Optimal planning of uncertain renewable energy sources in unbalanced distribution systems by a multi‐objective hybrid PSO–SCO algorithm

High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET renewable power generation Jg. 16; H. 10; S. 2111 - 2124
Hauptverfasser: Ali, Eman S., El‐Sehiemy, Ragab A., El‐Ela, Adel A. Abou, Kamel, Salah, Khan, Baseem
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.07.2022
ISSN:1752-1416, 1752-1424
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%.
AbstractList Abstract High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%.
High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%.
Author Kamel, Salah
Khan, Baseem
Ali, Eman S.
El‐Ela, Adel A. Abou
El‐Sehiemy, Ragab A.
Author_xml – sequence: 1
  givenname: Eman S.
  surname: Ali
  fullname: Ali, Eman S.
  organization: Menofia University
– sequence: 2
  givenname: Ragab A.
  orcidid: 0000-0002-3340-4031
  surname: El‐Sehiemy
  fullname: El‐Sehiemy, Ragab A.
  organization: Kafrelsheikh University
– sequence: 3
  givenname: Adel A. Abou
  surname: El‐Ela
  fullname: El‐Ela, Adel A. Abou
  organization: Menofia University
– sequence: 4
  givenname: Salah
  orcidid: 0000-0001-9505-5386
  surname: Kamel
  fullname: Kamel, Salah
  organization: Aswan University
– sequence: 5
  givenname: Baseem
  orcidid: 0000-0002-5082-8311
  surname: Khan
  fullname: Khan, Baseem
  email: baseem.khan04@gmail.com
  organization: Hawassa University
BookMark eNp9kb9qHDEQh0VwILbjxk-gOnCOtKvVrcpwJI7BcCZOajH6t9axJx2SNmY792kMfkM_SXS-4CKEVBo0830w8ztBRyEGi9A5JReUMPEx7YbmgjZMiDfomC67ZkFZw45ea8rfoZOcN4R0gvT8GP1a74rfwoh3I4Tgw4Cjw1PQNhXwAScb7D2o0eJapGHGOU5J24xrbwoKKqStwcbnkryaio8B5zkXu81YzRjwdhqLf354jGpjdfE_Lb6bVfIG39yunx-ebldrDOMQky932_forYMx27M_7yn68eXz99XXxfX68mr16XqhGWViobvGgRKtIw1Q5qC1Xcs0s11vNDDeci4IWG1AGVg6XhHe86bjxC6dY61rT9HVwWsibOQu1f3TLCN4-fIR0yAhFa9HK7t6KO44VINhoHshlNNk2VMtBNdgquvDwaVTzDlZ9-qjRO4jkftI5EskdZj8Nax9gf3RSgI__huhB-Tej3b-j1x-u7lsDsxv1Kyl7w
CitedBy_id crossref_primary_10_1049_rpg2_12712
crossref_primary_10_1093_ijlct_ctae275
crossref_primary_10_1016_j_epsr_2025_111458
crossref_primary_10_1016_j_epsr_2025_111901
crossref_primary_10_1080_08839514_2023_2252262
crossref_primary_10_1016_j_rineng_2025_104888
crossref_primary_10_1109_ACCESS_2024_3387400
crossref_primary_10_1155_2022_2947965
crossref_primary_10_3390_en16103983
crossref_primary_10_1007_s00202_024_02388_7
crossref_primary_10_1007_s12053_025_10350_0
crossref_primary_10_1049_gtd2_13279
crossref_primary_10_1109_JSYST_2022_3180779
Cites_doi 10.1109/ITCE.2018.8316637
10.4236/jpee.2016.43004
10.1109/TSTE.2013.2278693
10.1016/j.ijepes.2013.05.029
10.1109/TPWRS.2017.2694612
10.1109/TPWRS.2014.2331364
10.1109/59.387902
10.1080/0305215X.2010.502935
10.1109/JSYST.2018.2796847
10.1016/j.knosys.2015.12.022
10.1109/TPWRS.2015.2404533
10.1016/j.rser.2014.07.189
10.1049/iet-gtd.2018.5136
10.1109/JSYST.2020.2964743
10.3390/app10030971
10.3182/20140313-3-IN-3024.00052
10.1002/etep.2716
10.1049/iet-rpg.2009.0011
10.1109/TPWRD.2010.2094627
10.17775/CSEEJPES.2017.0023
10.1016/j.ijepes.2018.01.024
10.11648/j.ijepe.20150404.16
10.1109/TPWRS.2007.901476
10.1109/TPWRS.2012.2214242
10.1109/TPWRS.2014.2314133
10.1049/iet-gtd.2017.0930
10.1049/iet-rpg.2018.5418
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rpg2.12499
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 2124
ExternalDocumentID oai_doaj_org_article_50056f6a686d4ac899bfc0781c996cad
10_1049_rpg2_12499
RPG212499
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
AAHHS
AAHJG
AAJGR
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IEP
IFIPE
IGS
IPLJI
ITC
JAVBF
LAI
MCNEO
O9-
OCL
OK1
P2P
RIE
RNS
ROL
RUI
4.4
7XC
8FE
8FG
8FH
AAMMB
AAYXX
ABJCF
AEFGJ
AEUYN
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
IDLOA
L6V
M43
M7S
P62
PATMY
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
S0W
WIN
ID FETCH-LOGICAL-c4149-c52fab93f02a14fa3e534c4e58dca4636690aecdabda7f61496862560e7ff43f3
IEDL.DBID 24P
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-1416
IngestDate Fri Oct 03 12:52:03 EDT 2025
Tue Nov 18 22:16:08 EST 2025
Wed Oct 29 21:24:11 EDT 2025
Wed Jan 22 16:24:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4149-c52fab93f02a14fa3e534c4e58dca4636690aecdabda7f61496862560e7ff43f3
ORCID 0000-0002-5082-8311
0000-0002-3340-4031
0000-0001-9505-5386
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12499
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_50056f6a686d4ac899bfc0781c996cad
crossref_primary_10_1049_rpg2_12499
crossref_citationtrail_10_1049_rpg2_12499
wiley_primary_10_1049_rpg2_12499_RPG212499
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IET renewable power generation
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2017; 3
2015; 4
2015; 31
2019; 13
1995; 10
2020; 15
2014; 47
2016; 96
2014; 29
2020; 10
2014; 40
2013; 5
2011; 5
2016; 4
2017; 33
2013; 53
2018
2019; 29
2011; 43
2012; 28
2011; 26
2018; 12
2014; 30
2018; 99
2007; 22
e_1_2_11_10_1
e_1_2_11_30_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
Kersting W.H. (e_1_2_11_21_1) 2018
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_24_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_19_1
References_xml – volume: 33
  start-page: 781
  issue: 1
  year: 2017
  end-page: 791
  article-title: Multistage stochastic investment planning with multiscale representation of uncertainties and decisions
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  start-page: 232
  issue: 4
  year: 2015
  end-page: 39
  article-title: A review of particle swarm optimization (PSO) algorithms for optimal distributed generation placement
  publication-title: Int. J. Energy Power Eng.
– volume: 29
  issue: 2
  year: 2019
  article-title: Assessment of hurricane versus sine‐cosine optimization algorithms for economic/ecological emissions load dispatch problem
  publication-title: Int. Trans. Electr. Energy Syst.
– volume: 10
  start-page: 971
  issue: 3
  year: 2020
  article-title: Two‐stage optimal scheduling of large‐scale renewable energy system considering the uncertainty of generation and load
  publication-title: Appl. Sci.
– volume: 13
  start-page: 2339
  issue: 12
  year: 2019
  end-page: 2351
  article-title: Minimisation of voltage fluctuation resulted from renewable energy sources uncertainty in distribution systems
  publication-title: IET Gener. Transm. Distrib.
– volume: 53
  start-page: 468
  year: 2013
  end-page: 477
  article-title: Development of a probabilistic tool using monte carlo simulation and smart meters measurements for the long term analysis of low voltage distribution grids with photovoltaic generation
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 13
  start-page: 1466
  issue: 9
  year: 2019
  end-page: 1473
  article-title: Parameters extraction of photovoltaic sources based on experimental data
  publication-title: IET Renew. Power Gener.
– volume: 5
  start-page: 246
  issue: 1
  year: 2013
  end-page: 253
  article-title: Optimal allocation of chp‐based distributed generation on urban energy distribution networks
  publication-title: IEEE Trans. Sustain. Energy
– volume: 31
  start-page: 304
  issue: 1
  year: 2015
  end-page: 316
  article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation
  publication-title: IEEE Trans. Power Syst.
– volume: 12
  start-page: 850
  issue: 4
  year: 2018
  end-page: 858
  article-title: A multi‐stage transition toward high renewable energy penetration in Queensland, Australia
  publication-title: IET Gener. Transm. Distrib.
– volume: 22
  start-page: 1019
  issue: 3
  year: 2007
  end-page: 1025
  article-title: Development of three‐phase unbalanced power flow using PV and PQ models for distributed generation and study of the impact of DG models
  publication-title: IEEE Trans. Power Syst.
– volume: 4
  start-page: 31
  issue: 3
  year: 2016
  end-page: 46
  article-title: Comparative analysis between single diode and double diode model of PV cell: Concentrate different parameters effect on its efficiency
  publication-title: J. Power Energy Eng.
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowledge‐Based Syst.
– year: 2018
– volume: 15
  start-page: 1458
  year: 2020
  end-page: 1466
  article-title: A multiobjective Salp optimization algorithm for techno‐economic‐based performance enhancement of distribution networks
  publication-title: IEEE Syst. J.
– volume: 12
  start-page: 3629
  issue: 4
  year: 2018
  end-page: 3636
  article-title: Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm
  publication-title: IEEE Syst. J.
– start-page: 271
  year: 2018
  end-page: 277
– volume: 10
  start-page: 671
  issue: 2
  year: 1995
  end-page: 679
  article-title: A three‐phase power flow method for real‐time distribution system analysis
  publication-title: IEEE Trans. Power Syst.
– volume: 47
  start-page: 700
  issue: 1
  year: 2014
  end-page: 705
  article-title: Application of firefly algorithm for radial distribution network reconfiguration using different loads
  publication-title: IFAC Proc. Vol.
– volume: 40
  start-page: 224
  year: 2014
  end-page: 236
  article-title: Profitability of wind energy investments in china using a monte carlo approach for the treatment of uncertainties
  publication-title: Renew. Sustain. Energy Rev.
– volume: 30
  start-page: 911
  issue: 2
  year: 2014
  end-page: 919
  article-title: Optimal placement and sizing of distributed generators in unbalanced distribution systems using supervised big bang‐big crunch method
  publication-title: IEEE Trans. Power Syst.
– volume: 29
  start-page: 3048
  issue: 6
  year: 2014
  end-page: 3057
  article-title: Determining pv penetration for distribution systems with time‐varying load models
  publication-title: IEEE Trans. Power Syst.
– volume: 43
  start-page: 541
  issue: 5
  year: 2011
  end-page: 557
  article-title: Multi‐objective topology optimization using evolutionary algorithms
  publication-title: Eng. Optim.
– volume: 3
  start-page: 186
  issue: 2
  year: 2017
  end-page: 195
  article-title: Multi‐objective distributed wind generation planning in an unbalanced distribution system [j]
  publication-title: CSEE J. Power Energy Syst
– volume: 26
  start-page: 899
  issue: 2
  year: 2011
  end-page: 909
  article-title: A unified three‐phase power‐flow analysis model for electronically coupled distributed energy resources
  publication-title: IEEE Trans. Power Delivery
– volume: 28
  start-page: 1355
  issue: 2
  year: 2012
  end-page: 1362
  article-title: Transmission expansion planning of systems with increasing wind power integration
  publication-title: IEEE Trans. Power Syst.
– volume: 5
  start-page: 79
  issue: 1
  year: 2011
  end-page: 88
  article-title: Probabilistic approach for optimal allocation of wind‐based distributed generation in distribution systems
  publication-title: IET Renew. Power Gener.
– volume: 99
  start-page: 331
  year: 2018
  end-page: 343
  article-title: Optimal power flow solution in power systems using a novel sine‐cosine algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– ident: e_1_2_11_25_1
  doi: 10.1109/ITCE.2018.8316637
– ident: e_1_2_11_22_1
  doi: 10.4236/jpee.2016.43004
– ident: e_1_2_11_3_1
  doi: 10.1109/TSTE.2013.2278693
– ident: e_1_2_11_7_1
  doi: 10.1016/j.ijepes.2013.05.029
– ident: e_1_2_11_13_1
  doi: 10.1109/TPWRS.2017.2694612
– ident: e_1_2_11_18_1
  doi: 10.1109/TPWRS.2014.2331364
– ident: e_1_2_11_14_1
  doi: 10.1109/59.387902
– ident: e_1_2_11_28_1
  doi: 10.1080/0305215X.2010.502935
– ident: e_1_2_11_5_1
  doi: 10.1109/JSYST.2018.2796847
– ident: e_1_2_11_24_1
  doi: 10.1016/j.knosys.2015.12.022
– ident: e_1_2_11_8_1
  doi: 10.1109/TPWRS.2015.2404533
– ident: e_1_2_11_11_1
  doi: 10.1016/j.rser.2014.07.189
– ident: e_1_2_11_17_1
  doi: 10.1049/iet-gtd.2018.5136
– ident: e_1_2_11_2_1
  doi: 10.1109/JSYST.2020.2964743
– ident: e_1_2_11_19_1
  doi: 10.3390/app10030971
– ident: e_1_2_11_6_1
  doi: 10.3182/20140313-3-IN-3024.00052
– ident: e_1_2_11_27_1
  doi: 10.1002/etep.2716
– ident: e_1_2_11_4_1
  doi: 10.1049/iet-rpg.2009.0011
– ident: e_1_2_11_16_1
  doi: 10.1109/TPWRD.2010.2094627
– ident: e_1_2_11_20_1
  doi: 10.17775/CSEEJPES.2017.0023
– ident: e_1_2_11_26_1
  doi: 10.1016/j.ijepes.2018.01.024
– ident: e_1_2_11_23_1
  doi: 10.11648/j.ijepe.20150404.16
– volume-title: Distribution System Modeling and Analysis
  year: 2018
  ident: e_1_2_11_21_1
– ident: e_1_2_11_15_1
  doi: 10.1109/TPWRS.2007.901476
– ident: e_1_2_11_10_1
  doi: 10.1109/TPWRS.2012.2214242
– ident: e_1_2_11_9_1
  doi: 10.1109/TPWRS.2014.2314133
– ident: e_1_2_11_12_1
  doi: 10.1049/iet-gtd.2017.0930
– ident: e_1_2_11_29_1
  doi: 10.1049/iet-rpg.2018.5418
– ident: e_1_2_11_30_1
SSID ssj0059086
Score 2.383683
Snippet High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy...
Abstract High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2111
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-COhFYXWbzT5yVPFxEFt8gLdl8tKKtqWtijfvXgT_ob_ETLIVBdGLtyU7kCUzycxsZr6PkPUscV6TgYlAQBpxJgu355SI6khtrWLQVnoQ1-P85KS4vBTNL1RfWBMW4IHDwm2nCFZpM8iKTHNQLj2QViFCjXKRugKNp2-ci2EyFc5gJPL2fUV5yqK6izmGwKRcbPe6V2wLKZfFN1fkEfu_R6jexRxMkckqNqQ74ZumyYhpz5CJL4iBs-Sl4bb4nRPqVmRDtGOpc03hYp8iPuUjNkNR43v6aPg336fu3X1bYhmjMppqRMutiK5owHLuU_lEgfr6wvfn1468CSchvX7Cni7aPGu8P7-d7TUo3F51eq3B9d0cuTjYP987iio-hUhxlwhFKmUWpEhszKDOLSQmTbjiJi20AgQOc5kyGKVBasit89sC20dcSGRya3lik3ky2u60zQKhIGLFMp1pCzG3WhSSgUt9YoA6i91YjWwMl7ZUFdg4cl7clv7Sm4sS1VB6NdTI2qdsN0Bs_Ci1ixr6lEBYbD_gjKWsjKX8y1hqZNPr95d5ytPmIfNPi_8x4xIZZ9gw4Qt8l8nooHdvVsiYehi0-r1Vb7Qf0zT0rg
  priority: 102
  providerName: Directory of Open Access Journals
Title Optimal planning of uncertain renewable energy sources in unbalanced distribution systems by a multi‐objective hybrid PSO–SCO algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12499
https://doaj.org/article/50056f6a686d4ac899bfc0781c996cad
Volume 16
WOSCitedRecordID wos000790715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9q9cE--F28qmVBXxSiyWZzuQVftFgV5O6win0Ls1_XSns5clelb333RfA_7F_izCZ3WhBBfAlhMyHLzs7XZuY3AI_6OVlNiT5BjUWipBmQzFmdZNza2qbogokgru_K4XCwv6_Ha_B8WQvT4kOsDtxYMqK-ZgFH03YhIaeWmNjMJvIpt07Wl-ByluUl72mpxks9zM28Y21RWcgkI79jCU6q9LNf714wRxG1_6KXGs3M7vX_m-ANuNa5l-JFux9uwpqf3oKN30AHb8O3EWmJYyKadf2KRB0EWbc2N0AwxOVXrqcSPpYFivZ4fy7o2cnUcCak9U44BtztemWJFg56LsypQBFTFM_Pvtfmc6tMxcEpl4WJ8d7o_OzH3s5I4NGkbg4XB8d34OPuqw87b5KuJUNiFcVSiS1kQKPzkErMVMDcF7myyhcDZ5GxxyjYRm8dGodlINOvuQKFvCpfhqDykG_C-rSe-rsgUKdW9l3fBUxVcHpgJFL0lCJmMqWxHjxecqayHV45t804quJ_c6UrXuAqLnAPHq5oZy1Kxx-pXjKDVxSMrB0H6mZSdYJaFQyOGvpI83YKLYWjJlhGRLIUGVp0PXgSmf6X71Tvx69lvNv6F-J7cFVybUXMBb4P64vmxD-AK_bL4nDebMe9vR2PDOj66e3wJyK6Au8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BQYIeeKOmUFgJLiAZnPU6yR6haikiJBEtUm_W7CstauPISYt6650LEv-wv4SZtROohJAQN2s9lq3dndd65vsAnncy8poSfYIa80RJ0yOdszppM7W1TdEFE0Fc-93BoLe_r0dNbQ73wtT4EMsDN9aMaK9ZwflAuk44FYNkVtOxfMXcyfoqXFPklriiT6rRwhAzm3dsLurmMmlT4LFAJ1X69a9nL_mjCNt_OUyNfmb79n9-4R241QSY4k29I-7CFT-5B6u_wQ7eh29DshPHJDRtGItEGQT5t7o6QDDI5VfuqBI-NgaK-oB_JujeycRwLaT1TjiG3G3YskQNCD0T5kygiEWKF-ffS_OlNqfi4Iwbw8Rod3hx_mN3cyjwaFxWh_OD4wfweXtrb3MnaUgZEqsom0psLgManYVUYlsFzHyeKat83nMWGX2M0m301qFx2A3k_DX3oFBc5bshqCxkD2FlUk78GgjUqZUd13EBUxWc7hmJlD-liG2Z0lgLXiyWprANYjkTZxwV8c-50gVPcBEnuAXPlrLTGqfjj1JveYWXEoytHQfKalw0qlrkDI8aOkjf7RRaSkhNsIyJZCk3tOha8DKu-l_eU3wavZPxav1fhJ_CjZ29j_2i_37w4RHclNxpESuDH8PKvDrxG3Ddns4PZ9WTuNF_Aj1hBM8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFH8BNEYOAn6EVZFJ8KJJoTudbneOgKwayW4jmnBr3nwtGNhuuouGG3cvJv6H_CXOm3ZXSYyJ4dZMX9NmZt7X9L3fD-BlJ_Fek6ONUGIaCa66Xue0jNpEba1jNE4FENfDrN_vHh_LvKnNoV6YGh9ifuBGmhHsNSm4HRtXJ5yCQDKr8ZBvE3eyXIQ7Is2CXnKRzwwxsXmH5qIs5VHbBx4zdFIhd34_e8MfBdj-m2Fq8DO9lVt-4So8aAJMtlvviDVYsKOHsPwH7OAj-D7wduLcC40bxiJWOub9W10dwAjk8ht1VDEbGgNZfcA_Yf7exUhRLaS2hhmC3G3YslgNCD1h6pIhC0WK11c_SvWlNqfs5JIaw1h-NLi--nm0P2B4Niyr0-nJ-WP43Dv4tP8uakgZIi18NhXplDtUMnExx7ZwmNg0EVrYtGs0EvqYT7fRaoPKYOa885fUg-LjKps5JxKXPIGlUTmy68BQxpp3TMc4jIUzsqs4-vwpRmzz2I-14NVsaQrdIJYTccZZEf6cC1nQBBdhgluwNZcd1zgdf5XaoxWeSxC2dhgoq2HRqGqREjyq66D_biNQ-4RUOU2YSNrnhhpNC16HVf_He4qP-Vserp7-j_Am3Mvf9IrD9_0Pz-A-p0aLUBj8HJam1YXdgLv66_R0Ur0I-_wXwtUESg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+planning+of+uncertain+renewable+energy+sources+in+unbalanced+distribution+systems+by+a+multi%E2%80%90objective+hybrid+PSO%E2%80%93SCO+algorithm&rft.jtitle=IET+renewable+power+generation&rft.au=Ali%2C+Eman+S.&rft.au=El%E2%80%90Sehiemy%2C+Ragab+A.&rft.au=El%E2%80%90Ela%2C+Adel+A.+Abou&rft.au=Kamel%2C+Salah&rft.date=2022-07-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=16&rft.issue=10&rft.spage=2111&rft.epage=2124&rft_id=info:doi/10.1049%2Frpg2.12499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_12499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon