Optimal planning of uncertain renewable energy sources in unbalanced distribution systems by a multi‐objective hybrid PSO–SCO algorithm
High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources i...
Gespeichert in:
| Veröffentlicht in: | IET renewable power generation Jg. 16; H. 10; S. 2111 - 2124 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.07.2022
|
| ISSN: | 1752-1416, 1752-1424 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%. |
|---|---|
| AbstractList | Abstract High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%. High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy Sources and loads as well as the unbalance degree of the distribution systems. This paper proposes the planning of Renewable Energy Sources in unbalanced distribution systems. Different types of Renewable Energy Sources, photo‐voltaic and Wind are considered. A multi‐objective optimisation problem is formulated using non‐dominated sort and crowing distance for multi objective hybrid algorithm that combines the merits of Particle Swarm Optimisation and Sine Cosine Optimisation algorithms. Three objectives, improving voltage profile, power losses minimisation, and minimisation of voltage unbalance, are considered. The proposed method determines the optimal Renewable Energy Sources' specifications such as site/size/type of distributed generators, number of photo‐voltaic modules or wind turbines in each distributed generator and their power factor and connection phases. Also, it determines the optimal setting of substation tap changer and system voltage regulators. Moreover, both Renewable Energy Sources and loads uncertainty are considered and modelled using Monte Carlo simulations. An improved matrix‐based backward–forward load flow method is developed by using coefficient matrices. The proposed procedure is conducted on IEEE 13‐node, 37‐node, and 123‐node unbalanced distribution systems. The proposed algorithm results compared with individual optimisers show significant performance improvements. The optimal plans resulted by using the proposed hybrid algorithm achieve a reduction in power losses that reached 89% in some cases. Also, the system unbalance index is reduced with a ratio reached 34%. Large improvement in the system voltages profile all over the year is achieved as the system voltage profile index is reduced by a ratio reached 70%. |
| Author | Kamel, Salah Khan, Baseem Ali, Eman S. El‐Ela, Adel A. Abou El‐Sehiemy, Ragab A. |
| Author_xml | – sequence: 1 givenname: Eman S. surname: Ali fullname: Ali, Eman S. organization: Menofia University – sequence: 2 givenname: Ragab A. orcidid: 0000-0002-3340-4031 surname: El‐Sehiemy fullname: El‐Sehiemy, Ragab A. organization: Kafrelsheikh University – sequence: 3 givenname: Adel A. Abou surname: El‐Ela fullname: El‐Ela, Adel A. Abou organization: Menofia University – sequence: 4 givenname: Salah orcidid: 0000-0001-9505-5386 surname: Kamel fullname: Kamel, Salah organization: Aswan University – sequence: 5 givenname: Baseem orcidid: 0000-0002-5082-8311 surname: Khan fullname: Khan, Baseem email: baseem.khan04@gmail.com organization: Hawassa University |
| BookMark | eNp9kb9qHDEQh0VwILbjxk-gOnCOtKvVrcpwJI7BcCZOajH6t9axJx2SNmY792kMfkM_SXS-4CKEVBo0830w8ztBRyEGi9A5JReUMPEx7YbmgjZMiDfomC67ZkFZw45ea8rfoZOcN4R0gvT8GP1a74rfwoh3I4Tgw4Cjw1PQNhXwAScb7D2o0eJapGHGOU5J24xrbwoKKqStwcbnkryaio8B5zkXu81YzRjwdhqLf354jGpjdfE_Lb6bVfIG39yunx-ebldrDOMQky932_forYMx27M_7yn68eXz99XXxfX68mr16XqhGWViobvGgRKtIw1Q5qC1Xcs0s11vNDDeci4IWG1AGVg6XhHe86bjxC6dY61rT9HVwWsibOQu1f3TLCN4-fIR0yAhFa9HK7t6KO44VINhoHshlNNk2VMtBNdgquvDwaVTzDlZ9-qjRO4jkftI5EskdZj8Nax9gf3RSgI__huhB-Tej3b-j1x-u7lsDsxv1Kyl7w |
| CitedBy_id | crossref_primary_10_1049_rpg2_12712 crossref_primary_10_1093_ijlct_ctae275 crossref_primary_10_1016_j_epsr_2025_111458 crossref_primary_10_1016_j_epsr_2025_111901 crossref_primary_10_1080_08839514_2023_2252262 crossref_primary_10_1016_j_rineng_2025_104888 crossref_primary_10_1109_ACCESS_2024_3387400 crossref_primary_10_1155_2022_2947965 crossref_primary_10_3390_en16103983 crossref_primary_10_1007_s00202_024_02388_7 crossref_primary_10_1007_s12053_025_10350_0 crossref_primary_10_1049_gtd2_13279 crossref_primary_10_1109_JSYST_2022_3180779 |
| Cites_doi | 10.1109/ITCE.2018.8316637 10.4236/jpee.2016.43004 10.1109/TSTE.2013.2278693 10.1016/j.ijepes.2013.05.029 10.1109/TPWRS.2017.2694612 10.1109/TPWRS.2014.2331364 10.1109/59.387902 10.1080/0305215X.2010.502935 10.1109/JSYST.2018.2796847 10.1016/j.knosys.2015.12.022 10.1109/TPWRS.2015.2404533 10.1016/j.rser.2014.07.189 10.1049/iet-gtd.2018.5136 10.1109/JSYST.2020.2964743 10.3390/app10030971 10.3182/20140313-3-IN-3024.00052 10.1002/etep.2716 10.1049/iet-rpg.2009.0011 10.1109/TPWRD.2010.2094627 10.17775/CSEEJPES.2017.0023 10.1016/j.ijepes.2018.01.024 10.11648/j.ijepe.20150404.16 10.1109/TPWRS.2007.901476 10.1109/TPWRS.2012.2214242 10.1109/TPWRS.2014.2314133 10.1049/iet-gtd.2017.0930 10.1049/iet-rpg.2018.5418 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/rpg2.12499 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1752-1424 |
| EndPage | 2124 |
| ExternalDocumentID | oai_doaj_org_article_50056f6a686d4ac899bfc0781c996cad 10_1049_rpg2_12499 RPG212499 |
| Genre | article |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK AAHHS AAHJG AAJGR ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IEP IFIPE IGS IPLJI ITC JAVBF LAI MCNEO O9- OCL OK1 P2P RIE RNS ROL RUI 4.4 7XC 8FE 8FG 8FH AAMMB AAYXX ABJCF AEFGJ AEUYN AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS ATCPS BENPR BGLVJ BHPHI CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PATMY PHGZM PHGZT PQGLB PTHSS PYCSY S0W WIN |
| ID | FETCH-LOGICAL-c4149-c52fab93f02a14fa3e534c4e58dca4636690aecdabda7f61496862560e7ff43f3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000790715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1752-1416 |
| IngestDate | Fri Oct 03 12:52:03 EDT 2025 Tue Nov 18 22:16:08 EST 2025 Wed Oct 29 21:24:11 EDT 2025 Wed Jan 22 16:24:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4149-c52fab93f02a14fa3e534c4e58dca4636690aecdabda7f61496862560e7ff43f3 |
| ORCID | 0000-0002-5082-8311 0000-0002-3340-4031 0000-0001-9505-5386 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12499 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_50056f6a686d4ac899bfc0781c996cad crossref_primary_10_1049_rpg2_12499 crossref_citationtrail_10_1049_rpg2_12499 wiley_primary_10_1049_rpg2_12499_RPG212499 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET renewable power generation |
| PublicationYear | 2022 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2017; 3 2015; 4 2015; 31 2019; 13 1995; 10 2020; 15 2014; 47 2016; 96 2014; 29 2020; 10 2014; 40 2013; 5 2011; 5 2016; 4 2017; 33 2013; 53 2018 2019; 29 2011; 43 2012; 28 2011; 26 2018; 12 2014; 30 2018; 99 2007; 22 e_1_2_11_10_1 e_1_2_11_30_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 Kersting W.H. (e_1_2_11_21_1) 2018 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_24_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_19_1 |
| References_xml | – volume: 33 start-page: 781 issue: 1 year: 2017 end-page: 791 article-title: Multistage stochastic investment planning with multiscale representation of uncertainties and decisions publication-title: IEEE Trans. Power Syst. – volume: 4 start-page: 232 issue: 4 year: 2015 end-page: 39 article-title: A review of particle swarm optimization (PSO) algorithms for optimal distributed generation placement publication-title: Int. J. Energy Power Eng. – volume: 29 issue: 2 year: 2019 article-title: Assessment of hurricane versus sine‐cosine optimization algorithms for economic/ecological emissions load dispatch problem publication-title: Int. Trans. Electr. Energy Syst. – volume: 10 start-page: 971 issue: 3 year: 2020 article-title: Two‐stage optimal scheduling of large‐scale renewable energy system considering the uncertainty of generation and load publication-title: Appl. Sci. – volume: 13 start-page: 2339 issue: 12 year: 2019 end-page: 2351 article-title: Minimisation of voltage fluctuation resulted from renewable energy sources uncertainty in distribution systems publication-title: IET Gener. Transm. Distrib. – volume: 53 start-page: 468 year: 2013 end-page: 477 article-title: Development of a probabilistic tool using monte carlo simulation and smart meters measurements for the long term analysis of low voltage distribution grids with photovoltaic generation publication-title: Int. J. Electr. Power Energy Syst. – volume: 13 start-page: 1466 issue: 9 year: 2019 end-page: 1473 article-title: Parameters extraction of photovoltaic sources based on experimental data publication-title: IET Renew. Power Gener. – volume: 5 start-page: 246 issue: 1 year: 2013 end-page: 253 article-title: Optimal allocation of chp‐based distributed generation on urban energy distribution networks publication-title: IEEE Trans. Sustain. Energy – volume: 31 start-page: 304 issue: 1 year: 2015 end-page: 316 article-title: Optimal storage planning in active distribution network considering uncertainty of wind power distributed generation publication-title: IEEE Trans. Power Syst. – volume: 12 start-page: 850 issue: 4 year: 2018 end-page: 858 article-title: A multi‐stage transition toward high renewable energy penetration in Queensland, Australia publication-title: IET Gener. Transm. Distrib. – volume: 22 start-page: 1019 issue: 3 year: 2007 end-page: 1025 article-title: Development of three‐phase unbalanced power flow using PV and PQ models for distributed generation and study of the impact of DG models publication-title: IEEE Trans. Power Syst. – volume: 4 start-page: 31 issue: 3 year: 2016 end-page: 46 article-title: Comparative analysis between single diode and double diode model of PV cell: Concentrate different parameters effect on its efficiency publication-title: J. Power Energy Eng. – volume: 96 start-page: 120 year: 2016 end-page: 133 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowledge‐Based Syst. – year: 2018 – volume: 15 start-page: 1458 year: 2020 end-page: 1466 article-title: A multiobjective Salp optimization algorithm for techno‐economic‐based performance enhancement of distribution networks publication-title: IEEE Syst. J. – volume: 12 start-page: 3629 issue: 4 year: 2018 end-page: 3636 article-title: Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm publication-title: IEEE Syst. J. – start-page: 271 year: 2018 end-page: 277 – volume: 10 start-page: 671 issue: 2 year: 1995 end-page: 679 article-title: A three‐phase power flow method for real‐time distribution system analysis publication-title: IEEE Trans. Power Syst. – volume: 47 start-page: 700 issue: 1 year: 2014 end-page: 705 article-title: Application of firefly algorithm for radial distribution network reconfiguration using different loads publication-title: IFAC Proc. Vol. – volume: 40 start-page: 224 year: 2014 end-page: 236 article-title: Profitability of wind energy investments in china using a monte carlo approach for the treatment of uncertainties publication-title: Renew. Sustain. Energy Rev. – volume: 30 start-page: 911 issue: 2 year: 2014 end-page: 919 article-title: Optimal placement and sizing of distributed generators in unbalanced distribution systems using supervised big bang‐big crunch method publication-title: IEEE Trans. Power Syst. – volume: 29 start-page: 3048 issue: 6 year: 2014 end-page: 3057 article-title: Determining pv penetration for distribution systems with time‐varying load models publication-title: IEEE Trans. Power Syst. – volume: 43 start-page: 541 issue: 5 year: 2011 end-page: 557 article-title: Multi‐objective topology optimization using evolutionary algorithms publication-title: Eng. Optim. – volume: 3 start-page: 186 issue: 2 year: 2017 end-page: 195 article-title: Multi‐objective distributed wind generation planning in an unbalanced distribution system [j] publication-title: CSEE J. Power Energy Syst – volume: 26 start-page: 899 issue: 2 year: 2011 end-page: 909 article-title: A unified three‐phase power‐flow analysis model for electronically coupled distributed energy resources publication-title: IEEE Trans. Power Delivery – volume: 28 start-page: 1355 issue: 2 year: 2012 end-page: 1362 article-title: Transmission expansion planning of systems with increasing wind power integration publication-title: IEEE Trans. Power Syst. – volume: 5 start-page: 79 issue: 1 year: 2011 end-page: 88 article-title: Probabilistic approach for optimal allocation of wind‐based distributed generation in distribution systems publication-title: IET Renew. Power Gener. – volume: 99 start-page: 331 year: 2018 end-page: 343 article-title: Optimal power flow solution in power systems using a novel sine‐cosine algorithm publication-title: Int. J. Electr. Power Energy Syst. – ident: e_1_2_11_25_1 doi: 10.1109/ITCE.2018.8316637 – ident: e_1_2_11_22_1 doi: 10.4236/jpee.2016.43004 – ident: e_1_2_11_3_1 doi: 10.1109/TSTE.2013.2278693 – ident: e_1_2_11_7_1 doi: 10.1016/j.ijepes.2013.05.029 – ident: e_1_2_11_13_1 doi: 10.1109/TPWRS.2017.2694612 – ident: e_1_2_11_18_1 doi: 10.1109/TPWRS.2014.2331364 – ident: e_1_2_11_14_1 doi: 10.1109/59.387902 – ident: e_1_2_11_28_1 doi: 10.1080/0305215X.2010.502935 – ident: e_1_2_11_5_1 doi: 10.1109/JSYST.2018.2796847 – ident: e_1_2_11_24_1 doi: 10.1016/j.knosys.2015.12.022 – ident: e_1_2_11_8_1 doi: 10.1109/TPWRS.2015.2404533 – ident: e_1_2_11_11_1 doi: 10.1016/j.rser.2014.07.189 – ident: e_1_2_11_17_1 doi: 10.1049/iet-gtd.2018.5136 – ident: e_1_2_11_2_1 doi: 10.1109/JSYST.2020.2964743 – ident: e_1_2_11_19_1 doi: 10.3390/app10030971 – ident: e_1_2_11_6_1 doi: 10.3182/20140313-3-IN-3024.00052 – ident: e_1_2_11_27_1 doi: 10.1002/etep.2716 – ident: e_1_2_11_4_1 doi: 10.1049/iet-rpg.2009.0011 – ident: e_1_2_11_16_1 doi: 10.1109/TPWRD.2010.2094627 – ident: e_1_2_11_20_1 doi: 10.17775/CSEEJPES.2017.0023 – ident: e_1_2_11_26_1 doi: 10.1016/j.ijepes.2018.01.024 – ident: e_1_2_11_23_1 doi: 10.11648/j.ijepe.20150404.16 – volume-title: Distribution System Modeling and Analysis year: 2018 ident: e_1_2_11_21_1 – ident: e_1_2_11_15_1 doi: 10.1109/TPWRS.2007.901476 – ident: e_1_2_11_10_1 doi: 10.1109/TPWRS.2012.2214242 – ident: e_1_2_11_9_1 doi: 10.1109/TPWRS.2014.2314133 – ident: e_1_2_11_12_1 doi: 10.1049/iet-gtd.2017.0930 – ident: e_1_2_11_29_1 doi: 10.1049/iet-rpg.2018.5418 – ident: e_1_2_11_30_1 |
| SSID | ssj0059086 |
| Score | 2.383683 |
| Snippet | High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both Renewable Energy... Abstract High penetration of Renewable Energy Sources into unbalanced distribution systems faces many challenges due to the uncertainty nature of both... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 2111 |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iHvQgPrG-COhFYXWbzT5yVPFxEFt8gLdl8tKKtqWtijfvXgT_ob_ETLIVBdGLtyU7kCUzycxsZr6PkPUscV6TgYlAQBpxJgu355SI6khtrWLQVnoQ1-P85KS4vBTNL1RfWBMW4IHDwm2nCFZpM8iKTHNQLj2QViFCjXKRugKNp2-ci2EyFc5gJPL2fUV5yqK6izmGwKRcbPe6V2wLKZfFN1fkEfu_R6jexRxMkckqNqQ74ZumyYhpz5CJL4iBs-Sl4bb4nRPqVmRDtGOpc03hYp8iPuUjNkNR43v6aPg336fu3X1bYhmjMppqRMutiK5owHLuU_lEgfr6wvfn1468CSchvX7Cni7aPGu8P7-d7TUo3F51eq3B9d0cuTjYP987iio-hUhxlwhFKmUWpEhszKDOLSQmTbjiJi20AgQOc5kyGKVBasit89sC20dcSGRya3lik3ky2u60zQKhIGLFMp1pCzG3WhSSgUt9YoA6i91YjWwMl7ZUFdg4cl7clv7Sm4sS1VB6NdTI2qdsN0Bs_Ci1ixr6lEBYbD_gjKWsjKX8y1hqZNPr95d5ytPmIfNPi_8x4xIZZ9gw4Qt8l8nooHdvVsiYehi0-r1Vb7Qf0zT0rg priority: 102 providerName: Directory of Open Access Journals |
| Title | Optimal planning of uncertain renewable energy sources in unbalanced distribution systems by a multi‐objective hybrid PSO–SCO algorithm |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12499 https://doaj.org/article/50056f6a686d4ac899bfc0781c996cad |
| Volume | 16 |
| WOSCitedRecordID | wos000790715100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1752-1424 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9q9cE--F28qmVBXxSiyWZzuQVftFgV5O6win0Ls1_XSns5clelb333RfA_7F_izCZ3WhBBfAlhMyHLzs7XZuY3AI_6OVlNiT5BjUWipBmQzFmdZNza2qbogokgru_K4XCwv6_Ha_B8WQvT4kOsDtxYMqK-ZgFH03YhIaeWmNjMJvIpt07Wl-ByluUl72mpxks9zM28Y21RWcgkI79jCU6q9LNf714wRxG1_6KXGs3M7vX_m-ANuNa5l-JFux9uwpqf3oKN30AHb8O3EWmJYyKadf2KRB0EWbc2N0AwxOVXrqcSPpYFivZ4fy7o2cnUcCak9U44BtztemWJFg56LsypQBFTFM_Pvtfmc6tMxcEpl4WJ8d7o_OzH3s5I4NGkbg4XB8d34OPuqw87b5KuJUNiFcVSiS1kQKPzkErMVMDcF7myyhcDZ5GxxyjYRm8dGodlINOvuQKFvCpfhqDykG_C-rSe-rsgUKdW9l3fBUxVcHpgJFL0lCJmMqWxHjxecqayHV45t804quJ_c6UrXuAqLnAPHq5oZy1Kxx-pXjKDVxSMrB0H6mZSdYJaFQyOGvpI83YKLYWjJlhGRLIUGVp0PXgSmf6X71Tvx69lvNv6F-J7cFVybUXMBb4P64vmxD-AK_bL4nDebMe9vR2PDOj66e3wJyK6Au8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BQYIeeKOmUFgJLiAZnPU6yR6haikiJBEtUm_W7CstauPISYt6650LEv-wv4SZtROohJAQN2s9lq3dndd65vsAnncy8poSfYIa80RJ0yOdszppM7W1TdEFE0Fc-93BoLe_r0dNbQ73wtT4EMsDN9aMaK9ZwflAuk44FYNkVtOxfMXcyfoqXFPklriiT6rRwhAzm3dsLurmMmlT4LFAJ1X69a9nL_mjCNt_OUyNfmb79n9-4R241QSY4k29I-7CFT-5B6u_wQ7eh29DshPHJDRtGItEGQT5t7o6QDDI5VfuqBI-NgaK-oB_JujeycRwLaT1TjiG3G3YskQNCD0T5kygiEWKF-ffS_OlNqfi4Iwbw8Rod3hx_mN3cyjwaFxWh_OD4wfweXtrb3MnaUgZEqsom0psLgManYVUYlsFzHyeKat83nMWGX2M0m301qFx2A3k_DX3oFBc5bshqCxkD2FlUk78GgjUqZUd13EBUxWc7hmJlD-liG2Z0lgLXiyWprANYjkTZxwV8c-50gVPcBEnuAXPlrLTGqfjj1JveYWXEoytHQfKalw0qlrkDI8aOkjf7RRaSkhNsIyJZCk3tOha8DKu-l_eU3wavZPxav1fhJ_CjZ29j_2i_37w4RHclNxpESuDH8PKvDrxG3Ddns4PZ9WTuNF_Aj1hBM8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9RAFH8BNEYOAn6EVZFJ8KJJoTudbneOgKwayW4jmnBr3nwtGNhuuouGG3cvJv6H_CXOm3ZXSYyJ4dZMX9NmZt7X9L3fD-BlJ_Fek6ONUGIaCa66Xue0jNpEba1jNE4FENfDrN_vHh_LvKnNoV6YGh9ifuBGmhHsNSm4HRtXJ5yCQDKr8ZBvE3eyXIQ7Is2CXnKRzwwxsXmH5qIs5VHbBx4zdFIhd34_e8MfBdj-m2Fq8DO9lVt-4So8aAJMtlvviDVYsKOHsPwH7OAj-D7wduLcC40bxiJWOub9W10dwAjk8ht1VDEbGgNZfcA_Yf7exUhRLaS2hhmC3G3YslgNCD1h6pIhC0WK11c_SvWlNqfs5JIaw1h-NLi--nm0P2B4Niyr0-nJ-WP43Dv4tP8uakgZIi18NhXplDtUMnExx7ZwmNg0EVrYtGs0EvqYT7fRaoPKYOa885fUg-LjKps5JxKXPIGlUTmy68BQxpp3TMc4jIUzsqs4-vwpRmzz2I-14NVsaQrdIJYTccZZEf6cC1nQBBdhgluwNZcd1zgdf5XaoxWeSxC2dhgoq2HRqGqREjyq66D_biNQ-4RUOU2YSNrnhhpNC16HVf_He4qP-Vserp7-j_Am3Mvf9IrD9_0Pz-A-p0aLUBj8HJam1YXdgLv66_R0Ur0I-_wXwtUESg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+planning+of+uncertain+renewable+energy+sources+in+unbalanced+distribution+systems+by+a+multi%E2%80%90objective+hybrid+PSO%E2%80%93SCO+algorithm&rft.jtitle=IET+renewable+power+generation&rft.au=Ali%2C+Eman+S.&rft.au=El%E2%80%90Sehiemy%2C+Ragab+A.&rft.au=El%E2%80%90Ela%2C+Adel+A.+Abou&rft.au=Kamel%2C+Salah&rft.date=2022-07-01&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=16&rft.issue=10&rft.spage=2111&rft.epage=2124&rft_id=info:doi/10.1049%2Frpg2.12499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_rpg2_12499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |