MDGN: Circuit design of memristor‐based denoising autoencoder and gated recurrent unit network for lithium‐ion battery state of charge estimation
Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimati...
Gespeichert in:
| Veröffentlicht in: | IET renewable power generation Jg. 18; H. 3; S. 372 - 383 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.02.2024
|
| Schlagworte: | |
| ISSN: | 1752-1416, 1752-1424 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).
Existing SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption. The authors propose a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). |
|---|---|
| AbstractList | Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). Abstract Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). Existing SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption. The authors propose a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). |
| Author | Zhang, Xinghao Gao, Mingyu Wang, Jiayang Dong, Zhekang Lai, Chun Sing Ma, Guojin Han, Yifeng |
| Author_xml | – sequence: 1 givenname: Jiayang surname: Wang fullname: Wang, Jiayang organization: Hangzhou Dianzi University – sequence: 2 givenname: Xinghao surname: Zhang fullname: Zhang, Xinghao organization: Hangzhou Dianzi University – sequence: 3 givenname: Yifeng surname: Han fullname: Han, Yifeng organization: Zhejiang University – sequence: 4 givenname: Chun Sing orcidid: 0000-0002-4169-4438 surname: Lai fullname: Lai, Chun Sing organization: Brunel University London – sequence: 5 givenname: Zhekang orcidid: 0000-0003-4639-3834 surname: Dong fullname: Dong, Zhekang email: englishp@126.com organization: Hangzhou Dianzi University – sequence: 6 givenname: Guojin surname: Ma fullname: Ma, Guojin organization: Hangzhou Dianzi University – sequence: 7 givenname: Mingyu surname: Gao fullname: Gao, Mingyu organization: Hangzhou Dianzi University |
| BookMark | eNp9kc9u1DAQxiNUJNrChSfwGWmLJ3Ecmxta6FKp_BGCc-TYk9Qla1djR9XeeAQuvCBPgncX9YAQpxnNfN9vNPrOqpMQA1bVc-AXwIV-SXdTfQG14vpRdQpdW69A1OLkoQf5pDpL6ZbzVnMlT6uf799sPrxia0928Zk5TH4KLI5si1vyKUf69f3HYBK6sgvRJx8mZpYcMdjokJgJjk0mlz2hXYgwZLaEggqY7yN9Y2MkNvt845dtQfkY2GByRtqxlItvf8veGJqQYcp-a3KRPK0ej2ZO-OxPPa--Xr79sn63uv64uVq_vl5ZAUKvpHJaKeWccbrpOqVE25im6TjCKBrbatNK1XZgrO7AylHzjoN0AAOMVhbpeXV15Lpobvs7Kudp10fj-8Mg0tQbyt7O2PNhkAI4tiNH0cpOowLdgLS2UWLUbWG9OLIsxZQIxwce8H4fTr8Ppz-EU8T8L7H1-fB6JuPnf1vgaLn3M-7-A-8_f9rUR89vKR-naw |
| CitedBy_id | crossref_primary_10_1109_TAES_2025_3540806 crossref_primary_10_1038_s41598_024_71545_6 crossref_primary_10_1080_15435075_2024_2448301 crossref_primary_10_1049_pel2_70101 crossref_primary_10_1080_15567036_2025_2505203 crossref_primary_10_1016_j_eswa_2025_129277 |
| Cites_doi | 10.1016/j.est.2023.106690 10.1016/j.electacta.2022.140944 10.1145/1390156.1390294 10.1007/s12239-021-0032-4 10.1109/TPEL.2016.2535321 10.1109/MCOM.001.2200272 10.1109/TNB.2022.3152228 10.3390/batteries8100170 10.1016/j.est.2021.102440 10.1109/ACCESS.2022.3149617 10.1016/j.jpowsour.2020.228375 10.1016/j.apenergy.2021.117962 10.1155/2022/9616124 10.1109/VPPC.2013.6671653 10.1142/S0218127421300202 10.1109/MCOM.001.21664 10.1049/iet-rpg.2020.0239 10.1109/ACCESS.2019.2912803 10.1016/j.est.2022.105396 10.1002/er.7545 10.1109/ACCESS.2016.2566928 10.1016/j.renene.2022.08.123 10.1016/j.ensm.2020.12.019 10.1016/j.electacta.2017.01.057 10.3390/en15186745 10.1016/j.jpowsour.2020.228051 10.1016/j.mtadv.2022.100293 10.1039/D1TC04201G 10.1109/ACCESS.2021.3049944 10.1016/j.neucom.2021.04.049 10.1109/MCE.2022.3159350 10.1049/iet-rpg.2017.0288 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/rpg2.12809 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1752-1424 |
| EndPage | 383 |
| ExternalDocumentID | oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95 10_1049_rpg2_12809 RPG212809 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation (NNSF) of China funderid: 62001149 – fundername: National Key Research and Development Program of China funderid: 2020YFB1710600 – fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang funderid: GK229909299001‐06 – fundername: Zhejiang Provincial Nature Science Foundation of China funderid: LQ21F010009 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK AAHJG AAJGR ABMDY ABQXS ACCMX ACESK ACGFS ACIWK ACXQS AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS GROUPED_DOAJ HZ~ IAO IDLOA IEP IPLJI ITC LAI MCNEO O9- OK1 P2P RNS ROL RUI WIN 4.4 7XC 8FE 8FG 8FH AAMMB AAYXX ABJCF AEFGJ AEUYN AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS ATCPS BENPR BGLVJ BHPHI CCPQU CITATION EJD HCIFZ L6V M43 M7S P62 PATMY PHGZM PHGZT PQGLB PTHSS PYCSY S0W |
| ID | FETCH-LOGICAL-c4149-68d9888ddad937788453a3370e1f43c59a568571ac971c6f907016d11b1fc63a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1752-1416 |
| IngestDate | Mon Nov 10 04:34:16 EST 2025 Wed Oct 29 21:23:22 EDT 2025 Tue Nov 18 22:20:46 EST 2025 Wed Aug 20 07:26:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4149-68d9888ddad937788453a3370e1f43c59a568571ac971c6f907016d11b1fc63a3 |
| ORCID | 0000-0002-4169-4438 0000-0003-4639-3834 |
| OpenAccessLink | https://doaj.org/article/0bb6410e5f0e45679e819316cc384f95 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95 crossref_primary_10_1049_rpg2_12809 crossref_citationtrail_10_1049_rpg2_12809 wiley_primary_10_1049_rpg2_12809_RPG212809 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-01 |
| PublicationDateYYYYMMDD | 2024-02-01 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET renewable power generation |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 9 2019; 7 2021; 46 2022; 198 2022; 12(4) 2021; 22 2008 2020; 14 2020; 469 2022; 22(1) 2023; 60 2023; 61 2021; 36 2016; 4 2021; 37 2021; 31 2022; 2022 2021; 453 2022; 60 2022; 8 2017; 32 2020; 459 2022; 15 2022; 429 2022; 10 2013 2022; 55 2018; 12 2022; 305 2022; 16 2017; 228 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_20_1 Dong Z. (e_1_2_12_23_1) 2022; 12 e_1_2_12_21_1 e_1_2_12_24_1 e_1_2_12_25_1 e_1_2_12_26_1 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 Ji X. (e_1_2_12_22_1) 2022; 22 e_1_2_12_15_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1 |
| References_xml | – volume: 60 start-page: 100 issue: 1 year: 2022 end-page: 106 article-title: A brain‐inspired in‐memory computing system for neuronal communication via memristive circuits publication-title: IEEE Commun. Mag. – volume: 55 year: 2022 article-title: State of charge estimation for lithium‐ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter publication-title: J. Energy Storage – volume: 429 year: 2022 article-title: Development of low complexity open circuit voltage model for state of charge estimation with novel curve modification technique publication-title: Electrochim. Acta – volume: 4 start-page: 2604 year: 2016 end-page: 2614 article-title: Multiple memristor circuit parametric fault diagnosis using feedback‐control doublet generator publication-title: IEEE Access – volume: 8 start-page: 170 issue: 10 year: 2022 article-title: Study of SOC estimation by the ampere‐hour integral method with capacity correction based on LSTM publication-title: Batteries – volume: 9 start-page: 11252 year: 2021 end-page: 11263 article-title: An improved bidirectional gated recurrent unit method for accurate state‐of‐charge estimation publication-title: IEEE Access – volume: 22(1) start-page: 52 year: 2022 end-page: 62 article-title: A flexible memristor model with electronic resistive switching memory behavior and its application in spiking neural network publication-title: IEEE Trans. Nanobiosci. – volume: 32 start-page: 794 issue: 1 year: 2017 end-page: 803 article-title: Real‐time model‐based estimation of SOC and SOH for energy storage systems publication-title: IEEE Trans. Power Electron. – volume: 12 start-page: 934 issue: 8 year: 2018 end-page: 942 article-title: Economic feasibility of hybrid energy generation with reduced carbon emission publication-title: IET Renew. Power Gener. – volume: 12(4) start-page: 94 year: 2022 end-page: 106 article-title: Memristor‐based hierarchical attention network for multimodal affective computing in mental health monitoring publication-title: IEEE Consum. Electron. Mag. – start-page: 1 year: 2013 end-page: 5 article-title: A comparison study of the model based SOC estimation methods for lithium‐ion batteries – volume: 305 year: 2022 article-title: Accurate and reliable state of charge estimation of lithium‐ion batteries using time‐delayed recurrent neural networks through the identification of overexcited neurons publication-title: Appl. Energy – volume: 22 start-page: 335 issue: 2 year: 2021 end-page: 340 article-title: SOC estimation of li‐ion battery based on improved EKF algorithm publication-title: Int. J. Automot. Technol. – volume: 60 year: 2023 article-title: A multi‐fault diagnostic method based on category‐reinforced domain adaptation network for series‐connected battery packs publication-title: J. Energy Storage – volume: 46 start-page: 5423 issue: 5 year: 2021 end-page: 5440 article-title: A comprehensive review on the state of charge estimation for lithium‐ion battery based on neural network publication-title: Int. J. Energy Res. – volume: 10 start-page: 16793 year: 2022 end-page: 16806 article-title: A novel modal representation of battery dynamics publication-title: IEEE Access – volume: 37 year: 2021 article-title: State of charge and state of energy estimation for lithium‐ion batteries based on a long short‐term memory neural network publication-title: J. Energy Storage – volume: 2022 year: 2022 article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium‐ion battery publication-title: Math. Prob. Eng. – volume: 16 year: 2022 article-title: A physics‐oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio‐inspired computing publication-title: Mater. Today Adv – volume: 31 issue: 07 year: 2021 article-title: TSSM: Three‐state switchable memristor model based on Ag/TiO nanobelt/Ti configuration publication-title: Int. J. Bifurcat. Chaos – volume: 14 start-page: 2668 issue: 14 year: 2020 end-page: 2679 article-title: Control strategy to improve load/power sharing, DC bus voltage restoration, and batteries SOC balancing in a DC microgrid publication-title: IET Renew. Power Gener. – volume: 9 start-page: 16859 issue: 47 year: 2021 end-page: 16884 article-title: Memristor modeling: challenges in theories, simulations, and device variability publication-title: J. Mater. Chem. C – start-page: 1096 year: 2008 end-page: 1103 article-title: Extracting and composing robust features with denoising autoencoders – volume: 469 year: 2020 article-title: State of charge estimation of lithium‐ion batteries using hybrid autoencoder and long short‐term memory neural networks publication-title: J. Power Sources – volume: 459 year: 2020 article-title: A GRU‐RNN based momentum optimized algorithm for SOC estimation publication-title: J. Power Sources – volume: 36 start-page: 186 year: 2021 end-page: 212 article-title: On the sustainability of lithium‐ion battery industry–A review and perspective publication-title: Energy Storage Mater – volume: 7 start-page: 53792 year: 2019 end-page: 53799 article-title: State‐of‐charge estimation of lithium‐ion batteries via long short‐term memory network publication-title: IEEE Access – volume: 15 start-page: 6745 issue: 18 year: 2022 article-title: A hybrid method for state‐of‐charge estimation for lithium‐ion batteries using a long short‐term memory network combined with attention and a kalman filter publication-title: Energies – volume: 453 start-page: 38 year: 2021 end-page: 49 article-title: Neuromorphic extreme learning machines with bimodal memristive synapses publication-title: Neurocomputing – volume: 228 start-page: 146 year: 2017 end-page: 159 article-title: Correlation between the model accuracy and model‐based SOC estimation publication-title: Electrochim. Acta – volume: 198 start-page: 1328 year: 2022 end-page: 1340 article-title: A hybrid neural network model with improved input for state of charge estimation of lithium‐ion battery at low temperatures publication-title: Renew. Energy – volume: 61 start-page: 74 issue: 1 year: 2023 end-page: 80 article-title: Design and implementation of a flexible neuromorphic computing system for affective communication via memristive circuits publication-title: IEEE Commun. Mag. – ident: e_1_2_12_3_1 doi: 10.1016/j.est.2023.106690 – ident: e_1_2_12_7_1 doi: 10.1016/j.electacta.2022.140944 – ident: e_1_2_12_29_1 doi: 10.1145/1390156.1390294 – ident: e_1_2_12_6_1 doi: 10.1007/s12239-021-0032-4 – ident: e_1_2_12_11_1 doi: 10.1109/TPEL.2016.2535321 – ident: e_1_2_12_30_1 doi: 10.1109/MCOM.001.2200272 – volume: 22 start-page: 52 year: 2022 ident: e_1_2_12_22_1 article-title: A flexible memristor model with electronic resistive switching memory behavior and its application in spiking neural network publication-title: IEEE Trans. Nanobiosci. doi: 10.1109/TNB.2022.3152228 – ident: e_1_2_12_8_1 doi: 10.3390/batteries8100170 – ident: e_1_2_12_21_1 doi: 10.1016/j.est.2021.102440 – ident: e_1_2_12_31_1 doi: 10.1109/ACCESS.2022.3149617 – ident: e_1_2_12_20_1 doi: 10.1016/j.jpowsour.2020.228375 – ident: e_1_2_12_12_1 doi: 10.1016/j.apenergy.2021.117962 – ident: e_1_2_12_18_1 doi: 10.1155/2022/9616124 – ident: e_1_2_12_10_1 doi: 10.1109/VPPC.2013.6671653 – ident: e_1_2_12_28_1 doi: 10.1142/S0218127421300202 – ident: e_1_2_12_33_1 doi: 10.1109/MCOM.001.21664 – ident: e_1_2_12_4_1 doi: 10.1049/iet-rpg.2020.0239 – ident: e_1_2_12_13_1 doi: 10.1109/ACCESS.2019.2912803 – ident: e_1_2_12_17_1 doi: 10.1016/j.est.2022.105396 – ident: e_1_2_12_15_1 doi: 10.1002/er.7545 – ident: e_1_2_12_26_1 doi: 10.1109/ACCESS.2016.2566928 – ident: e_1_2_12_16_1 doi: 10.1016/j.renene.2022.08.123 – ident: e_1_2_12_5_1 doi: 10.1016/j.ensm.2020.12.019 – ident: e_1_2_12_9_1 doi: 10.1016/j.electacta.2017.01.057 – ident: e_1_2_12_19_1 doi: 10.3390/en15186745 – ident: e_1_2_12_14_1 doi: 10.1016/j.jpowsour.2020.228051 – ident: e_1_2_12_25_1 doi: 10.1016/j.mtadv.2022.100293 – ident: e_1_2_12_27_1 doi: 10.1039/D1TC04201G – ident: e_1_2_12_2_1 doi: 10.1109/ACCESS.2021.3049944 – ident: e_1_2_12_24_1 doi: 10.1016/j.neucom.2021.04.049 – volume: 12 start-page: 94 year: 2022 ident: e_1_2_12_23_1 article-title: Memristor‐based hierarchical attention network for multimodal affective computing in mental health monitoring publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2022.3159350 – ident: e_1_2_12_32_1 doi: 10.1049/iet-rpg.2017.0288 |
| SSID | ssj0059086 |
| Score | 2.4032552 |
| Snippet | Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing... Abstract Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly.... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 372 |
| SubjectTerms | circuit design denoising autoencoder gated recurrent unit memristor state of charge estimation |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq0gMcgPIQWwqyVC4gBeL4kRj1AqUtF1YrBFJvkZ9tJDapwqYSN34CF_4gv4QZZ3ehEqqEeouSyUMee_zNZOYbQp4VBvNpmM98AF9ViOgzo4zNgrJlND7Pg4up2UQ5nVYnJ3q2QfZXtTAjP8Q64IYrI9lrXODGjl1IANSCEvvz0-IlWFes3rvBGK-wcUMhZis7jM28U21RKYuMAe5YkZMK_erPvZe2o8Tafxmlpm3m6M71PvAuub2El_TNOB-2yUZo75Fbf5EO3ic_P7w7nr6mB03vhmZBfUrhoF2k8zBPRAP9r-8_cHPzcK3tGgwmUDMsOqS89KGnpvUUg2-e9hisR3onOoBloO2YUk4BB1NA92fNMIdHgeKpTSye32gqX8J3JYKmQJHiY6ydfEA-Hx1-OnifLZszZE6AV5Wpymvwnr03HhAOONJCcsN5mQcWBXdSG6kqWTLjdMmciuCEA7r0jFkWnQLRh2Sz7drwiFAlHdcu8oKbKILMjbW85DZwa0PQSkzI85WOardkLscGGl_q9Add6BqHuk5DPSF7a9nzka_jn1JvUdVrCeTYTie6_rReLtk6t1YJlgcZ8wAws9QB0BNnyjleiajlhLxI6r_iPfXH2XGRjnb-R_gxuVkAdhqTw3fJ5qIfwhOy5S4Wzdf-aZrlvwFdiQOf priority: 102 providerName: Wiley-Blackwell |
| Title | MDGN: Circuit design of memristor‐based denoising autoencoder and gated recurrent unit network for lithium‐ion battery state of charge estimation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12809 https://doaj.org/article/0bb6410e5f0e45679e819316cc384f95 |
| Volume | 18 |
| WOSCitedRecordID | wos001032551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 1752-1424 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1752-1424 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059086 issn: 1752-1416 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZK1QMcEBQQC7QaqVxACo1jx1n3VgptObBaIRC9Rf4ZQyQ2W4UNUm99hF54QZ6EsbNbLRKiFy5RlIziyDPxfDMZf8PY88LEehruM48Uq0oZfGaUsRkqWwXj8xxdSM0mqslkfHamp2utvmJN2EAPPEzcfm6tkjzHMuRIzr7SSD5McOWcGMugE3spoZ5VMDWswbGRd9pXVJVFxglzrIhJpd7vzr8Ur2hVjiWIa64oMfb_iVCTizm-x-4usSEcDu90n21gu83urDEGPmA_3785mRzAUdO5vlmAT_UXMA8ww1liCeh-XV5Fz-TpXjtvYiYATL-YR75Kjx2Y1kPMnHnoYqY9cjNBT581tEM9OBCIBYLmX5t-Ro8irYFNFJwXkPYexbESuxJC5OcYNj4-ZJ-O3348Os2WnRUyJykkytTYawp9vTee4AlFwbIURogqRx6kcKU2pRqXFTdOV9ypQBE0QUPPueXBKRJ9xDbbeYuPGajSCe2CKIQJEsvcWCsqYVFYi6iVHLEXq0mu3ZJ2PHa_-Fan399S11EhdVLIiO1dy54PZBt_lXoddXUtEQmy0wUym3ppNvVNZjNiL5Om_zFO_WF6UqSzJ_9jxKfsdkGAaKj4fsY2F12PO2zL_Vg037tddquQ091kxHT8_G7yGzdJ-Cw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9VAEG5kFNSDu_hcG_SiEE2nl7z2pqOz4EwYZMS5hV7HgC8Z4ovgzZ_gxT_oL7Gqk_d0QATxFpLKQld39VeVqq8IeVQYzKdhPvMBfFUhos-MMjYLypbR-DwPLqZmE2VVzY-O9MGUm4O1MCM_xDrghisj2Wtc4BiQHh1OgSSZ_clx8RTMK5bvnRWANLBzw_vdamWIsZt3Ki4qZZExAB4rdlKhn_2699R-lGj7T8PUtM9sXf7PL7xCLk0Ak74YZ8RVcia018jF32gHr5Pv-6-2q-d0s-nd0CypT0kctIt0ERaJaqD_8fUbbm8errVdg-EEaoZlh6SXPvTUtJ5i-M3THsP1SPBEB7ANtB2TyikgYQr4_kMzLOBRoHpqE4_nF5oKmPBdiaIpUCT5GKsnb5B3W68PN3eyqT1D5gT4VZmaew3-s_fGA8YBV1pIbjgv88Ci4E5qI9Vclsw4XTKnIrjhgC89Y5ZFp0D0JtlouzbcIlRJx7WLvOAmiiBzYy0vuQ3c2hC0EjPyeKWk2k3c5dhC42Od_qELXeNQ12moZ-ThWvZkZOz4o9RL1PVaAlm204muP66nRVvn1irB8iBjHgBoljoAfuJMOcfnImo5I0-S_v_ynvrtwXaRjm7_i_ADcn7ncH-v3tut3twhFwpAUmOq-F2yseyHcI-cc5-Xzaf-fpryPwFsxwf3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG5kFdGDb3F8NuhFIW46_ci0N911VlGHQRT2Fvq5BnaSITsRvPkTvPgH_SVWdTKjCyKIt5BUHnR1V39VqfqKkEeFwXwa5jMfwFcVIvrMKGOzoGwZjc_z4GJqNlHO59PDQ70Yc3OwFmbgh9gG3HBlJHuNCzysfBwcToEkmd3qqHgK5hXL984KWTKc1IVYbAwxdvNOxUWlLDIGwGPDTir07q97T-1Hibb_NExN-8zs8n9-4RVyaQSY9PkwI66SM6G5Ri7-Rjt4nXx_t38wf0b36s719Zr6lMRB20iXYZmoBrofX7_h9ubhWtPWGE6gpl-3SHrpQ0dN4ymG3zztMFyPBE-0B9tAmyGpnAISpoDvP9X9Eh4Fqqc28Xh-oamACd-VKJoCRZKPoXryBvk4e_lh71U2tmfInAC_KlNTr8F_9t54wDjgSgvJDedlHlgU3EltpJqCWozTJXMqghsO-NIzZll0CkRvkp2mbcItQpV0XLvIC26iCDI31vKS28CtDUErMSGPN0qq3Mhdji00jqv0D13oCoe6SkM9IQ-3squBseOPUi9Q11sJZNlOJ9ruqBoXbZVbqwTLg4x5AKBZ6gD4iTPlHJ-KqOWEPEn6_8t7qveLgyId3f4X4Qfk_GJ_Vr19PX9zh1woAEgNmeJ3yc6668M9cs59Xtcn3f00438CazcHDg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDGN%3A+Circuit+design+of+memristor%E2%80%90based+denoising+autoencoder+and+gated+recurrent+unit+network+for+lithium%E2%80%90ion+battery+state+of+charge+estimation&rft.jtitle=IET+renewable+power+generation&rft.au=Jiayang+Wang&rft.au=Xinghao+Zhang&rft.au=Yifeng+Han&rft.au=Chun+Sing+Lai&rft.date=2024-02-01&rft.pub=Wiley&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=18&rft.issue=3&rft.spage=372&rft.epage=383&rft_id=info:doi/10.1049%2Frpg2.12809&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon |