Handling partially labeled network data: A semi-supervised approach using stacked sparse autoencoder

Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era where the implementation of this concept can be done easily with network function virtualization. Currently, many approaches have been proposed...

Full description

Saved in:
Bibliographic Details
Published in:Computer networks (Amsterdam, Netherlands : 1999) Vol. 207; pp. 108742 - 12
Main Authors: Aouedi, Ons, Piamrat, Kandaraj, Bagadthey, Dhruvjyoti
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 22.04.2022
Elsevier Sequoia S.A
Elsevier
Subjects:
ISSN:1389-1286, 1872-7069
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era where the implementation of this concept can be done easily with network function virtualization. Currently, many approaches have been proposed to improve the performance of traffic classification. However, as new types of traffic emerge every day (and they are generally not labeled), this opens a new challenge to be handled. Moreover, the question of how to accurately classify the traffic using a limited amount of labeled data or partially labeled data is also another important concern. In fact, labeling data is often difficult and time-consuming. In order to solve the previously described issues, we reformulate traffic classification into a semi-supervised learning where both supervised learning (using labeled data) and unsupervised learning (no label data) are combined. To do so, this paper presents a stacked sparse autoencoder (SSAE) based semi-supervised deep-learning model for traffic classification. The main motivations of this approach are: (i) unlabeled data is often abundant and easily available; (ii) classification performance of the whole model can be greatly improved when a large amount of unlabeled traffic is included in the training process; (iii) there is a limit to how much human effort can be thrown at the labeling problem. To investigate the performance of our approach, an empirical study has been conducted on a real dataset and results indicate that using a large amount of unlabeled data in the SSAE pre-trained phase can improve significantly the classification performance of the whole model. Furthermore, the proposed approach is compared against other representative machine-learning and deep-learning models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and Autoencoder.
AbstractList Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era where the implementation of this concept can be done easily with network function virtualization. Currently, many approaches have been proposed to improve the performance of traffic classification. However, as new types of traffic emerge every day (and they are generally not labeled), this opens a new challenge to be handled. Moreover, the question of how to accurately classify the traffic using a limited amount of labeled data or partially labeled data is also another important concern. In fact, labeling data is often difficult and time-consuming. In order to solve the previously described issues, we reformulate traffic classification into a semi-supervised learning where both supervised learning (using labeled data) and unsupervised learning (no label data) are combined. To do so, this paper presents a stacked sparse autoencoder (SSAE) based semi-supervised deep-learning model for traffic classification. The main motivations of this approach are: (i) unlabeled data is often abundant and easily available; (ii) classification performance of the whole model can be greatly improved when a large amount of unlabeled traffic is included in the training process; (iii) there is a limit to how much human effort can be thrown at the labeling problem. To investigate the performance of our approach, an empirical study has been conducted on a real dataset and results indicate that using a large amount of unlabeled data in the SSAE pre-trained phase can improve significantly the classification performance of the whole model. Furthermore, the proposed approach is compared against other representative machine-learning and deep-learning models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and Autoencoder.
Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era where the implementation of this concept can be done easily with network function virtualization. Currently, many approaches have been proposed to improve the performance of traffic classification. However, as new types of traffic emerge every day (and they are generally not labeled), this opens a new challenge to be handled. Moreover, the question of how to accurately classify traffic using a limited amount of labeled data or partially labeled data hence becomes another important concern. In fact, labeling data is often difficult and time-consuming. In order to tackle the previously described issues, we reformulate traffic classification into a semi-supervised learning where both supervised learning (using labeled data) and unsupervised learning (no label data) are combined. To do so, this paper presents a stacked sparse autoencoder (SSAE) based semi-supervised deep-learning model for traffic classification. The main motivations of this approach are: (i) unlabeled data is often abundant and easily available; (ii) classification performance of the whole model can be greatly improved when a large amount of unlabeled traffic is included in the training process; (iii) there is a limit to how much human effort can be thrown at the labeling problem. To investigate the performance of our approach, an empirical study has been conducted on a real dataset and results indicate that using a large amount of unlabeled data in the SSAE pre-trained phase can improve significantly the classification performance of the whole model. The proposed approach is compared against other representative machine-learning and deep-learning models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), eXtreme Gradient Boosting (XGBoost), and Autoencoder. Furthermore, we have also conducted experiments on a well-known dataset including encrypted traffic (containing only time-related features) to evaluate the generalization performance of the proposed model.
ArticleNumber 108742
Author Bagadthey, Dhruvjyoti
Piamrat, Kandaraj
Aouedi, Ons
Author_xml – sequence: 1
  givenname: Ons
  orcidid: 0000-0002-2343-0850
  surname: Aouedi
  fullname: Aouedi, Ons
  organization: University of Nantes, LS2N, 2 Chemin de la Houssinière, Nantes, France
– sequence: 2
  givenname: Kandaraj
  orcidid: 0000-0002-4350-0254
  surname: Piamrat
  fullname: Piamrat, Kandaraj
  email: kandaraj.piamrat@univ-nantes.fr
  organization: University of Nantes, LS2N, 2 Chemin de la Houssinière, Nantes, France
– sequence: 3
  givenname: Dhruvjyoti
  surname: Bagadthey
  fullname: Bagadthey, Dhruvjyoti
  organization: Department of Electrical Engineering, IIT Madras, Chennai 600036, Chennai, India
BackLink https://hal.science/hal-03524935$$DView record in HAL
BookMark eNqFkE1v1DAQhi3USvSDf8AhEicOWTyOEyc9IK0qyiKtxAXO1sSeUG-zcbCdRf339SqIAwc42Rq_76Pxc80uJj8RY2-Bb4BD8-GwMf44UdoILiCPWiXFK3YFrRKl4k13ke9V25Ug2uY1u47xwDmXUrRXzO5wsqObfhQzhuRwHJ-LEXsayRaZ-MuHp8JiwrtiW0Q6ujIuM4WTi_kd5zl4NI_FEs-AmNA85XHMpEgFLsnTZLylcMsuBxwjvfl93rDvD5--3e_K_dfPX-63-9JIkKkEM5ARfY89QDv02KjeNFBXvWqbSvDaDi0YqZTsuqqmTsoKrWnQ2p5sx-uhumHvV-4jjnoO7ojhWXt0erfd6_OMV7WQuXyCnH23ZvMffi4Ukz74JUx5PS0UB5CgeJVTck2Z4GMMNPzBAtdn9_qgV_f67F6v7nPt7q-acQmT81MK6Mb_lT-uZcqqTo6CjsZlk2RdIJO09e7fgBd13KUY
CitedBy_id crossref_primary_10_3390_e25091274
crossref_primary_10_1016_j_comnet_2023_109990
crossref_primary_10_1002_cpe_8223
crossref_primary_10_1016_j_jmsy_2025_08_009
crossref_primary_10_1016_j_buildenv_2023_110718
crossref_primary_10_1007_s00521_023_08668_w
crossref_primary_10_1016_j_chemosphere_2022_136046
crossref_primary_10_3390_app12136617
Cites_doi 10.1109/ICNP49622.2020.9259390
10.1109/MASS.2016.016
10.1016/j.comnet.2021.107840
10.1016/j.comcom.2021.01.021
10.1145/3065386
10.1109/MNET.2018.1800078
10.1109/ACCESS.2018.2872430
10.1016/j.comnet.2021.107974
10.1109/ICNP.2016.7785327
10.1016/j.comnet.2018.01.007
10.1109/COMST.2018.2883147
10.1109/ICCWorkshops50388.2021.9473580
10.1016/j.cmpb.2018.10.004
10.5220/0005740704070414
10.1007/978-3-319-95168-3_37
10.1016/j.inffus.2017.10.006
10.1109/COMST.2018.2866942
10.1109/ICSAI.2014.7009372
10.1016/j.measurement.2016.04.007
10.1038/s41598-019-55320-6
10.1109/TKDE.2008.239
10.1145/1390156.1390294
10.1109/ACCESS.2018.2858277
10.1109/SCC.2016.133
10.1016/j.jnca.2020.102890
10.1016/j.neucom.2015.09.116
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Apr 22, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Apr 22, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1016/j.comnet.2021.108742
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7069
EndPage 12
ExternalDocumentID oai:HAL:hal-03524935v1
10_1016_j_comnet_2021_108742
S1389128621005909
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
77K
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
J1W
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
PQQKQ
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
ZMT
~G-
29F
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
ADJOM
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EJD
F0J
FGOYB
HZ~
R2-
SEW
ZY4
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c414t-1cfec2bbab118fba67bc6153b7863205df81c47749935e9443adc6addbed905f3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782963500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-1286
IngestDate Tue Oct 14 20:19:19 EDT 2025
Fri Nov 14 18:44:40 EST 2025
Sat Nov 29 07:00:12 EST 2025
Tue Nov 18 22:36:44 EST 2025
Fri Feb 23 02:41:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Partial information
Semi-supervised learning
Machine learning
Feature extraction
Traffic classification
Stacked sparse autoencoder
deep learning
stacked sparse autoencoder
feature extraction
partial information
semi-supervised learning
traffic classification
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c414t-1cfec2bbab118fba67bc6153b7863205df81c47749935e9443adc6addbed905f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4350-0254
0000-0002-2343-0850
OpenAccessLink https://hal.science/hal-03524935
PQID 2701141703
PQPubID 47119
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03524935v1
proquest_journals_2701141703
crossref_primary_10_1016_j_comnet_2021_108742
crossref_citationtrail_10_1016_j_comnet_2021_108742
elsevier_sciencedirect_doi_10_1016_j_comnet_2021_108742
PublicationCentury 2000
PublicationDate 2022-04-22
PublicationDateYYYYMMDD 2022-04-22
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-22
  day: 22
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer networks (Amsterdam, Netherlands : 1999)
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Sequoia S.A
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
– name: Elsevier
References D’Angelo, Palmieri (b26) 2021; 173
M. Uddin, T. Nadeem, TrafficVision: A case for pushing software defined networks to wireless edges, in: Proceedings Of The 13th International Conference On Mobile Ad Hoc And Sensor Systems, Brasilia, Brazil, MASS, 2016, pp. 37–46.
Camelo, Shahid, Fontaine, de Figueiredo, De Poorter, Moerman, Latre (b12) 2019
Sagheer, Kotb (b14) 2019; 9
Krizhevsky, Sutskever, Hinton (b33) 2017; 60
Li, Chen, Yang, Gao, Zhang, Deen (b25) 2018; 32
Yan, Han (b17) 2018; 6
Zhang, Yang, Chen, Li (b8) 2018; 42
Xie, Yu, Huang, Xie, Liu, Wang, Liu (b18) 2018; 21
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b28) 2014; 15
Barut, Luo, Zhang, Li, Li (b2) 2020
Pacheco, Exposito, Gineste, Baudoin, Aguilar (b9) 2018; 21
Lin, Xu, Gao (b37) 2021; 190
Shi, Li, Zhang, Cheng, Cao (b3) 2018; 132
Y. Li, J. Li, MultiClassifier: A combination of DPI and ML for application-layer classification in SDN, in: Proceedings Of The 2nd International Conference On Systems And Informatics, Shanghai, China, ICSAI, Shanghai, China, 2014, pp. 682–686.
G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, A.A. Ghorbani, Characterization of encrypted and vpn traffic using time-related, in: Proceedings Of The 2nd International Conference On Information Systems Security And Privacy, ICISSP, 2016, pp. 407–414.
P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings Of The 25th International Conference On Machine Learning, 2008, pp. 1096–1103.
P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, H.S. Mamede, Machine learning in software defined networks: Data collection and traffic classification, in: Proceedings Of The 24th International Conference On Network Protocols, Singapore, ICNP, 2016, pp. 1–5.
He, Garcia (b31) 2009; 21
O. Aouedi, K. Piamrat, D. Bagadthey, A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification, in: Proceedings Of The 28th International Conference On Network Protocols (ICNP) HDR-Nets Workshop, Madrid, Spain, 2020.
J.S. Rojas, Á.R. Gallón, J.C. Corrales, Personalized service degradation policies on OTT applications based on the consumption behavior of users, in: Proceedings Of The International Conference On Computational Science And Its Applications, Melbourne, Australia, 2018, pp. 543–557.
Abbasi, Shahraki, Taherkordi (b10) 2021
Hinton, Srivastava, Krizhevsky, Sutskever, Salakhutdinov (b29) 2012
Xiao, Wu, Lin, Zhao (b15) 2018; 166
Sun, Shao, Zhao, Yan, Zhang, Chen (b16) 2016; 89
Vincent, Larochelle, Lajoie, Bengio, Manzagol, Bottou (b30) 2010; 11
Kilincer, Ertam, Sengur (b35) 2021
(b1) 2019
Erhan, Courville, Bengio, Vincent (b13) 2010
Guo, Liu, Oerlemans, Lao, Wu, Lew (b27) 2016; 187
Yao, Liu, Zhang, Wu, Jiang, Yu (b38) 2019
Zhao, Zhang, Sang (b22) 2019
De Schepper, Camelo, Famaey, Latré (b11) 2020; 30
O. Aouedi, K. Piamrat, B. Parrein, Performance evaluation of feature selection and tree-based algorithms for traffic classification, in: 2021 IEEE International Conference On Communications (ICC) DDINS Workshop, Montreal, Canada, 2021.
Wang, Ye, Chen, Qian (b21) 2018; 6
Hady, Schwenker (b5) 2013
Zhang, Wang, Li, He, Huang (b23) 2018; 29
Rezaei, Liu (b39) 2020
P. Wang, S.-C. Lin, M. Luo, A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs, in: Proceedings Of The IEEE International Conference On Services Computing, San Francisco, CA, USA, SCC, 2016, pp. 760–765.
Sun (10.1016/j.comnet.2021.108742_b16) 2016; 89
D’Angelo (10.1016/j.comnet.2021.108742_b26) 2021; 173
Shi (10.1016/j.comnet.2021.108742_b3) 2018; 132
Sagheer (10.1016/j.comnet.2021.108742_b14) 2019; 9
Guo (10.1016/j.comnet.2021.108742_b27) 2016; 187
Kilincer (10.1016/j.comnet.2021.108742_b35) 2021
10.1016/j.comnet.2021.108742_b20
Krizhevsky (10.1016/j.comnet.2021.108742_b33) 2017; 60
Pacheco (10.1016/j.comnet.2021.108742_b9) 2018; 21
Yan (10.1016/j.comnet.2021.108742_b17) 2018; 6
Yao (10.1016/j.comnet.2021.108742_b38) 2019
10.1016/j.comnet.2021.108742_b19
He (10.1016/j.comnet.2021.108742_b31) 2009; 21
Hinton (10.1016/j.comnet.2021.108742_b29) 2012
Lin (10.1016/j.comnet.2021.108742_b37) 2021; 190
Rezaei (10.1016/j.comnet.2021.108742_b39) 2020
Zhang (10.1016/j.comnet.2021.108742_b8) 2018; 42
Xiao (10.1016/j.comnet.2021.108742_b15) 2018; 166
10.1016/j.comnet.2021.108742_b36
Li (10.1016/j.comnet.2021.108742_b25) 2018; 32
Hady (10.1016/j.comnet.2021.108742_b5) 2013
Wang (10.1016/j.comnet.2021.108742_b21) 2018; 6
De Schepper (10.1016/j.comnet.2021.108742_b11) 2020; 30
10.1016/j.comnet.2021.108742_b34
10.1016/j.comnet.2021.108742_b32
Zhang (10.1016/j.comnet.2021.108742_b23) 2018; 29
Zhao (10.1016/j.comnet.2021.108742_b22) 2019
Vincent (10.1016/j.comnet.2021.108742_b30) 2010; 11
10.1016/j.comnet.2021.108742_b4
Abbasi (10.1016/j.comnet.2021.108742_b10) 2021
Erhan (10.1016/j.comnet.2021.108742_b13) 2010
10.1016/j.comnet.2021.108742_b24
Barut (10.1016/j.comnet.2021.108742_b2) 2020
10.1016/j.comnet.2021.108742_b7
Camelo (10.1016/j.comnet.2021.108742_b12) 2019
Xie (10.1016/j.comnet.2021.108742_b18) 2018; 21
10.1016/j.comnet.2021.108742_b6
Srivastava (10.1016/j.comnet.2021.108742_b28) 2014; 15
(10.1016/j.comnet.2021.108742_b1) 2019
References_xml – volume: 21
  start-page: 1988
  year: 2018
  end-page: 2014
  ident: b9
  article-title: Towards the deployment of machine learning solutions in network traffic classification: A systematic survey
  publication-title: IEEE Commun. Surv. Tutor.
– volume: 190
  year: 2021
  ident: b37
  article-title: TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT
  publication-title: Comput. Netw.
– year: 2021
  ident: b10
  article-title: Deep learning for network traffic monitoring and analysis (NTMA): A survey
  publication-title: Comput. Commun.
– volume: 6
  start-page: 41238
  year: 2018
  end-page: 41248
  ident: b17
  article-title: Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system
  publication-title: IEEE Access
– start-page: 1
  year: 2020
  end-page: 9
  ident: b39
  article-title: Multitask learning for network traffic classification
  publication-title: 2020 29th International Conference On Computer Communications And Networks
– volume: 166
  start-page: 99
  year: 2018
  end-page: 105
  ident: b15
  article-title: A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data
  publication-title: Comput. Methods Programs Biomed.
– year: 2012
  ident: b29
  article-title: Improving neural networks by preventing co-adaptation of feature detectors
– start-page: 201
  year: 2010
  end-page: 208
  ident: b13
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: Proceedings Of The Thirteenth International Conference On Artificial Intelligence And Statistics
– volume: 21
  start-page: 393
  year: 2018
  end-page: 430
  ident: b18
  article-title: A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
– start-page: 1
  year: 2019
  end-page: 10
  ident: b12
  article-title: A semi-supervised learning approach towards automatic wireless technology recognition
  publication-title: 2019 IEEE International Symposium On Dynamic Spectrum Access Networks
– volume: 42
  start-page: 146
  year: 2018
  end-page: 157
  ident: b8
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
– reference: P. Amaral, J. Dinis, P. Pinto, L. Bernardo, J. Tavares, H.S. Mamede, Machine learning in software defined networks: Data collection and traffic classification, in: Proceedings Of The 24th International Conference On Network Protocols, Singapore, ICNP, 2016, pp. 1–5.
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– volume: 187
  start-page: 27
  year: 2016
  end-page: 48
  ident: b27
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
– volume: 132
  start-page: 81
  year: 2018
  end-page: 98
  ident: b3
  article-title: An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification
  publication-title: Comput. Netw.
– volume: 89
  start-page: 171
  year: 2016
  end-page: 178
  ident: b16
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
– start-page: 85
  year: 2019
  end-page: 89
  ident: b22
  article-title: Towards unknown traffic identification via embeddings and deep autoencoders
  publication-title: 2019 26th International Conference On Telecommunications
– reference: O. Aouedi, K. Piamrat, B. Parrein, Performance evaluation of feature selection and tree-based algorithms for traffic classification, in: 2021 IEEE International Conference On Communications (ICC) DDINS Workshop, Montreal, Canada, 2021.
– year: 2019
  ident: b1
  article-title: Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 white paper, Cisco
– start-page: 215
  year: 2013
  end-page: 239
  ident: b5
  article-title: Semi-supervised learning
  publication-title: Handbook On Neural Information Processing
– volume: 9
  start-page: 1
  year: 2019
  end-page: 16
  ident: b14
  article-title: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems
  publication-title: Sci. Rep.
– reference: P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing robust features with denoising autoencoders, in: Proceedings Of The 25th International Conference On Machine Learning, 2008, pp. 1096–1103.
– year: 2020
  ident: b2
  article-title: NetML: A challenge for network traffic analytics
– reference: O. Aouedi, K. Piamrat, D. Bagadthey, A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification, in: Proceedings Of The 28th International Conference On Network Protocols (ICNP) HDR-Nets Workshop, Madrid, Spain, 2020.
– volume: 173
  year: 2021
  ident: b26
  article-title: Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction
  publication-title: J. Netw. Comput. Appl.
– volume: 6
  start-page: 55380
  year: 2018
  end-page: 55391
  ident: b21
  article-title: Datanet: Deep learning based encrypted network traffic classification in sdn home gateway
  publication-title: IEEE Access
– volume: 29
  year: 2018
  ident: b23
  article-title: Deep learning-based network application classification for SDN
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 32
  start-page: 22
  year: 2018
  end-page: 27
  ident: b25
  article-title: An improved stacked auto-encoder for network traffic flow classification
  publication-title: IEEE Netw.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 30
  year: 2020
  ident: b11
  article-title: Traffic classification at the radio spectrum level using deep learning models trained with synthetic data
  publication-title: Int. J. Netw. Manag.
– reference: Y. Li, J. Li, MultiClassifier: A combination of DPI and ML for application-layer classification in SDN, in: Proceedings Of The 2nd International Conference On Systems And Informatics, Shanghai, China, ICSAI, Shanghai, China, 2014, pp. 682–686.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b31
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: M. Uddin, T. Nadeem, TrafficVision: A case for pushing software defined networks to wireless edges, in: Proceedings Of The 13th International Conference On Mobile Ad Hoc And Sensor Systems, Brasilia, Brazil, MASS, 2016, pp. 37–46.
– reference: J.S. Rojas, Á.R. Gallón, J.C. Corrales, Personalized service degradation policies on OTT applications based on the consumption behavior of users, in: Proceedings Of The International Conference On Computational Science And Its Applications, Melbourne, Australia, 2018, pp. 543–557.
– year: 2019
  ident: b38
  article-title: Identification of encrypted traffic through attention mechanism based long short term memory
  publication-title: IEEE Trans. Big Data
– volume: 11
  year: 2010
  ident: b30
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– reference: P. Wang, S.-C. Lin, M. Luo, A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs, in: Proceedings Of The IEEE International Conference On Services Computing, San Francisco, CA, USA, SCC, 2016, pp. 760–765.
– year: 2021
  ident: b35
  article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study
  publication-title: Comput. Netw.
– reference: G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, A.A. Ghorbani, Characterization of encrypted and vpn traffic using time-related, in: Proceedings Of The 2nd International Conference On Information Systems Security And Privacy, ICISSP, 2016, pp. 407–414.
– ident: 10.1016/j.comnet.2021.108742_b6
  doi: 10.1109/ICNP49622.2020.9259390
– year: 2019
  ident: 10.1016/j.comnet.2021.108742_b1
– ident: 10.1016/j.comnet.2021.108742_b19
  doi: 10.1109/MASS.2016.016
– year: 2021
  ident: 10.1016/j.comnet.2021.108742_b35
  article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107840
– year: 2021
  ident: 10.1016/j.comnet.2021.108742_b10
  article-title: Deep learning for network traffic monitoring and analysis (NTMA): A survey
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2021.01.021
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.comnet.2021.108742_b33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 32
  start-page: 22
  issue: 6
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b25
  article-title: An improved stacked auto-encoder for network traffic flow classification
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800078
– start-page: 85
  year: 2019
  ident: 10.1016/j.comnet.2021.108742_b22
  article-title: Towards unknown traffic identification via embeddings and deep autoencoders
– year: 2012
  ident: 10.1016/j.comnet.2021.108742_b29
– volume: 6
  start-page: 55380
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b21
  article-title: Datanet: Deep learning based encrypted network traffic classification in sdn home gateway
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872430
– volume: 190
  year: 2021
  ident: 10.1016/j.comnet.2021.108742_b37
  article-title: TSCRNN: A novel classification scheme of encrypted traffic based on flow spatiotemporal features for efficient management of IIoT
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107974
– ident: 10.1016/j.comnet.2021.108742_b20
  doi: 10.1109/ICNP.2016.7785327
– volume: 132
  start-page: 81
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b3
  article-title: An efficient feature generation approach based on deep learning and feature selection techniques for traffic classification
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.01.007
– start-page: 215
  year: 2013
  ident: 10.1016/j.comnet.2021.108742_b5
  article-title: Semi-supervised learning
– volume: 21
  start-page: 1988
  issue: 2
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b9
  article-title: Towards the deployment of machine learning solutions in network traffic classification: A systematic survey
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2883147
– volume: 11
  issue: 12
  year: 2010
  ident: 10.1016/j.comnet.2021.108742_b30
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.comnet.2021.108742_b34
  doi: 10.1109/ICCWorkshops50388.2021.9473580
– year: 2020
  ident: 10.1016/j.comnet.2021.108742_b2
– volume: 166
  start-page: 99
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b15
  article-title: A semi-supervised deep learning method based on stacked sparse auto-encoder for cancer prediction using RNA-seq data
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.10.004
– ident: 10.1016/j.comnet.2021.108742_b36
  doi: 10.5220/0005740704070414
– ident: 10.1016/j.comnet.2021.108742_b32
  doi: 10.1007/978-3-319-95168-3_37
– start-page: 1
  year: 2020
  ident: 10.1016/j.comnet.2021.108742_b39
  article-title: Multitask learning for network traffic classification
– volume: 42
  start-page: 146
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b8
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 21
  start-page: 393
  issue: 1
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b18
  article-title: A survey of machine learning techniques applied to software defined networking (SDN): Research issues and challenges
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2018.2866942
– ident: 10.1016/j.comnet.2021.108742_b4
  doi: 10.1109/ICSAI.2014.7009372
– start-page: 1
  year: 2019
  ident: 10.1016/j.comnet.2021.108742_b12
  article-title: A semi-supervised learning approach towards automatic wireless technology recognition
– volume: 89
  start-page: 171
  year: 2016
  ident: 10.1016/j.comnet.2021.108742_b16
  article-title: A sparse auto-encoder-based deep neural network approach for induction motor faults classification
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.04.007
– volume: 30
  issue: 4
  year: 2020
  ident: 10.1016/j.comnet.2021.108742_b11
  article-title: Traffic classification at the radio spectrum level using deep learning models trained with synthetic data
  publication-title: Int. J. Netw. Manag.
– volume: 29
  issue: 5
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b23
  article-title: Deep learning-based network application classification for SDN
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.comnet.2021.108742_b14
  article-title: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55320-6
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.comnet.2021.108742_b31
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– ident: 10.1016/j.comnet.2021.108742_b24
  doi: 10.1145/1390156.1390294
– year: 2019
  ident: 10.1016/j.comnet.2021.108742_b38
  article-title: Identification of encrypted traffic through attention mechanism based long short term memory
  publication-title: IEEE Trans. Big Data
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.comnet.2021.108742_b28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 201
  year: 2010
  ident: 10.1016/j.comnet.2021.108742_b13
  article-title: Why does unsupervised pre-training help deep learning?
– volume: 6
  start-page: 41238
  year: 2018
  ident: 10.1016/j.comnet.2021.108742_b17
  article-title: Effective feature extraction via stacked sparse autoencoder to improve intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2858277
– ident: 10.1016/j.comnet.2021.108742_b7
  doi: 10.1109/SCC.2016.133
– volume: 173
  year: 2021
  ident: 10.1016/j.comnet.2021.108742_b26
  article-title: Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial–temporal features extraction
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2020.102890
– volume: 187
  start-page: 27
  year: 2016
  ident: 10.1016/j.comnet.2021.108742_b27
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
SSID ssj0004428
Score 2.431366
Snippet Network traffic analytics has become a crucial task in order to better understand and manage network resources, especially in the network softwarization era...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108742
SubjectTerms Artificial Intelligence
Classification
Communications traffic
Computer Science
Data
Decision making
Decision trees
Deep learning
Empirical analysis
Feature extraction
Labeling
Learning
Machine learning
Multilayer perceptrons
Multilayers
Networks
Partial information
Performance enhancement
Semi-supervised learning
Stacked sparse autoencoder
Support vector machines
Traffic classification
Traffic models
Title Handling partially labeled network data: A semi-supervised approach using stacked sparse autoencoder
URI https://dx.doi.org/10.1016/j.comnet.2021.108742
https://www.proquest.com/docview/2701141703
https://hal.science/hal-03524935
Volume 207
WOSCitedRecordID wos000782963500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004428
  issn: 1389-1286
  databaseCode: AIEXJ
  dateStart: 19990114
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jQd4QFxFYSAL8RYFNYlTx7xVaKigaUxiSH2L7Nhlrdq0appq-xf8ZM6J7bRqhQZIvESt69itzxefS8_5TMg7JZICmdBC2OuykCWGh6Kv4G0vlYnuMx2phmf2nF9cZKORuOx0fvpamM2Ml2V2cyOW_1XU0AbCxtLZvxB3Oyg0wGsQOlxB7HD9I8EPkTehqTHHD-VsdhuApEG76KC0Od8BpoXakvTKzCdhVS9xx6igh6cYD-rKBRrgKdcBbDurygSyXi-Q-FK7lF7PcOBOhvDjN4HcwRwpGLTD27as2MUghNiNQSxq0KHY8WvZ2viXEzkHeNqUDwx3yOk27PpDahjRZgBcr-rN9HaxnuxGMMD57bEw3vq7h6U1zU4MllQIytPxZNu2jIM70LNnu_jtO7an5h6oAhuVmKIk4de_h4kjTKjklsxrj2T7W_N_LcwGHjCW44ojchLzVGTH5GTw-Wz0ZVtry5rzetuv58sxm5zBw7l-Z-4cXWPe7Z76b2yaq0fkoXNG6MCC6DHpmPIJebBDUfmUaA8n2sKJOjhRJ26KcPpAB3QPTNSDiTZgog5M1IKJ7oDpGfn-6ezq4zB0J3OEBYvYOoyKsSlipaQC_3SsZJ-rAj0HxbN-EvdSPc6igoFnAdZvagRjidRFH1SpMlr00nHynByXi9K8IBTJhkRsYCk5mMKGZVqqDGzKFBRDVHDZJYlfwLxwtPV4esos9_mJ09wue47Lnttl75KwvWtpaVvu6M-9bHJnelqTMgc43XHnWxBlOwmytQ8H5zm2IdUwgwXYRF1y6iWdu62iymOOwYgIVO7Lf579Fbm_faJOyfF6VZvX5F6xWU-q1RuH3V8OscC5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Handling+partially+labeled+network+data%3A+A+semi-supervised+approach+using+stacked+sparse+autoencoder&rft.jtitle=Computer+networks+%28Amsterdam%2C+Netherlands+%3A+1999%29&rft.au=Aouedi%2C+Ons&rft.au=Piamrat%2C+Kandaraj&rft.au=Bagadthey%2C+Dhruvjyoti&rft.date=2022-04-22&rft.pub=Elsevier+B.V&rft.issn=1389-1286&rft.eissn=1872-7069&rft.volume=207&rft_id=info:doi/10.1016%2Fj.comnet.2021.108742&rft.externalDocID=S1389128621005909
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-1286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-1286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-1286&client=summon