MDGN: Circuit design of memristor‐based denoising autoencoder and gated recurrent unit network for lithium‐ion battery state of charge estimation

Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET renewable power generation Jg. 18; H. 3; S. 372 - 383
Hauptverfasser: Wang, Jiayang, Zhang, Xinghao, Han, Yifeng, Lai, Chun Sing, Dong, Zhekang, Ma, Guojin, Gao, Mingyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.02.2024
Schlagworte:
ISSN:1752-1416, 1752-1424
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). Existing SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption. The authors propose a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).
AbstractList Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).
Abstract Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).
Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost). Existing SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption. The authors propose a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).
Author Zhang, Xinghao
Gao, Mingyu
Wang, Jiayang
Dong, Zhekang
Lai, Chun Sing
Ma, Guojin
Han, Yifeng
Author_xml – sequence: 1
  givenname: Jiayang
  surname: Wang
  fullname: Wang, Jiayang
  organization: Hangzhou Dianzi University
– sequence: 2
  givenname: Xinghao
  surname: Zhang
  fullname: Zhang, Xinghao
  organization: Hangzhou Dianzi University
– sequence: 3
  givenname: Yifeng
  surname: Han
  fullname: Han, Yifeng
  organization: Zhejiang University
– sequence: 4
  givenname: Chun Sing
  orcidid: 0000-0002-4169-4438
  surname: Lai
  fullname: Lai, Chun Sing
  organization: Brunel University London
– sequence: 5
  givenname: Zhekang
  orcidid: 0000-0003-4639-3834
  surname: Dong
  fullname: Dong, Zhekang
  email: englishp@126.com
  organization: Hangzhou Dianzi University
– sequence: 6
  givenname: Guojin
  surname: Ma
  fullname: Ma, Guojin
  organization: Hangzhou Dianzi University
– sequence: 7
  givenname: Mingyu
  surname: Gao
  fullname: Gao, Mingyu
  organization: Hangzhou Dianzi University
BookMark eNp9kc9u1DAQxiNUJNrChSfwGWmLJ3Ecmxta6FKp_BGCc-TYk9Qla1djR9XeeAQuvCBPgncX9YAQpxnNfN9vNPrOqpMQA1bVc-AXwIV-SXdTfQG14vpRdQpdW69A1OLkoQf5pDpL6ZbzVnMlT6uf799sPrxia0928Zk5TH4KLI5si1vyKUf69f3HYBK6sgvRJx8mZpYcMdjokJgJjk0mlz2hXYgwZLaEggqY7yN9Y2MkNvt845dtQfkY2GByRtqxlItvf8veGJqQYcp-a3KRPK0ej2ZO-OxPPa--Xr79sn63uv64uVq_vl5ZAUKvpHJaKeWccbrpOqVE25im6TjCKBrbatNK1XZgrO7AylHzjoN0AAOMVhbpeXV15Lpobvs7Kudp10fj-8Mg0tQbyt7O2PNhkAI4tiNH0cpOowLdgLS2UWLUbWG9OLIsxZQIxwce8H4fTr8Ppz-EU8T8L7H1-fB6JuPnf1vgaLn3M-7-A-8_f9rUR89vKR-naw
CitedBy_id crossref_primary_10_1109_TAES_2025_3540806
crossref_primary_10_1038_s41598_024_71545_6
crossref_primary_10_1080_15435075_2024_2448301
crossref_primary_10_1049_pel2_70101
crossref_primary_10_1080_15567036_2025_2505203
crossref_primary_10_1016_j_eswa_2025_129277
Cites_doi 10.1016/j.est.2023.106690
10.1016/j.electacta.2022.140944
10.1145/1390156.1390294
10.1007/s12239-021-0032-4
10.1109/TPEL.2016.2535321
10.1109/MCOM.001.2200272
10.1109/TNB.2022.3152228
10.3390/batteries8100170
10.1016/j.est.2021.102440
10.1109/ACCESS.2022.3149617
10.1016/j.jpowsour.2020.228375
10.1016/j.apenergy.2021.117962
10.1155/2022/9616124
10.1109/VPPC.2013.6671653
10.1142/S0218127421300202
10.1109/MCOM.001.21664
10.1049/iet-rpg.2020.0239
10.1109/ACCESS.2019.2912803
10.1016/j.est.2022.105396
10.1002/er.7545
10.1109/ACCESS.2016.2566928
10.1016/j.renene.2022.08.123
10.1016/j.ensm.2020.12.019
10.1016/j.electacta.2017.01.057
10.3390/en15186745
10.1016/j.jpowsour.2020.228051
10.1016/j.mtadv.2022.100293
10.1039/D1TC04201G
10.1109/ACCESS.2021.3049944
10.1016/j.neucom.2021.04.049
10.1109/MCE.2022.3159350
10.1049/iet-rpg.2017.0288
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rpg2.12809
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1752-1424
EndPage 383
ExternalDocumentID oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95
10_1049_rpg2_12809
RPG212809
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation (NNSF) of China
  funderid: 62001149
– fundername: National Key Research and Development Program of China
  funderid: 2020YFB1710600
– fundername: Fundamental Research Funds for the Provincial Universities of Zhejiang
  funderid: GK229909299001‐06
– fundername: Zhejiang Provincial Nature Science Foundation of China
  funderid: LQ21F010009
GroupedDBID .DC
0R~
1OC
24P
29I
5GY
6IK
AAHJG
AAJGR
ABMDY
ABQXS
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
CS3
DU5
EBS
GROUPED_DOAJ
HZ~
IAO
IDLOA
IEP
IPLJI
ITC
LAI
MCNEO
O9-
OK1
P2P
RNS
ROL
RUI
WIN
4.4
7XC
8FE
8FG
8FH
AAMMB
AAYXX
ABJCF
AEFGJ
AEUYN
AFFHD
AFKRA
AGXDD
AIDQK
AIDYY
ARAPS
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
EJD
HCIFZ
L6V
M43
M7S
P62
PATMY
PHGZM
PHGZT
PQGLB
PTHSS
PYCSY
S0W
ID FETCH-LOGICAL-c4149-68d9888ddad937788453a3370e1f43c59a568571ac971c6f907016d11b1fc63a3
IEDL.DBID DOA
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001032551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1752-1416
IngestDate Mon Nov 10 04:34:16 EST 2025
Wed Oct 29 21:23:22 EDT 2025
Tue Nov 18 22:20:46 EST 2025
Wed Aug 20 07:26:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4149-68d9888ddad937788453a3370e1f43c59a568571ac971c6f907016d11b1fc63a3
ORCID 0000-0002-4169-4438
0000-0003-4639-3834
OpenAccessLink https://doaj.org/article/0bb6410e5f0e45679e819316cc384f95
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95
crossref_primary_10_1049_rpg2_12809
crossref_citationtrail_10_1049_rpg2_12809
wiley_primary_10_1049_rpg2_12809_RPG212809
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle IET renewable power generation
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2019; 7
2021; 46
2022; 198
2022; 12(4)
2021; 22
2008
2020; 14
2020; 469
2022; 22(1)
2023; 60
2023; 61
2021; 36
2016; 4
2021; 37
2021; 31
2022; 2022
2021; 453
2022; 60
2022; 8
2017; 32
2020; 459
2022; 15
2022; 429
2022; 10
2013
2022; 55
2018; 12
2022; 305
2022; 16
2017; 228
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_20_1
Dong Z. (e_1_2_12_23_1) 2022; 12
e_1_2_12_21_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
Ji X. (e_1_2_12_22_1) 2022; 22
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 60
  start-page: 100
  issue: 1
  year: 2022
  end-page: 106
  article-title: A brain‐inspired in‐memory computing system for neuronal communication via memristive circuits
  publication-title: IEEE Commun. Mag.
– volume: 55
  year: 2022
  article-title: State of charge estimation for lithium‐ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter
  publication-title: J. Energy Storage
– volume: 429
  year: 2022
  article-title: Development of low complexity open circuit voltage model for state of charge estimation with novel curve modification technique
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 2604
  year: 2016
  end-page: 2614
  article-title: Multiple memristor circuit parametric fault diagnosis using feedback‐control doublet generator
  publication-title: IEEE Access
– volume: 8
  start-page: 170
  issue: 10
  year: 2022
  article-title: Study of SOC estimation by the ampere‐hour integral method with capacity correction based on LSTM
  publication-title: Batteries
– volume: 9
  start-page: 11252
  year: 2021
  end-page: 11263
  article-title: An improved bidirectional gated recurrent unit method for accurate state‐of‐charge estimation
  publication-title: IEEE Access
– volume: 22(1)
  start-page: 52
  year: 2022
  end-page: 62
  article-title: A flexible memristor model with electronic resistive switching memory behavior and its application in spiking neural network
  publication-title: IEEE Trans. Nanobiosci.
– volume: 32
  start-page: 794
  issue: 1
  year: 2017
  end-page: 803
  article-title: Real‐time model‐based estimation of SOC and SOH for energy storage systems
  publication-title: IEEE Trans. Power Electron.
– volume: 12
  start-page: 934
  issue: 8
  year: 2018
  end-page: 942
  article-title: Economic feasibility of hybrid energy generation with reduced carbon emission
  publication-title: IET Renew. Power Gener.
– volume: 12(4)
  start-page: 94
  year: 2022
  end-page: 106
  article-title: Memristor‐based hierarchical attention network for multimodal affective computing in mental health monitoring
  publication-title: IEEE Consum. Electron. Mag.
– start-page: 1
  year: 2013
  end-page: 5
  article-title: A comparison study of the model based SOC estimation methods for lithium‐ion batteries
– volume: 305
  year: 2022
  article-title: Accurate and reliable state of charge estimation of lithium‐ion batteries using time‐delayed recurrent neural networks through the identification of overexcited neurons
  publication-title: Appl. Energy
– volume: 22
  start-page: 335
  issue: 2
  year: 2021
  end-page: 340
  article-title: SOC estimation of li‐ion battery based on improved EKF algorithm
  publication-title: Int. J. Automot. Technol.
– volume: 60
  year: 2023
  article-title: A multi‐fault diagnostic method based on category‐reinforced domain adaptation network for series‐connected battery packs
  publication-title: J. Energy Storage
– volume: 46
  start-page: 5423
  issue: 5
  year: 2021
  end-page: 5440
  article-title: A comprehensive review on the state of charge estimation for lithium‐ion battery based on neural network
  publication-title: Int. J. Energy Res.
– volume: 10
  start-page: 16793
  year: 2022
  end-page: 16806
  article-title: A novel modal representation of battery dynamics
  publication-title: IEEE Access
– volume: 37
  year: 2021
  article-title: State of charge and state of energy estimation for lithium‐ion batteries based on a long short‐term memory neural network
  publication-title: J. Energy Storage
– volume: 2022
  year: 2022
  article-title: Hybrid methods using neural network and Kalman filter for the state of charge estimation of lithium‐ion battery
  publication-title: Math. Prob. Eng.
– volume: 16
  year: 2022
  article-title: A physics‐oriented memristor model with the coexistence of NDR effect and RS memory behavior for bio‐inspired computing
  publication-title: Mater. Today Adv
– volume: 31
  issue: 07
  year: 2021
  article-title: TSSM: Three‐state switchable memristor model based on Ag/TiO nanobelt/Ti configuration
  publication-title: Int. J. Bifurcat. Chaos
– volume: 14
  start-page: 2668
  issue: 14
  year: 2020
  end-page: 2679
  article-title: Control strategy to improve load/power sharing, DC bus voltage restoration, and batteries SOC balancing in a DC microgrid
  publication-title: IET Renew. Power Gener.
– volume: 9
  start-page: 16859
  issue: 47
  year: 2021
  end-page: 16884
  article-title: Memristor modeling: challenges in theories, simulations, and device variability
  publication-title: J. Mater. Chem. C
– start-page: 1096
  year: 2008
  end-page: 1103
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 469
  year: 2020
  article-title: State of charge estimation of lithium‐ion batteries using hybrid autoencoder and long short‐term memory neural networks
  publication-title: J. Power Sources
– volume: 459
  year: 2020
  article-title: A GRU‐RNN based momentum optimized algorithm for SOC estimation
  publication-title: J. Power Sources
– volume: 36
  start-page: 186
  year: 2021
  end-page: 212
  article-title: On the sustainability of lithium‐ion battery industry–A review and perspective
  publication-title: Energy Storage Mater
– volume: 7
  start-page: 53792
  year: 2019
  end-page: 53799
  article-title: State‐of‐charge estimation of lithium‐ion batteries via long short‐term memory network
  publication-title: IEEE Access
– volume: 15
  start-page: 6745
  issue: 18
  year: 2022
  article-title: A hybrid method for state‐of‐charge estimation for lithium‐ion batteries using a long short‐term memory network combined with attention and a kalman filter
  publication-title: Energies
– volume: 453
  start-page: 38
  year: 2021
  end-page: 49
  article-title: Neuromorphic extreme learning machines with bimodal memristive synapses
  publication-title: Neurocomputing
– volume: 228
  start-page: 146
  year: 2017
  end-page: 159
  article-title: Correlation between the model accuracy and model‐based SOC estimation
  publication-title: Electrochim. Acta
– volume: 198
  start-page: 1328
  year: 2022
  end-page: 1340
  article-title: A hybrid neural network model with improved input for state of charge estimation of lithium‐ion battery at low temperatures
  publication-title: Renew. Energy
– volume: 61
  start-page: 74
  issue: 1
  year: 2023
  end-page: 80
  article-title: Design and implementation of a flexible neuromorphic computing system for affective communication via memristive circuits
  publication-title: IEEE Commun. Mag.
– ident: e_1_2_12_3_1
  doi: 10.1016/j.est.2023.106690
– ident: e_1_2_12_7_1
  doi: 10.1016/j.electacta.2022.140944
– ident: e_1_2_12_29_1
  doi: 10.1145/1390156.1390294
– ident: e_1_2_12_6_1
  doi: 10.1007/s12239-021-0032-4
– ident: e_1_2_12_11_1
  doi: 10.1109/TPEL.2016.2535321
– ident: e_1_2_12_30_1
  doi: 10.1109/MCOM.001.2200272
– volume: 22
  start-page: 52
  year: 2022
  ident: e_1_2_12_22_1
  article-title: A flexible memristor model with electronic resistive switching memory behavior and its application in spiking neural network
  publication-title: IEEE Trans. Nanobiosci.
  doi: 10.1109/TNB.2022.3152228
– ident: e_1_2_12_8_1
  doi: 10.3390/batteries8100170
– ident: e_1_2_12_21_1
  doi: 10.1016/j.est.2021.102440
– ident: e_1_2_12_31_1
  doi: 10.1109/ACCESS.2022.3149617
– ident: e_1_2_12_20_1
  doi: 10.1016/j.jpowsour.2020.228375
– ident: e_1_2_12_12_1
  doi: 10.1016/j.apenergy.2021.117962
– ident: e_1_2_12_18_1
  doi: 10.1155/2022/9616124
– ident: e_1_2_12_10_1
  doi: 10.1109/VPPC.2013.6671653
– ident: e_1_2_12_28_1
  doi: 10.1142/S0218127421300202
– ident: e_1_2_12_33_1
  doi: 10.1109/MCOM.001.21664
– ident: e_1_2_12_4_1
  doi: 10.1049/iet-rpg.2020.0239
– ident: e_1_2_12_13_1
  doi: 10.1109/ACCESS.2019.2912803
– ident: e_1_2_12_17_1
  doi: 10.1016/j.est.2022.105396
– ident: e_1_2_12_15_1
  doi: 10.1002/er.7545
– ident: e_1_2_12_26_1
  doi: 10.1109/ACCESS.2016.2566928
– ident: e_1_2_12_16_1
  doi: 10.1016/j.renene.2022.08.123
– ident: e_1_2_12_5_1
  doi: 10.1016/j.ensm.2020.12.019
– ident: e_1_2_12_9_1
  doi: 10.1016/j.electacta.2017.01.057
– ident: e_1_2_12_19_1
  doi: 10.3390/en15186745
– ident: e_1_2_12_14_1
  doi: 10.1016/j.jpowsour.2020.228051
– ident: e_1_2_12_25_1
  doi: 10.1016/j.mtadv.2022.100293
– ident: e_1_2_12_27_1
  doi: 10.1039/D1TC04201G
– ident: e_1_2_12_2_1
  doi: 10.1109/ACCESS.2021.3049944
– ident: e_1_2_12_24_1
  doi: 10.1016/j.neucom.2021.04.049
– volume: 12
  start-page: 94
  year: 2022
  ident: e_1_2_12_23_1
  article-title: Memristor‐based hierarchical attention network for multimodal affective computing in mental health monitoring
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2022.3159350
– ident: e_1_2_12_32_1
  doi: 10.1049/iet-rpg.2017.0288
SSID ssj0059086
Score 2.4032552
Snippet Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing...
Abstract Due to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly....
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 372
SubjectTerms circuit design
denoising autoencoder
gated recurrent unit
memristor
state of charge estimation
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq0gMcgPIQWwqyVC4gBeL4kRj1AqUtF1YrBFJvkZ9tJDapwqYSN34CF_4gv4QZZ3ehEqqEeouSyUMee_zNZOYbQp4VBvNpmM98AF9ViOgzo4zNgrJlND7Pg4up2UQ5nVYnJ3q2QfZXtTAjP8Q64IYrI9lrXODGjl1IANSCEvvz0-IlWFes3rvBGK-wcUMhZis7jM28U21RKYuMAe5YkZMK_erPvZe2o8Tafxmlpm3m6M71PvAuub2El_TNOB-2yUZo75Fbf5EO3ic_P7w7nr6mB03vhmZBfUrhoF2k8zBPRAP9r-8_cHPzcK3tGgwmUDMsOqS89KGnpvUUg2-e9hisR3onOoBloO2YUk4BB1NA92fNMIdHgeKpTSye32gqX8J3JYKmQJHiY6ydfEA-Hx1-OnifLZszZE6AV5Wpymvwnr03HhAOONJCcsN5mQcWBXdSG6kqWTLjdMmciuCEA7r0jFkWnQLRh2Sz7drwiFAlHdcu8oKbKILMjbW85DZwa0PQSkzI85WOardkLscGGl_q9Add6BqHuk5DPSF7a9nzka_jn1JvUdVrCeTYTie6_rReLtk6t1YJlgcZ8wAws9QB0BNnyjleiajlhLxI6r_iPfXH2XGRjnb-R_gxuVkAdhqTw3fJ5qIfwhOy5S4Wzdf-aZrlvwFdiQOf
  priority: 102
  providerName: Wiley-Blackwell
Title MDGN: Circuit design of memristor‐based denoising autoencoder and gated recurrent unit network for lithium‐ion battery state of charge estimation
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frpg2.12809
https://doaj.org/article/0bb6410e5f0e45679e819316cc384f95
Volume 18
WOSCitedRecordID wos001032551100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1752-1424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059086
  issn: 1752-1416
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZK1QMcEBQQC7QaqVxACo1jx1n3VgptObBaIRC9Rf4ZQyQ2W4UNUm99hF54QZ6EsbNbLRKiFy5RlIziyDPxfDMZf8PY88LEehruM48Uq0oZfGaUsRkqWwXj8xxdSM0mqslkfHamp2utvmJN2EAPPEzcfm6tkjzHMuRIzr7SSD5McOWcGMugE3spoZ5VMDWswbGRd9pXVJVFxglzrIhJpd7vzr8Ur2hVjiWIa64oMfb_iVCTizm-x-4usSEcDu90n21gu83urDEGPmA_3785mRzAUdO5vlmAT_UXMA8ww1liCeh-XV5Fz-TpXjtvYiYATL-YR75Kjx2Y1kPMnHnoYqY9cjNBT581tEM9OBCIBYLmX5t-Ro8irYFNFJwXkPYexbESuxJC5OcYNj4-ZJ-O3348Os2WnRUyJykkytTYawp9vTee4AlFwbIURogqRx6kcKU2pRqXFTdOV9ypQBE0QUPPueXBKRJ9xDbbeYuPGajSCe2CKIQJEsvcWCsqYVFYi6iVHLEXq0mu3ZJ2PHa_-Fan399S11EhdVLIiO1dy54PZBt_lXoddXUtEQmy0wUym3ppNvVNZjNiL5Om_zFO_WF6UqSzJ_9jxKfsdkGAaKj4fsY2F12PO2zL_Vg037tddquQ091kxHT8_G7yGzdJ-Cw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ji9VAEG5kFNSDu_hcG_SiEE2nl7z2pqOz4EwYZMS5hV7HgC8Z4ovgzZ_gxT_oL7Gqk_d0QATxFpLKQld39VeVqq8IeVQYzKdhPvMBfFUhos-MMjYLypbR-DwPLqZmE2VVzY-O9MGUm4O1MCM_xDrghisj2Wtc4BiQHh1OgSSZ_clx8RTMK5bvnRWANLBzw_vdamWIsZt3Ki4qZZExAB4rdlKhn_2699R-lGj7T8PUtM9sXf7PL7xCLk0Ak74YZ8RVcia018jF32gHr5Pv-6-2q-d0s-nd0CypT0kctIt0ERaJaqD_8fUbbm8errVdg-EEaoZlh6SXPvTUtJ5i-M3THsP1SPBEB7ANtB2TyikgYQr4_kMzLOBRoHpqE4_nF5oKmPBdiaIpUCT5GKsnb5B3W68PN3eyqT1D5gT4VZmaew3-s_fGA8YBV1pIbjgv88Ci4E5qI9Vclsw4XTKnIrjhgC89Y5ZFp0D0JtlouzbcIlRJx7WLvOAmiiBzYy0vuQ3c2hC0EjPyeKWk2k3c5dhC42Od_qELXeNQ12moZ-ThWvZkZOz4o9RL1PVaAlm204muP66nRVvn1irB8iBjHgBoljoAfuJMOcfnImo5I0-S_v_ynvrtwXaRjm7_i_ADcn7ncH-v3tut3twhFwpAUmOq-F2yseyHcI-cc5-Xzaf-fpryPwFsxwf3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG5kFdGDb3F8NuhFIW46_ci0N911VlGHQRT2Fvq5BnaSITsRvPkTvPgH_SVWdTKjCyKIt5BUHnR1V39VqfqKkEeFwXwa5jMfwFcVIvrMKGOzoGwZjc_z4GJqNlHO59PDQ70Yc3OwFmbgh9gG3HBlJHuNCzysfBwcToEkmd3qqHgK5hXL984KWTKc1IVYbAwxdvNOxUWlLDIGwGPDTir07q97T-1Hibb_NExN-8zs8n9-4RVyaQSY9PkwI66SM6G5Ri7-Rjt4nXx_t38wf0b36s719Zr6lMRB20iXYZmoBrofX7_h9ubhWtPWGE6gpl-3SHrpQ0dN4ymG3zztMFyPBE-0B9tAmyGpnAISpoDvP9X9Eh4Fqqc28Xh-oamACd-VKJoCRZKPoXryBvk4e_lh71U2tmfInAC_KlNTr8F_9t54wDjgSgvJDedlHlgU3EltpJqCWozTJXMqghsO-NIzZll0CkRvkp2mbcItQpV0XLvIC26iCDI31vKS28CtDUErMSGPN0qq3Mhdji00jqv0D13oCoe6SkM9IQ-3squBseOPUi9Q11sJZNlOJ9ruqBoXbZVbqwTLg4x5AKBZ6gD4iTPlHJ-KqOWEPEn6_8t7qveLgyId3f4X4Qfk_GJ_Vr19PX9zh1woAEgNmeJ3yc6668M9cs59Xtcn3f00438CazcHDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MDGN%3A+Circuit+design+of+memristor%E2%80%90based+denoising+autoencoder+and+gated+recurrent+unit+network+for+lithium%E2%80%90ion+battery+state+of+charge+estimation&rft.jtitle=IET+renewable+power+generation&rft.au=Jiayang+Wang&rft.au=Xinghao+Zhang&rft.au=Yifeng+Han&rft.au=Chun+Sing+Lai&rft.date=2024-02-01&rft.pub=Wiley&rft.issn=1752-1416&rft.eissn=1752-1424&rft.volume=18&rft.issue=3&rft.spage=372&rft.epage=383&rft_id=info:doi/10.1049%2Frpg2.12809&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0bb6410e5f0e45679e819316cc384f95
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1752-1416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1752-1416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1752-1416&client=summon