1jb4wLGKGKMesDQAWAeki9vDk723waubkegJtFkFUQl4CZWAS8khGUqy7RMJmC-4KsYWGJuIAnLUIlkUkQxgAx5KRJelJBCVKTxIzJuzhr9mFA-YVyHXLICH5GHgNF0zoVOdKyACZVsE-anLVNO1N7UVqkzz16cZ-1cZ2aus1AaDuc2edV1WlhNl-t_nnp7ZC4steFmhhi6ruOTf-34lNzq_xnPyHi1XOvn5KbarKpvyxcOaz8B79-3Bw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+capture+and+utilization+in+the+steel+industry%3A+challenges+and+opportunities+for+chemical+engineering&rft.jtitle=Current+opinion+in+chemical+engineering&rft.au=De+Ras%2C+Kevin&rft.au=Van+de+Vijver%2C+Ruben&rft.au=Galvita%2C+Vladimir+V&rft.au=Marin%2C+Guy+B&rft.date=2019-12-01&rft.pub=Elsevier+Ltd&rft.issn=2211-3398&rft.eissn=2211-3398&rft.volume=26&rft.spage=81&rft.epage=87&rft_id=info:doi/10.1016%2Fj.coche.2019.09.001&rft.externalDocID=S221133981930036X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-3398&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-3398&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-3398&client=summon |