Soft Margin Multiple Kernel Learning
Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L 1 MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some pra...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 24; H. 5; S. 749 - 761 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.05.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L 1 MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L 1 MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L 1 MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L 2 MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. |
|---|---|
| AbstractList | Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL.Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L 1 rm MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L 1 rm MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L 1 rm MKL , and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L 2 rm MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional [Formula Omitted] method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that [Formula Omitted] can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, [Formula Omitted], and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates [Formula Omitted] naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L 1 MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L 1 MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L 1 MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L 2 MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. |
| Author | Xinxing Xu Tsang, I. W. Dong Xu |
| Author_xml | – sequence: 1 surname: Xinxing Xu fullname: Xinxing Xu organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 2 givenname: I. W. surname: Tsang fullname: Tsang, I. W. organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 3 surname: Dong Xu fullname: Dong Xu organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27321506$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24808425$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0ctOGzEUBmCrSlXC5QWoVEUqldgk9fFlbC8RghYR0gVU6s5yPGeQ0cQT7JlF3x5DApWyoN7Yi--3fPzvk1HsIhJyDHQGQM33u8VifjtjFNiMMa5A8w9kzKBiU8a1Hr2d1Z89cpTzAy2rorIS5hPZY0JTLZgck5PbruknNy7dhzi5Gdo-rFucXGOK2E7m6FIM8f6QfGxcm_Foux-Q35cXd-c_p_NfP67Oz-ZTL0D0U6g1d0aiUHqJqkYwAJ4b5YUzGmjd1N4hZbVbglcU9dIDxRqlAuU5axw_IKebe9epexww93YVsse2dRG7IVuQjAvKy_j_p1wYUUkwtNCvO_ShG1IsgxTFRHmtBFbUl60alius7TqFlUt_7etXFfBtC1z2rm2Siz7kf05xBpJWxemN86nLOWFjfehdH7rYJxdaC9Q-F2hfCrTPBdptgSXKdqKvt78b-rwJBUR8C1RCmopy_gTf1aJu |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2020_06_039 crossref_primary_10_3390_math12243935 crossref_primary_10_1007_s11063_014_9385_2 crossref_primary_10_1016_j_eswa_2021_115308 crossref_primary_10_1109_TNNLS_2015_2444417 crossref_primary_10_1016_j_neucom_2019_06_065 crossref_primary_10_1109_TNNLS_2015_2506664 crossref_primary_10_1016_j_engappai_2020_103535 crossref_primary_10_1109_TNNLS_2024_3414325 crossref_primary_10_1109_TNNLS_2015_2461554 crossref_primary_10_1007_s11063_018_9951_0 crossref_primary_10_1109_TNNLS_2015_2461552 crossref_primary_10_3389_fgene_2023_1095330 crossref_primary_10_1007_s13042_021_01487_2 crossref_primary_10_1016_j_neucom_2016_09_117 crossref_primary_10_1109_TNNLS_2019_2962878 crossref_primary_10_1109_TIP_2017_2707858 crossref_primary_10_1109_TNNLS_2015_2405574 crossref_primary_10_3390_s19173808 crossref_primary_10_1007_s10489_023_04474_y crossref_primary_10_1007_s11063_019_10053_5 crossref_primary_10_3390_electronics13214168 crossref_primary_10_1093_bib_bbw113 crossref_primary_10_1109_TNNLS_2014_2342533 crossref_primary_10_1007_s41095_016_0044_6 crossref_primary_10_1007_s13721_017_0146_9 crossref_primary_10_1109_TIP_2013_2292560 crossref_primary_10_1109_TSC_2022_3194121 crossref_primary_10_1007_s10994_016_5590_8 crossref_primary_10_1016_j_patrec_2020_10_013 crossref_primary_10_1109_TII_2022_3206817 crossref_primary_10_1016_j_knosys_2020_106469 crossref_primary_10_1186_s41074_017_0031_6 crossref_primary_10_1016_j_patcog_2018_07_032 crossref_primary_10_1155_2018_1018789 crossref_primary_10_1109_TKDE_2023_3250472 crossref_primary_10_1109_ACCESS_2019_2899389 crossref_primary_10_1109_TPAMI_2016_2537337 crossref_primary_10_1016_j_inffus_2017_12_006 crossref_primary_10_1109_TNNLS_2016_2518700 crossref_primary_10_1007_s12524_018_0814_y crossref_primary_10_1109_ACCESS_2020_2996417 crossref_primary_10_1109_TCYB_2014_2326596 crossref_primary_10_1016_j_ejor_2020_11_027 crossref_primary_10_1109_TNNLS_2014_2386307 crossref_primary_10_1109_TNNLS_2017_2785329 crossref_primary_10_3390_sym11030325 crossref_primary_10_1007_s00521_015_2066_x crossref_primary_10_1109_MCI_2015_2471235 crossref_primary_10_1007_s11633_014_0833_2 crossref_primary_10_1109_TNNLS_2016_2619399 crossref_primary_10_1109_TNNLS_2013_2291772 crossref_primary_10_1109_TNNLS_2016_2623219 crossref_primary_10_1109_TNNLS_2016_2635151 crossref_primary_10_3390_s23115226 crossref_primary_10_1155_2021_8842396 crossref_primary_10_1155_2015_346496 crossref_primary_10_1016_j_neucom_2019_01_010 crossref_primary_10_1109_ACCESS_2023_3263155 crossref_primary_10_1109_TNNLS_2015_2498149 crossref_primary_10_1109_TNNLS_2016_2645883 crossref_primary_10_1109_TNNLS_2014_2377181 crossref_primary_10_1016_j_neucom_2014_11_078 crossref_primary_10_1093_cercor_bhae341 crossref_primary_10_1049_iet_cvi_2018_5556 crossref_primary_10_1038_s41598_025_85151_7 crossref_primary_10_1007_s00521_019_04044_9 crossref_primary_10_23919_CJEE_2022_000007 crossref_primary_10_1145_3548775 crossref_primary_10_1007_s11063_014_9392_3 crossref_primary_10_1109_TCSS_2023_3249152 crossref_primary_10_1109_TNNLS_2014_2334137 crossref_primary_10_1109_TNNLS_2014_2347398 crossref_primary_10_1016_j_ins_2014_09_011 crossref_primary_10_1021_acs_jcim_6b00332 crossref_primary_10_1109_TNNLS_2015_2472284 crossref_primary_10_1007_s11042_022_14226_8 crossref_primary_10_3233_CH_170275 crossref_primary_10_1007_s10772_023_10017_0 crossref_primary_10_1109_TII_2019_2940475 crossref_primary_10_1109_TPAMI_2015_2476813 crossref_primary_10_1109_TNNLS_2017_2688365 |
| Cites_doi | 10.1109/TNN.2005.860848 10.1109/ICCV.2009.5459169 10.1109/TNNLS.2012.2187307 10.1109/TNN.2010.2103571 10.1145/1015330.1015424 10.1007/s10994-009-5150-6 10.1111/j.1467-9868.2005.00532.x 10.1007/978-3-642-33765-9_34 10.1109/ICDM.2012.78 10.1109/CVPR.2011.5995407 10.1007/s11263-005-1838-7 10.1023/B:VISI.0000029664.99615.94 10.1145/1961189.1961199 10.1007/BF00994018 10.1109/TPAMI.2011.265 10.1109/ICDM.2012.105 10.1111/j.1467-9868.2005.00503.x 10.1109/TNNLS.2012.2186314 10.1109/TNN.2002.1031937 10.1162/089976600300015565 10.1162/089976601750399335 10.1017/CBO9780511801389 10.1007/s10994-011-5252-9 10.1145/1273496.1273646 10.1109/CVPR.2011.5995624 10.1145/130385.130401 10.1109/TASL.2008.2012193 10.1023/A:1012450327387 10.1109/CVPR.2010.5539870 10.1109/72.914517 10.1109/TNN.2009.2014229 10.1109/TPAMI.2011.114 10.1109/ICCV.2007.4408875 10.1109/CVPR.2005.177 10.1145/1553374.1553510 |
| ContentType | Journal Article |
| Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
| Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2013 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2012.2237183 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 2162-2388 |
| EndPage | 761 |
| ExternalDocumentID | 2938973211 24808425 27321506 10_1109_TNNLS_2012_2237183 6459603 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION IQODW RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c414t-1d83a95e478be7de1911c397c4a9810dfdcae02dab1c70e8bc10ede5717c32fa3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 118 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316494700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Mon Sep 29 06:34:24 EDT 2025 Sat Sep 27 19:49:03 EDT 2025 Sun Oct 05 00:05:42 EDT 2025 Mon Jul 21 05:54:45 EDT 2025 Wed Apr 02 07:25:22 EDT 2025 Sat Nov 29 01:39:47 EST 2025 Tue Nov 18 22:12:50 EST 2025 Tue Aug 26 16:42:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Multiple kernel learning Action Event detection support vector machines Motion estimation Video signal Modeling Kernel method Loss function Behavioral analysis Efficiency Scene analysis Vector support machine Objective function Learning algorithm Single machine |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c414t-1d83a95e478be7de1911c397c4a9810dfdcae02dab1c70e8bc10ede5717c32fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 24808425 |
| PQID | 1324478512 |
| PQPubID | 85436 |
| PageCount | 13 |
| ParticipantIDs | ieee_primary_6459603 proquest_miscellaneous_1349465190 proquest_miscellaneous_1523403109 crossref_primary_10_1109_TNNLS_2012_2237183 proquest_journals_1324478512 pascalfrancis_primary_27321506 pubmed_primary_24808425 crossref_citationtrail_10_1109_TNNLS_2012_2237183 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-05-01 |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref59 ref58 ref11 cristianini (ref5) 2001 ong (ref7) 2005; 6 ref51 kloft (ref19) 2010 ref46 ref45 ref48 ref47 ref41 ref44 ref43 xu (ref15) 2008 micchelli (ref52) 2010 ref49 liu (ref56) 2009 ref8 ref3 ref6 duchi (ref54) 2008 ref40 cortes (ref16) 2009 sonnenburg (ref12) 2006; 7 lanckriet (ref9) 2004; 5 ref37 xu (ref35) 2010 sonnenburg (ref55) 2010; 11 ref36 orabona (ref27) 2011 ref31 ref30 vishwanathan (ref34) 2010 ref33 ref32 orabona (ref20) 2010 bach (ref50) 2004 ref2 ref1 hu (ref10) 2009; 20 ref39 ref38 cortes (ref26) 2010 orabona (ref28) 2012; 13 kloft (ref24) 2010 kloft (ref17) 2011; 12 ref23 ref25 ref22 ref21 bach (ref42) 2008; 9 sch lkopf (ref4) 2002 ref29 shawe-taylor (ref18) 2008 shalev-shwartz (ref53) 2006; 7 ref60 rakotomamonjy (ref14) 2008; 9 |
| References_xml | – start-page: 1 year: 2004 ident: ref50 article-title: Computing regularization paths for learning multiple kernels publication-title: Proc NIPS Conf – start-page: 109 year: 2009 ident: ref16 article-title: L2 regularization for learning kernels publication-title: Proc Conf Uncertainty Artif Intell – year: 2002 ident: ref4 publication-title: Learning with kernels – start-page: 66 year: 2010 ident: ref24 article-title: A unifying view of multiple kernel learning publication-title: Proc ECML/PKDD (2) – start-page: 272 year: 2008 ident: ref54 article-title: Efficient projections onto the <formula formulatype="inline"><tex Notation="TeX">${\ell}_{1}$</tex></formula>-ball for learning in high dimensions publication-title: Proc Int Conf Mach Learn – start-page: 1612 year: 2010 ident: ref52 article-title: A family of penalty functions for structured sparsity publication-title: Proc NIPS Conf – start-page: 1 year: 2008 ident: ref18 article-title: Kernel learning for novelty detection publication-title: Proceedings of the NIPS Workshop on Kernel Learning Automatic Selection of Optimal Kernels – start-page: 239 year: 2010 ident: ref26 article-title: Two-stage learning kernel algorithms publication-title: Proc Int Conf Mach Learn – ident: ref8 doi: 10.1109/TNN.2005.860848 – ident: ref46 doi: 10.1109/ICCV.2009.5459169 – ident: ref2 doi: 10.1109/TNNLS.2012.2187307 – start-page: 1175 year: 2010 ident: ref35 article-title: Simple and efficient multiple kernel learning by group lasso publication-title: Proc Int Conf Mach Learn – ident: ref23 doi: 10.1109/TNN.2010.2103571 – ident: ref11 doi: 10.1145/1015330.1015424 – volume: 9 start-page: 1179 year: 2008 ident: ref42 article-title: Consistency of the group lasso and multiple kernel learning publication-title: J Mach Learn Res – ident: ref51 doi: 10.1007/s10994-009-5150-6 – ident: ref41 doi: 10.1111/j.1467-9868.2005.00532.x – volume: 13 start-page: 227 year: 2012 ident: ref28 article-title: Multikernel learning with online-batch optimization publication-title: J Mach Learn Res – ident: ref32 doi: 10.1007/978-3-642-33765-9_34 – ident: ref60 doi: 10.1109/ICDM.2012.78 – volume: 5 start-page: 27 year: 2004 ident: ref9 article-title: Learning the kernel matrix with semidefinite programming publication-title: J Mach Learn Res – ident: ref57 doi: 10.1109/CVPR.2011.5995407 – ident: ref44 doi: 10.1007/s11263-005-1838-7 – ident: ref43 doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 7 start-page: 1531 year: 2006 ident: ref12 article-title: Large scale multiple kernel learning publication-title: J Mach Learn Res – start-page: 997 year: 2010 ident: ref19 article-title: Efficient and accurate Lp-norm multiple kernel learning publication-title: Proc Adv Neural Inf Process Syst – ident: ref40 doi: 10.1145/1961189.1961199 – ident: ref36 doi: 10.1007/BF00994018 – ident: ref30 doi: 10.1109/TPAMI.2011.265 – ident: ref59 doi: 10.1109/ICDM.2012.105 – ident: ref49 doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref1 doi: 10.1109/TNNLS.2012.2186314 – ident: ref38 doi: 10.1109/TNN.2002.1031937 – volume: 7 start-page: 1567 year: 2006 ident: ref53 article-title: Efficient learning of label ranking by soft projections onto polyhedra publication-title: J Mach Learn Res – ident: ref37 doi: 10.1162/089976600300015565 – ident: ref39 doi: 10.1162/089976601750399335 – ident: ref47 doi: 10.1017/CBO9780511801389 – ident: ref25 doi: 10.1007/s10994-011-5252-9 – ident: ref13 doi: 10.1145/1273496.1273646 – start-page: 2361 year: 2010 ident: ref34 article-title: Multiple kernel learning and the SMO algorithm publication-title: Advances in neural information processing systems – start-page: 1 year: 2009 ident: ref56 article-title: Recognizing realistic actions from videos in the wild publication-title: Proc IEEE Int Conf Comput Vis Pattern Recogn – volume: 11 start-page: 1799 year: 2010 ident: ref55 article-title: The SHOGUN machine learning toolbox publication-title: J Mach Learn Res – volume: 9 start-page: 2491 year: 2008 ident: ref14 article-title: SimpleMKL publication-title: J Mach Learn Res – start-page: 367 year: 2001 ident: ref5 publication-title: Advances in neural information processing systems – ident: ref31 doi: 10.1109/CVPR.2011.5995624 – ident: ref48 doi: 10.1145/130385.130401 – ident: ref22 doi: 10.1109/TASL.2008.2012193 – ident: ref6 doi: 10.1023/A:1012450327387 – volume: 12 start-page: 953 year: 2011 ident: ref17 article-title: <formula formulatype="inline"><tex Notation="TeX">${\rm L}_{p}$</tex></formula>-norm multiple kernel learning publication-title: J Mach Learn Res – volume: 6 start-page: 1043 year: 2005 ident: ref7 article-title: Learning the kernel with hyperkernels publication-title: J Mach Learn Res – ident: ref58 doi: 10.1109/CVPR.2010.5539870 – start-page: 1825 year: 2008 ident: ref15 article-title: An extended level method for efficient multiple kernel learning publication-title: Advances in neural information processing systems – ident: ref3 doi: 10.1109/72.914517 – volume: 20 start-page: 827 year: 2009 ident: ref10 article-title: Building sparse multiple-kernel SVM classifiers publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2009.2014229 – ident: ref29 doi: 10.1109/TPAMI.2011.114 – ident: ref33 doi: 10.1109/ICCV.2007.4408875 – ident: ref45 doi: 10.1109/CVPR.2005.177 – start-page: 787 year: 2010 ident: ref20 article-title: Online-batch strongly convex multikernel learning publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – start-page: 249 year: 2011 ident: ref27 article-title: Ultrafast optimization algorithm for sparse multikernel learning publication-title: Proc 28th Int Conf Mach Learn – ident: ref21 doi: 10.1145/1553374.1553510 |
| SSID | ssj0000605649 |
| Score | 2.4394102 |
| Snippet | Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 749 |
| SubjectTerms | Algorithms Applied sciences Artificial intelligence Computer science; control theory; systems Data processing. List processing. Character string processing Exact sciences and technology Fasteners Hinges Kernel Kernels Learning Learning and adaptive systems Linear programming Mathematical models Memory organisation. Data processing Multiple kernel learning Neural networks Operations research Optimization Pattern recognition. Digital image processing. Computational geometry Recognition Software Studies Support vector machines Training Vectors |
| Title | Soft Margin Multiple Kernel Learning |
| URI | https://ieeexplore.ieee.org/document/6459603 https://www.ncbi.nlm.nih.gov/pubmed/24808425 https://www.proquest.com/docview/1324478512 https://www.proquest.com/docview/1349465190 https://www.proquest.com/docview/1523403109 |
| Volume | 24 |
| WOSCitedRecordID | wos000316494700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5q8cEXq9bLaj2s0DfdNsmmm-RRxCJYD0IrnLclm8xKoewp5-Lvdyabs1LQgm8LycLuzCT5JnP5AI75GtD0qqmCkL7SvtOVd9JWvUDle2UIoqZC4Qszn9vFwn3fgw9TLQwipuQzPOHHFMuPy7Dlq7JTbnzScGvPB8Y0Y63WdJ8iCJc3Ce0q2ahK1Waxq5ER7vRqPr-45EQudULnIe3HzJ-jtBUchbpzJCWOFc6Q9GsSUj-yW_wbfqZj6Pzg_37gCTzOcLP8ONrHU9jD4Rkc7KgcyryyD-H4krbjkllvr4fyW04yLL_iasCbMvdg_fkcfpx_vvr0pcoEClXQUm8qGW3t3RlqYzs0Eck3k4EASNDeWSliH4NHoaLvZDACbRekwIhn5OKFWvW-fgH7w3LAV1Ba0ZEDG1QqRuXoazTO1pF7_wTXxKYAuZNhG3J3cSa5uGmTlyFcm1TQsgrarIIC3k_v3I69Ne6dfcgCnWZmWRYwu6OqaZxwmeL2iQUc7XTX5vW5bskH1yQVQjsFvJuGaWVxuMQPuNzyHO2YKd6Je-aQH69Td9UCXo528ecDsnm9_vuHv4FHKlFrcPLkEexvVlt8Cw_Dr831ejUjE1_YWTLx37lR8gk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9EC_VFbdW6fnULvrWrSTbuJo9FFIvnUvAK97Zkk1kRZK_ch3-_mVxuRWgF3xaShd2ZSTKTmfn9AE7oGrBsRZFZxk0mTSMzo7nKWobCtKL0LmpoFB6UVaVGI_17BX70vTCIGIrP8JQeQy7fje2crsrOCPikIGjPNWLOit1a_Y0K8555EfxdwQuRibwcLbtkmD4bVtXgjkq5xKk_Ef2OTAw6QipGeahXh1JgWaEaSTP1YmoX_Bb_d0DDQXS1-b5f2IKN6HCmPxcW8glWsPsMm0syhzSu7W04ufMbckq8tw9dehvLDNMbnHT4mEYU1vsd-HN1Oby4ziKFQmYll7OMO5UbfY6yVA2WDn10xq13Qaw0WnHmWmcNMuFMw23JUDWWM3R47oM8m4vW5Luw2o073INUscaHsFaEdlTKv7pSq9wR-o_VhSsS4EsZ1jbiixPNxWMd4gym66CCmlRQRxUk8L1_5-8CXePN2dsk0H5mlGUCx69U1Y97z0wQgGICh0vd1XGFTmsfhUsvFe_vJPCtH_ZrixImpsPxnOZITVzxmr0xx0fyMuCrJvBlYRcvHxDNa__fH_4VPl4Pbwf14Fd1cwDrIhBtUCnlIazOJnM8gg_2afYwnRwHQ38GybH0ag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+Margin+Multiple+Kernel+Learning&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xinxing+Xu&rft.au=Tsang%2C+I.+W.&rft.au=Dong+Xu&rft.date=2013-05-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=24&rft.issue=5&rft.spage=749&rft.epage=761&rft_id=info:doi/10.1109%2FTNNLS.2012.2237183&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2012_2237183 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |