DGW‐YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function

The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However, existing target detection algorithms for the small target detection and low‐quality insulator images encounter difficulties in effectively capturing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET image processing Ročník 18; číslo 4; s. 1096 - 1108
Hlavní autoři: Hu, Deao, Yu, Mei, Wu, Xianyong, Hu, Jingbo, Sheng, Yuyang, Jiang, Yanjing, Huang, Chongjing, Zheng, Yuelin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.03.2024
Témata:
ISSN:1751-9659, 1751-9667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However, existing target detection algorithms for the small target detection and low‐quality insulator images encounter difficulties in effectively capturing relevant features, resulting in a higher probability of target loss. To identify and classify defects in the operational state of insulators, an improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of the DGW‐YOLOv8 target identification algorithm is designed by adding the deformable ConvNets v2 module and the global attention mechanism. This addition reduces the feature loss caused by the network feature processing, enhances the sensitivity of the algorithm to small‐scale targets, and reduces the impact caused by the different global positions of the targets. Additionally, to address the problem of low quality of captured images, WIoU v3 is used to replace CIoU in the original YOLOv8 target identification algorithm to optimize the loss function, reduce the degrees of freedom, and improve the network robustness. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95, respectively, compared with the original algorithm. An improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of DGW‐YOLOv8 is improved by adding deformable ConvNets v2 module and the global attention mechanism, WIoU v3 is used to replace CIoU in the original YOLOv8 to optimize the loss function. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95.
AbstractList Abstract The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However, existing target detection algorithms for the small target detection and low‐quality insulator images encounter difficulties in effectively capturing relevant features, resulting in a higher probability of target loss. To identify and classify defects in the operational state of insulators, an improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of the DGW‐YOLOv8 target identification algorithm is designed by adding the deformable ConvNets v2 module and the global attention mechanism. This addition reduces the feature loss caused by the network feature processing, enhances the sensitivity of the algorithm to small‐scale targets, and reduces the impact caused by the different global positions of the targets. Additionally, to address the problem of low quality of captured images, WIoU v3 is used to replace CIoU in the original YOLOv8 target identification algorithm to optimize the loss function, reduce the degrees of freedom, and improve the network robustness. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95, respectively, compared with the original algorithm.
The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However, existing target detection algorithms for the small target detection and low‐quality insulator images encounter difficulties in effectively capturing relevant features, resulting in a higher probability of target loss. To identify and classify defects in the operational state of insulators, an improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of the DGW‐YOLOv8 target identification algorithm is designed by adding the deformable ConvNets v2 module and the global attention mechanism. This addition reduces the feature loss caused by the network feature processing, enhances the sensitivity of the algorithm to small‐scale targets, and reduces the impact caused by the different global positions of the targets. Additionally, to address the problem of low quality of captured images, WIoU v3 is used to replace CIoU in the original YOLOv8 target identification algorithm to optimize the loss function, reduce the degrees of freedom, and improve the network robustness. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95, respectively, compared with the original algorithm.
The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However, existing target detection algorithms for the small target detection and low‐quality insulator images encounter difficulties in effectively capturing relevant features, resulting in a higher probability of target loss. To identify and classify defects in the operational state of insulators, an improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of the DGW‐YOLOv8 target identification algorithm is designed by adding the deformable ConvNets v2 module and the global attention mechanism. This addition reduces the feature loss caused by the network feature processing, enhances the sensitivity of the algorithm to small‐scale targets, and reduces the impact caused by the different global positions of the targets. Additionally, to address the problem of low quality of captured images, WIoU v3 is used to replace CIoU in the original YOLOv8 target identification algorithm to optimize the loss function, reduce the degrees of freedom, and improve the network robustness. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95, respectively, compared with the original algorithm. An improved YOLOv8 target identification algorithm called DGW‐YOLOv8 is proposed in this paper. The deformable attention backbone of DGW‐YOLOv8 is improved by adding deformable ConvNets v2 module and the global attention mechanism, WIoU v3 is used to replace CIoU in the original YOLOv8 to optimize the loss function. Experimental results demonstrate that the enhanced YOLOv8 algorithm can achieve an improvement of 2.4% and 5.5% in mAP and mAP50‐95.
Author Sheng, Yuyang
Hu, Deao
Huang, Chongjing
Wu, Xianyong
Jiang, Yanjing
Zheng, Yuelin
Yu, Mei
Hu, Jingbo
Author_xml – sequence: 1
  givenname: Deao
  orcidid: 0009-0007-0242-5116
  surname: Hu
  fullname: Hu, Deao
  organization: China Three Gorges University
– sequence: 2
  givenname: Mei
  surname: Yu
  fullname: Yu, Mei
  email: yumei@ctgu.edu.cn
  organization: China Three Gorges University
– sequence: 3
  givenname: Xianyong
  surname: Wu
  fullname: Wu, Xianyong
  organization: China Three Gorges University
– sequence: 4
  givenname: Jingbo
  surname: Hu
  fullname: Hu, Jingbo
  organization: China Three Gorges University
– sequence: 5
  givenname: Yuyang
  surname: Sheng
  fullname: Sheng, Yuyang
  organization: China Three Gorges University
– sequence: 6
  givenname: Yanjing
  surname: Jiang
  fullname: Jiang, Yanjing
  organization: China Three Gorges University
– sequence: 7
  givenname: Chongjing
  surname: Huang
  fullname: Huang, Chongjing
  organization: China Three Gorges University
– sequence: 8
  givenname: Yuelin
  surname: Zheng
  fullname: Zheng, Yuelin
  organization: China Three Gorges University
BookMark eNp9UUtOHDEUtBCR-CSbnMBrpAG77f44O8QvI400KApCWVnP9vPExNNGbkPCjiPkjJyEnhlgEaGs3lOpqlSl2iPbfeqRkM-cHXIm1VG4zdUhF4ypLbLL25pPVNO0229_rXbI3jDcMFYr1tW75M_pxfXT498f89n8vvtCj-mwhBhp6Ie7CCVlWiAvsFCHBW0JqacQFymH8nNJDQzo6Ag59CkvwUSkUAr2a54B-8uM6Sj0jl5P0xWNaRiov-vXPh_JBw9xwE8vd59cnZ99P_k6mc0vpifHs4mVXKpJazlH6YQBNKIySrTWCtN5Di0qqBBFLRnjpukEQy_a1glvLHrWOVCec7FPphtfl-BG3-awhPygEwS9BlJeaMgl2IhaYeWYlbLqnJO-YqbjHVNoVCOb1jZu9GIbL5vHKhm9tqHAqk3JEKLmTK9W0KsV9HqFUXLwj-Q1wrtkviH_DhEf_sPU08tv1UbzDO9nnGg
CitedBy_id crossref_primary_10_1049_ipr2_13321
crossref_primary_10_3390_fire8040138
crossref_primary_10_1109_JSEN_2025_3552848
crossref_primary_10_1007_s11554_024_01557_y
crossref_primary_10_1016_j_compbiomed_2024_109630
crossref_primary_10_1049_cdt2_9984821
crossref_primary_10_1016_j_compbiomed_2025_109778
crossref_primary_10_1016_j_measurement_2024_116605
crossref_primary_10_1016_j_mineng_2025_109712
crossref_primary_10_3390_agronomy14122751
crossref_primary_10_1007_s12145_024_01503_3
crossref_primary_10_1049_ipr2_70180
crossref_primary_10_1016_j_procs_2025_05_128
crossref_primary_10_1080_17538947_2025_2537321
crossref_primary_10_3389_fmech_2025_1635741
crossref_primary_10_1007_s12008_025_02342_2
crossref_primary_10_1049_hve2_70080
crossref_primary_10_1088_2631_8695_adb6f3
crossref_primary_10_1109_TIM_2025_3562980
crossref_primary_10_1080_09544828_2025_2506293
crossref_primary_10_1177_14727978241304269
crossref_primary_10_1007_s13369_025_09997_9
crossref_primary_10_1109_TCPMT_2024_3447040
crossref_primary_10_1109_TIM_2025_3568984
crossref_primary_10_3390_en17112535
crossref_primary_10_1016_j_jvcir_2025_104427
crossref_primary_10_1109_ACCESS_2024_3486311
crossref_primary_10_1109_TIM_2025_3606049
crossref_primary_10_3390_drones8080346
crossref_primary_10_1088_1361_6501_adf65d
crossref_primary_10_1049_ipr2_13191
crossref_primary_10_3390_rs16162878
crossref_primary_10_1016_j_neucom_2024_127685
crossref_primary_10_1016_j_autcon_2024_105506
crossref_primary_10_3390_agriculture14060856
crossref_primary_10_1007_s11554_025_01627_9
crossref_primary_10_3390_agronomy15030693
crossref_primary_10_3390_s24134045
crossref_primary_10_3390_jmse13040810
crossref_primary_10_3390_app15010327
crossref_primary_10_1007_s11760_025_04214_4
crossref_primary_10_1016_j_neucom_2025_130207
Cites_doi 10.1109/TIM.2020.3031194
10.1109/TIP.2023.3261749
10.1007/s00521-021-06296-w
10.1109/TIE.2017.2716862
10.1109/TCYB.2021.3095305
10.3390/drones7050304
10.1109/CVPR52688.2022.00089
10.1109/TIM.2022.3194909
10.1109/TPAMI.2022.3164083
10.1007/s40684-021-00343-6
10.1016/j.neucom.2021.03.091
10.1016/j.patcog.2022.109214
10.1109/TIM.2022.3219307
10.1109/TNNLS.2021.3120472
10.1109/TGRS.2023.3321307
10.1109/ACCESS.2020.2997466
10.1109/TPWRD.2007.899760
10.1007/978-3-319-46448-0_2
10.3390/app11104647
10.1109/TCSVT.2023.3234993
10.1109/CVPR46437.2021.00841
10.1007/s11042-018-6610-4
10.1109/ICCVW54120.2021.00312
10.1109/ICCV.2017.324
10.1109/TCYB.2021.3131569
10.1109/CVPR.2014.81
10.1109/CVPR.2019.00075
10.3390/machines11020257
10.1609/aaai.v34i07.6999
10.1016/j.measurement.2019.01.072
10.1109/CVPR52729.2023.00721
10.1109/TPWRD.2007.908779
10.1109/TSMC.2018.2871750
10.1016/j.neunet.2023.03.017
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.13009
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 1108
ExternalDocumentID oai_doaj_org_article_9e2d0c4428dd4f20b81809eb96467c6d
10_1049_ipr2_13009
IPR213009
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
8VB
AAHHS
AAHJG
AAJGR
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
ESX
GROUPED_DOAJ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
LAI
MCNEO
MS~
O9-
OCL
OK1
P2P
QWB
RIE
RNS
ROL
RUI
ZL0
4.4
8FE
8FG
AAMMB
AAYXX
ABJCF
AEFGJ
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
IDLOA
K1G
L6V
M43
M7S
P62
PHGZM
PHGZT
PQGLB
PTHSS
S0W
WIN
ID FETCH-LOGICAL-c4149-7c11e4d3baeb32b937cc3b8f1a7e9a2ee354001b6830ef377d3fbcef08da9f113
IEDL.DBID 24P
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124609100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Mon Nov 10 04:35:56 EST 2025
Tue Nov 18 20:52:16 EST 2025
Wed Oct 29 21:26:45 EDT 2025
Wed Jan 22 16:14:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4149-7c11e4d3baeb32b937cc3b8f1a7e9a2ee354001b6830ef377d3fbcef08da9f113
ORCID 0009-0007-0242-5116
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13009
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_9e2d0c4428dd4f20b81809eb96467c6d
crossref_citationtrail_10_1049_ipr2_13009
crossref_primary_10_1049_ipr2_13009
wiley_primary_10_1049_ipr2_13009_IPR213009
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 53
2023; 32
2017; 64
2023; 35
2023; 33
2023; 11
2022; 71
2023; 163
2023; 7
2019; 78
2022; 45
2021; 52
2020; 8
2021; 11
2021; 33
2023
2022
2021
2020
2022; 9
2019; 138
2019
2008; 23
2018
2020; 69
2023; 136
2017
2016
2015
2018; 50
2014
2021; 452
2007; 22
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Bochkovskiy A. (e_1_2_9_22_1) 2020
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Zhang Z.‐D. (e_1_2_9_45_1) 2022; 71
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – start-page: 8510
  year: 2021
  end-page: 8519
  article-title: VarifocalNet: an IoU‐aware dense object detector
– volume: 23
  start-page: 1183
  issue: 2
  year: 2008
  end-page: 1190
  article-title: Comparison of DC pollution flashover performances of various types of porcelain, glass, and composite insulators
  publication-title: IEEE Trans. Power Delivery
– volume: 69
  start-page: 9350
  issue: 12
  year: 2020
  end-page: 9365
  article-title: A review on state‐of‐the‐art power line inspection techniques
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 33
  start-page: 2686
  issue: 6
  year: 2021
  end-page: 2700
  article-title: Neural schrödinger equation: physical law as deep neural network
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– start-page: 658
  year: 2019
  end-page: 666
  article-title: Generalized intersection over union: a metric and a loss for bounding box regression
– volume: 78
  start-page: 10097
  year: 2019
  end-page: 10112
  article-title: Insulator self‐shattering detection: a deep convolutional neural network approach
  publication-title: Multimed. Tools Appl.
– volume: 11
  start-page: 257
  issue: 2
  year: 2023
  article-title: Detection of bird nests on transmission towers in aerial images based on improved YOLOv5s
  publication-title: Machines
– year: 2021
– start-page: 1
  year: 2022
  end-page: 6
  article-title: Transmission line pin detection based on improved SSD
– start-page: 805
  year: 2022
  end-page: 815
  article-title: On the integration of self‐attention and convolution
– volume: 45
  start-page: 1489
  issue: 2
  year: 2022
  end-page: 1500
  article-title: Contextual transformer networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 52
  start-page: 8574
  issue: 8
  year: 2021
  end-page: 8586
  article-title: Enhancing geometric factors in model learning and inference for object detection and instance segmentation
  publication-title: IEEE Trans. Cybern.
– volume: 11
  start-page: 4647
  issue: 10
  year: 2021
  article-title: Insulator faults detection in aerial images from high‐voltage transmission lines based on deep learning model
  publication-title: Appl. Sci.
– year: 2023
  article-title: Partial siamese with multiscale bi‐codec networks for remote sensing image haze removal
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  start-page: 1486
  issue: 4
  year: 2018
  end-page: 1498
  article-title: Detection of power line insulator defects using aerial images analyzed with convolutional neural networks
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 136
  year: 2023
  article-title: Coherence‐aware context aggregator for fast video object segmentation
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 304
  issue: 5
  year: 2023
  article-title: A modified YOLOv8 detection network for UAV aerial image recognition
  publication-title: Drones
– volume: 8
  start-page: 102907
  year: 2020
  end-page: 102919
  article-title: Research on recognition of fly species based on improved RetinaNet and CBAM
  publication-title: IEEE Access
– year: 2018
– volume: 9
  start-page: 661
  issue: 2
  year: 2022
  end-page: 691
  article-title: State of the art in defect detection based on machine vision
  publication-title: Int. J. Precis. Eng. Manuf.‐Green Technol.
– volume: 64
  start-page: 9699
  issue: 12
  year: 2017
  end-page: 9708
  article-title: Acoustic fault detection technique for high‐power insulators
  publication-title: IEEE Trans. Ind. Electron.
– volume: 33
  start-page: 3899
  year: 2023
  end-page: 3911
  article-title: Active learning with co‐auxiliary learning and multi‐level diversity for image classification
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 32
  start-page: 1966
  year: 2023
  end-page: 1977
  article-title: Precise facial landmark detection by reference heatmap transformer
  publication-title: IEEE Trans. Image Process.
– volume: 138
  start-page: 379
  year: 2019
  end-page: 385
  article-title: Intelligent fault detection of high voltage line based on the faster R‐CNN
  publication-title: Measurement
– start-page: 580
  year: 2014
  end-page: 587
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– start-page: 91
  year: 2015
  end-page: 99
  article-title: Faster R‐CNN: towards real‐time object detection with region proposal networks
– volume: 53
  start-page: 3546
  issue: 6
  year: 2023
  end-page: 3560
  article-title: Robust and precise facial landmark detection by self‐calibrated pose attention network
  publication-title: IEEE Trans. Cybern.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 8
  article-title: FINet: an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2022
– year: 2020
– start-page: 2999
  year: 2017
  end-page: 3007
  article-title: Focal loss for dense object detection
– year: 2023
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
– volume: 35
  start-page: 3737
  issue: 5
  year: 2023
  end-page: 3751
  article-title: Scale‐free heterogeneous cycleGAN for defogging from a single image for autonomous driving in fog
  publication-title: Neural Comput. Appl.
– start-page: 2778
  year: 2021
  end-page: 2788
  article-title: TPH‐YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone‐captured scenarios
– year: 2020
  article-title: YOLOv4: optimal speed and accuracy of object detection
  publication-title: arXiv:200410934
– start-page: 12993
  year: 2020
  end-page: 13000
  article-title: Distance‐IoU loss: faster and better learning for bounding box regression
– volume: 163
  start-page: 10
  year: 2023
  end-page: 27
  article-title: Multi‐level feature interaction and efficient non‐local information enhanced channel attention for image dehazing
  publication-title: Neural Networks
– start-page: 21
  year: 2016
  end-page: 37
  article-title: SSD: single shot multibox detector
– volume: 22
  start-page: 2567
  issue: 4
  year: 2007
  end-page: 2574
  article-title: Study on AC artificial‐contaminated flashover performance of various types of insulators
  publication-title: IEEE Trans. Power Delivery
– volume: 71
  start-page: 1
  year: 2022
  end-page: 12
  article-title: A fast and accurate method of power line intelligent inspection based on edge computing
  publication-title: IEEE Trans. Instrum. Meas.
– ident: e_1_2_9_42_1
– ident: e_1_2_9_2_1
  doi: 10.1109/TIM.2020.3031194
– ident: e_1_2_9_12_1
  doi: 10.1109/TIP.2023.3261749
– ident: e_1_2_9_13_1
  doi: 10.1007/s00521-021-06296-w
– ident: e_1_2_9_7_1
  doi: 10.1109/TIE.2017.2716862
– ident: e_1_2_9_39_1
  doi: 10.1109/TCYB.2021.3095305
– ident: e_1_2_9_29_1
  doi: 10.3390/drones7050304
– ident: e_1_2_9_27_1
  doi: 10.1109/CVPR52688.2022.00089
– volume: 71
  start-page: 1
  year: 2022
  ident: e_1_2_9_45_1
  article-title: FINet: an insulator dataset and detection benchmark based on synthetic fog and improved YOLOv5
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3194909
– ident: e_1_2_9_33_1
  doi: 10.1109/TPAMI.2022.3164083
– ident: e_1_2_9_9_1
  doi: 10.1007/s40684-021-00343-6
– ident: e_1_2_9_34_1
  doi: 10.1016/j.neucom.2021.03.091
– ident: e_1_2_9_14_1
  doi: 10.1016/j.patcog.2022.109214
– ident: e_1_2_9_24_1
  doi: 10.1109/TIM.2022.3219307
– ident: e_1_2_9_26_1
  doi: 10.1109/TNNLS.2021.3120472
– ident: e_1_2_9_43_1
– ident: e_1_2_9_16_1
  doi: 10.1109/TGRS.2023.3321307
– ident: e_1_2_9_25_1
  doi: 10.1109/ACCESS.2020.2997466
– ident: e_1_2_9_4_1
  doi: 10.1109/TPWRD.2007.899760
– ident: e_1_2_9_20_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_9_6_1
  doi: 10.3390/app11104647
– ident: e_1_2_9_15_1
  doi: 10.1109/TCSVT.2023.3234993
– ident: e_1_2_9_32_1
– ident: e_1_2_9_40_1
  doi: 10.1109/CVPR46437.2021.00841
– ident: e_1_2_9_8_1
  doi: 10.1007/s11042-018-6610-4
– ident: e_1_2_9_21_1
– ident: e_1_2_9_35_1
– ident: e_1_2_9_30_1
  doi: 10.1109/ICCVW54120.2021.00312
– ident: e_1_2_9_41_1
  doi: 10.1109/ICCV.2017.324
– ident: e_1_2_9_10_1
  doi: 10.1109/TCYB.2021.3131569
– ident: e_1_2_9_44_1
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_9_37_1
  doi: 10.1109/CVPR.2019.00075
– ident: e_1_2_9_28_1
  doi: 10.3390/machines11020257
– ident: e_1_2_9_38_1
  doi: 10.1609/aaai.v34i07.6999
– ident: e_1_2_9_19_1
  doi: 10.1016/j.measurement.2019.01.072
– ident: e_1_2_9_11_1
  doi: 10.1016/j.patcog.2022.109214
– ident: e_1_2_9_18_1
– ident: e_1_2_9_23_1
– ident: e_1_2_9_31_1
  doi: 10.1109/CVPR52729.2023.00721
– ident: e_1_2_9_3_1
  doi: 10.1109/TPWRD.2007.908779
– ident: e_1_2_9_5_1
  doi: 10.1109/TSMC.2018.2871750
– year: 2020
  ident: e_1_2_9_22_1
  article-title: YOLOv4: optimal speed and accuracy of object detection
  publication-title: arXiv:200410934
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neunet.2023.03.017
SSID ssj0059085
Score 2.5380943
Snippet The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations. However,...
Abstract The YOLO series of algorithms have made substantial contributions to the detection of insulator defects in power transmission line operations....
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1096
SubjectTerms computer vision
image recognition
insulators
object detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHrz4FtcXAb0oFNsmbRJvvhVERRT1VPLUxdqV3VU8-hP8jf4SJ2lXFEQv3koykJCZZGaayfchtBpTBm7Q5VEGOymiJJeRpJxEkjGZWhVLJ3Ugm2AnJ_z6Wpx9ofryNWE1PHC9cBvCpibWFKJkY6hLY-UfJwurRA5bXOfGn74xE4Nkqj6DPZF3Fp5CehL5PBMDYFIqNtqP3TRwIItvrigg9n-PUIOL2Z9AY01siLfqOU2iIVtNofEmTsTNLuxNo5fdg6v317eb0-PTZ76Jt3DvQZYlDmXlPofGdXk3NrYfCq0qLMvbTrfdv3vA3msZDE3GhnBVlRZ7iM1Q9Ai9-l51KmiqDL466lziEmaOvfPz_TPocn_vYucwahgUIk0h9YmYThJLDVEScuZUQSiiNVHcJZJZAbqw_q9PnKick9g6wpghTmnrYm6kcElCZtFwBaPOIZxILjPDQeeQEGZKSOuRzzgxkDPm2vEWWhssZqEbeHHPclEW4ZqbisIvfLg9Ey208in7WINq_Ci17XXyKeGBsEMDmEfRmEfxl3m00HrQ6C_jFEdn52n4mv-PERfQaAqBT12ntoiG-90nu4RG9HO_3esuBzP9ADrC7AM
  priority: 102
  providerName: Directory of Open Access Journals
Title DGW‐YOLOv8: A small insulator target detection algorithm based on deformable attention backbone and WIoU loss function
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.13009
https://doaj.org/article/9e2d0c4428dd4f20b81809eb96467c6d
Volume 18
WOSCitedRecordID wos001124609100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZK4cCF8iu2hcoSXIoUkcRObCMuLbSwEtquKqotp8i_ZUWarbJL1WMfgWfkSTrjZLeqhJAQlyiyJ3KSmfHM2ONvCHmdcgFmMJRJAZqUcFbqRHPJEi2Ezr1JddA2FpsQo5E8OVHjNfJ-eRamw4dYLbihZsT5GhVcm64KCTi1wMTpeZvHWsbqDrmbZUygTOd8vJyHsZh3EY9DYiH5slBLcFKu3t48e8scRdT-215qNDMHG__3gg_Jg969pLudPDwia755TDZ6V5P2ijx_Qi4_fpr8vvr17fDL4YV8R3fp_EzXNY2Z6RiG0y5DnDq_iLlaDdX16aydLr6fUTR8jkKT89HjNbWniNIZ8yah1_4wswaaGkcnw9kxreHDKdpP7H9Kjg_2v374nPRFGBLLIXpKhM0yzx0zGsLu3IA3Yy0zMmRaeAXs9LhwlGamlCz1gQnhWDDWh1Q6rQLw5RlZb2DU54RmWurCSRAbiCkLo7RH8DTJHISdpQ1yQHaWvKhsj1COhTLqKu6Uc1XhL40bcGpAXq1ozztcjj9S7SFLVxSIpR0bZu1p1atmpXzuUsshDnOOhzw1ePxdeaNKMCK2dAPyJrL5L-NUw_FRHu82_4V4i9zPwUfqUtpekPVF-9O_JPfsxWI6b7ejNG_HRQK4ToajaxvX-n0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEN8gmugLiH_iIeAm-qJJY9vdtru-IYpcOI-LgYBPzf7FC6VHegfx0Y_AZ_STMLPtHSExJsa3ZjvNtp2d_c3szv6GkDcxLwAGfR5lYEkRZ7mKFBcsUkWhUqdj5ZUJxSaK4VCcnMhRl5uDZ2FafojFghtaRpiv0cBxQboNODmSZI4vmjQUM5b3yH0OMIMFDFI-mk_EWM07C-chsZJ8nsk5OymX72-fvYNHgbb_rpsacGZ39T_f8DFZ6RxMut2OiDWy5OonZLVzNmlnytOn5OenL8e_f11_PxgcXIkPdJtOz1VV0ZCbjoE4bXPEqXWzkK1VU1WdTprx7Mc5ReizFJqsCz6vrhxFns6QOQl3zZme1NBUW3rcnxzRCr6cIoLi_WfkaPfz4c5e1JVhiAyH-CkqTJI4bplWEHinGvwZY5gWPlGFk6BQh0tHcaJzwWLnWVFY5rVxPhZWSZ8k7DlZrqHXF4QmSqjMChg4EFVmWiqH9GmCWQg8c-NFj7ydK6M0HUc5lsqoyrBXzmWJvzRswckeeb2QvWiZOf4o9RF1upBANu3QMGlOy844S-lSGxsOkZi13KexxgPw0mmZA4yY3PbIu6Dnv_RT9kff0nC1_i_Cr8jDvcOvg3LQH-6_JI9S8JjaBLcNsjxrLt0meWCuZuNpsxWG9g0jLPxb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoVBUX6FMs9GGpvbRS1CR2Ers3Wrp0VbSsqiLoKfKTrgjZVXZBHPsT-I38ks442UVIVaWqt8iZyEnG45nPHn9DyJuYF-AGfR5lYEkRZ7mKFBcsUkWhUqdj5ZUJxSaK4VCcnMhRl5uDZ2FafojlghtaRpiv0cDd1PoWcHIkyRxPmzQUM5b3yBrPYJJFYmc-WkzEWM07C-chsZJ8nskFOymX72-fveOPAm3_3TA1-Jn-5n--4UOy0QWYdLcdEY_Iiqsfk80u2KSdKc-ekKu9_eObX9c_Dg8OL8UHuktn56qqaMhNRyBO2xxxat08ZGvVVFWnk2Y8_3lO0fVZCk3WhZhXV44iT2fInIS75kxPamiqLT0eTI5oBV9O0YPi_afkqP_5-6cvUVeGITIc8FNUmCRx3DKtAHinGuIZY5gWPlGFk6BQh0tHcaJzwWLnWVFY5rVxPhZWSZ8k7BlZraHXLUITJVRmBQwcQJWZlsohfZpgFoBnbrzokbcLZZSm4yjHUhlVGfbKuSzxl4YtONkjr5ey05aZ449SH1GnSwlk0w4Nk-a07IyzlC61seGAxKzlPo01HoCXTssc3IjJbY-8C3r-Sz_lYPQtDVfb_yL8ijwY7fXLg8Hw6w5ZTyFgavPbnpPVeXPhXpD75nI-njUvw8j-Dc0p-98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DGW%E2%80%90YOLOv8%3A+A+small+insulator+target+detection+algorithm+based+on+deformable+attention+backbone+and+WIoU+loss+function&rft.jtitle=IET+image+processing&rft.au=Hu%2C+Deao&rft.au=Yu%2C+Mei&rft.au=Wu%2C+Xianyong&rft.au=Hu%2C+Jingbo&rft.date=2024-03-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=18&rft.issue=4&rft.spage=1096&rft.epage=1108&rft_id=info:doi/10.1049%2Fipr2.13009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_13009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon