OsaMOT: Occlusion and scale‐aware multi‐object tracking algorithm for low viewpoint
Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint...
Gespeichert in:
| Veröffentlicht in: | IET image processing Jg. 16; H. 2; S. 622 - 640 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.02.2022
|
| ISSN: | 1751-9659, 1751-9667 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved. |
|---|---|
| AbstractList | Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved. Abstract Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved. |
| Author | He, Kangjian Yue, Yingying Zhang, Hao Shi, Hongzhen Xu, Dan |
| Author_xml | – sequence: 1 givenname: Yingying orcidid: 0000-0002-0099-4901 surname: Yue fullname: Yue, Yingying organization: Yuxi Normal University – sequence: 2 givenname: Dan surname: Xu fullname: Xu, Dan email: danxu@ynu.edu.cn organization: Yunnan University – sequence: 3 givenname: Kangjian surname: He fullname: He, Kangjian organization: Yunnan University – sequence: 4 givenname: Hongzhen surname: Shi fullname: Shi, Hongzhen organization: Yunnan University – sequence: 5 givenname: Hao orcidid: 0000-0002-0404-6941 surname: Zhang fullname: Zhang, Hao organization: Yunnan University |
| BookMark | eNp9kM1KAzEUhYNUsFY3PkHWQjWZSZqMOxF_CpWKVFyGm0xSU9NJyYyW7nwEn9EncdqqCxFX94dzPu49-6hTxcoidETJCSWsOPWLlJ3QLBdyB3Wp4LRfDAai89PzYg_t1_WMEF4QybvocVzD7XhyhsfGhJfaxwpDVeLaQLAfb--whGTx_CU0vp2inlnT4CaBefbVFEOYxuSbpzl2MeEQl_jV2-Ui-qo5QLsOQm0Pv2oPPVxdTi5u-qPx9fDifNQ3jDLZF5pIwSx1XFtjmC5FnoMFyAsjCbED0CUHIYgzwITTgoGWkBkGhkmtqct7aLjllhFmapH8HNJKRfBqs4hpqiA13gSrWGacgBbqQDJHOLQsLkoqyozwTK5ZZMsyKdZ1sk4Z30DTZtJ-7IOiRK1DVuuQ1Sbk1nL8y_J9wp9iuhUvfbCrf5RqeHefbT2fBwWTIg |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2024_3481425 crossref_primary_10_1007_s11760_024_03547_w crossref_primary_10_1049_ipr2_12874 crossref_primary_10_1109_JSEN_2023_3303691 |
| Cites_doi | 10.1109/CVPR.2011.5995395 10.1016/j.ins.2020.10.002 10.1007/978-3-030-58621-8_7 10.1109/ICCV.2019.00409 10.1007/978-3-642-33783-3_8 10.1109/CVPR.2008.4587584 10.1109/ICCV.2017.518 10.1109/CVPR46437.2021.00943 10.1109/CVPR.2012.6247879 10.1049/iet-ipr.2019.0827 10.24963/ijcai.2020/74 10.1109/CVPR42600.2020.00634 10.1109/CVPR.2017.143 10.1109/CVPR.2014.159 10.1109/CVPR.2016.100 10.1007/s00371-020-01854-0 10.1109/ICIP.2017.8296962 10.1109/LSP.2019.2940922 10.1109/TPAMI.2011.21 10.1109/TPAMI.2014.2300479 10.1109/CVPR42600.2020.00682 10.1109/ICCV.2015.169 10.1109/ICCV.2019.00103 10.1109/TPAMI.2013.103 10.1007/978-3-319-48881-3_8 10.1007/978-3-642-33709-3_25 10.1145/3343031.3350853 10.1109/CVPR42600.2020.00628 10.1109/CVPR46437.2021.01081 10.1007/978-3-030-66823-5_29 10.1016/j.patcog.2014.12.004 10.1109/CVPR.2011.5995604 10.1109/WACV.2019.00023 10.1109/CVPR.2016.90 10.1109/ICIP.2016.7533003 10.1007/s11263-013-0664-6 10.1109/TPAMI.2016.2577031 10.1109/TIP.2020.2993073 10.1109/CVPR.2015.7299138 10.1007/s11263-016-0890-9 10.1109/CVPR.2015.7299036 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.12378 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 640 |
| ExternalDocumentID | oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f 10_1049_ipr2_12378 IPR212378 |
| Genre | article |
| GrantInformation_xml | – fundername: Yunnan Province Ten Thousand Talents Program and Yunling Scholars Special Project funderid: YNWR‐YLXZ‐2018‐022 – fundername: the joint fund of Yunnan Science Foundation and the “Double First Class” Construction of Yunnan University – fundername: Yunnan Science Foundation and the “Double First Class” Construction of Yunnan University funderid: 2019FY003012 – fundername: National Natural Science Foundation of China funderid: 61540062; 62162068; 61761046 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 4.4 5GY 6IK 8FE 8FG 8VB AAHHS AAHJG AAJGR ABJCF ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU CS3 DU5 EBS EJD ESX GROUPED_DOAJ HCIFZ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ O9- OCL OK1 P2P P62 PTHSS QWB RIE RNS ROL RUI S0W ZL0 AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4148-7b0874e1f5becc4bd733aeaa39c800e6abd5a770fca47fb74ab8a2c4ac48bb1f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Mon Nov 10 04:32:30 EST 2025 Wed Oct 29 21:14:20 EDT 2025 Tue Nov 18 20:39:34 EST 2025 Wed Jan 22 16:27:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4148-7b0874e1f5becc4bd733aeaa39c800e6abd5a770fca47fb74ab8a2c4ac48bb1f3 |
| ORCID | 0000-0002-0404-6941 0000-0002-0099-4901 |
| OpenAccessLink | https://doaj.org/article/42cf7a0e6fa84f05aab857d17d20528f |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f crossref_citationtrail_10_1049_ipr2_12378 crossref_primary_10_1049_ipr2_12378 wiley_primary_10_1049_ipr2_12378_IPR212378 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2022 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2015; 48 2021; 37 2012 2011 2017; 39 2021 2020 2019; 26 2008 2019 2014; 36 2011; 33 2018 2017 2020; 14 2016 2015 2020; 34 2014 2021; 561 2014; 110 2016; 120 2020; 29 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_12_1 Redmon J. (e_1_2_9_33_1) 2018 Han S. (e_1_2_9_39_1) 2020 e_1_2_9_14_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 Wang G. (e_1_2_9_46_1) 2021 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_15_1 e_1_2_9_38_1 Tokmakov P. (e_1_2_9_45_1) 2021 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 Milan A. (e_1_2_9_31_1) 2016 e_1_2_9_42_1 Chu Q. (e_1_2_9_51_1) 2020; 34 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – year: 2016 article-title: MOT16: A benchmark for multi‐object tracking publication-title: arXiv preprint arXiv:1603.00831 – year: 2021 article-title: Learning to track with object permanence publication-title: arXiv preprint arXiv:2103.14258 – volume: 14 start-page: 1701 issue: 9 year: 2020 end-page: 1709 article-title: Collaborative model tracking with robust occlusion handling publication-title: IET Image Process. – start-page: 1273 year: 2011 end-page: 1280 article-title: Multi‐object tracking as maximum weight independent set – volume: 36 start-page: 58 issue: 1 year: 2014 end-page: 72 article-title: Continuous energy minimization for multi‐target tracking publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 3464 year: 2016 end-page: 3468 article-title: Simple online and realtime tracking – start-page: 161 year: 2019 end-page: 170 article-title: Online multi‐object tracking with instance‐aware tracker and dynamic model refreshment – volume: 37 start-page: 1089 year: 2021 end-page: 1099 article-title: Online multi‐object tracking with pedestrian re‐identification and occlusion processing publication-title: Visual Comput. – start-page: 1218 year: 2014 end-page: 1225 article-title: Robust online multi‐object tracking based on tracklet confidence and online discriminative appearance learning – start-page: 100 year: 2016 end-page: 111 article-title: Multi‐person tracking by multicut and deep matching – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 article-title: Faster r‐cnn: Towards real‐time object detection with region proposal networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – start-page: 1201 year: 2011 end-page: 1208 article-title: Globally‐optimal greedy algorithms for tracking a variable number of objects – start-page: 4091 year: 2015 end-page: 4099 article-title: Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking – start-page: 3645 year: 2017 end-page: 3649 article-title: Simple online and realtime tracking with a deep association metric – start-page: 4836 year: 2017 end-page: 4845 article-title: Online multi‐object tracking using CNN‐based single object tracker with spatial‐temporal attention mechanism – volume: 33 start-page: 1806 issue: 9 year: 2011 end-page: 1819 article-title: Multiple object tracking using k‐shortest paths optimization publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2008 end-page: 8 article-title: Global data association for multi‐object tracking using network flows – start-page: 1440 year: 2015 end-page: 1448 article-title: Fast r‐cnn – volume: 120 start-page: 14 issue: 1 year: 2016 end-page: 27 article-title: Learning mutual visibility relationship for pedestrian detection with a deep model publication-title: Int. J. Comput. Vision – start-page: 100 year: 2012 end-page: 114 article-title: 2 T: Multiple people multiple parts tracker – start-page: 10958 year: 2021 end-page: 10967 article-title: Improving multiple pedestrian tracking by track management and occlusion handling – start-page: 1815 year: 2012 end-page: 1821 article-title: Part‐based multiple‐person tracking with partial occlusion handling – start-page: 1273 year: 2011 end-page: 1280 article-title: Multiobject tracking as maximum weight independent set – start-page: 482 year: 2019 end-page: 490 article-title: Exploit the connectivity: Multi‐object tracking with trackletnet – volume: 26 start-page: 1613 issue: 11 year: 2019 end-page: 1617 article-title: Aggregate tracklet appearance features for multi‐object tracking publication-title: IEEE Signal Process. Lett. – start-page: 530 year: 2020 end-page: 536 article-title: GSM: Graph similarity model for multi‐object tracking – start-page: 7291 year: 2017 end-page: 7299 article-title: Realtime multi‐person 2d pose estimation using part affinity fields – start-page: 9553 year: 2021 end-page: 9562 article-title: Discriminative appearance modeling with multi‐track pooling for real‐time multi‐object tracking – year: 2019 – start-page: 941 year: 2019 end-page: 951 article-title: Tracking without bells and whistles – start-page: 3988 year: 2019 article-title: Spatial‐temporal relation networks for multi‐object tracking – start-page: 5033 year: 2015 end-page: 5041 article-title: Subgraph decomposition for multi‐target tracking – start-page: 864 year: 2016 end-page: 873 article-title: Factors in finetuning deep model for object detection with long‐tail distribution – year: 2021 article-title: Split and connect: A universal tracklet booster for multi‐object tracking publication-title: In arXiv preprint arXiv:2105.02426 – volume: 110 start-page: 58 issue: 1 year: 2014 end-page: 69 article-title: Detection and tracking of occluded people publication-title: Int. J. Comput. Vision – start-page: 343 year: 2012 end-page: 356 article-title: Gmcp‐tracker: Global multi‐object tracking using generalized minimum clique graphs – start-page: 1201 year: 2011 end-page: 1208 article-title: Globally optimal greedy algorithm for tracking a variable number of objects – start-page: 6308 year: 2020 end-page: 6318 article-title: Tubetk: Adopting tubes to track multi‐object in a one‐step training model – volume: 29 start-page: 6694 year: 2020 end-page: 6706 article-title: Long‐term tracking with deep tracklet association publication-title: IEEE Trans. Image Process. – start-page: 485 year: 2020 end-page: 499 article-title: Motion prediction for first‐person vision multi‐object tracking – volume: 561 start-page: 326 year: 2021 end-page: 351 article-title: Online multiple pedestrians tracking using deep temporal appearance matching association publication-title: Inf. Sci. – start-page: 6787 year: 2020 end-page: 6796 article-title: How to train your deep multi‐object tracker – volume: 36 start-page: 1532 issue: 8 year: 2014 end-page: 1545 article-title: Fast feature pyramids for object detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 34 start-page: 10672 issue: 07 year: 2020 end-page: 10679 article-title: Dasot: A unified framework integrating data association and single object tracking for online multi‐object tracking publication-title: Proc. AAAI Conf. Artif. Intell – start-page: 107 year: 2020 end-page: 122 article-title: Towards real‐time multi‐object tracking – start-page: 6247 year: 2020 end-page: 6257 article-title: Learning a neural solver for multiple object tracking – volume: 48 start-page: 1760 issue: 5 year: 2015 end-page: 1772 article-title: Robust multiple cameras pedestrian detection with multi‐view bayesian network publication-title: Pattern Recognit. – year: 2018 article-title: YOLOv3: An incremental improvement publication-title: arXiv e‐prints – year: 2020 article-title: Mat: Motion‐aware multi‐object tracking publication-title: arXiv preprint arXiv:2009.04794 – volume: 34 start-page: 10672 issue: 07 year: 2020 ident: e_1_2_9_51_1 article-title: Dasot: A unified framework integrating data association and single object tracking for online multi‐object tracking publication-title: Proc. AAAI Conf. Artif. Intell – ident: e_1_2_9_15_1 doi: 10.1109/CVPR.2011.5995395 – ident: e_1_2_9_8_1 doi: 10.1109/CVPR.2011.5995395 – year: 2018 ident: e_1_2_9_33_1 article-title: YOLOv3: An incremental improvement publication-title: arXiv e‐prints – ident: e_1_2_9_50_1 doi: 10.1016/j.ins.2020.10.002 – ident: e_1_2_9_34_1 doi: 10.1007/978-3-030-58621-8_7 – ident: e_1_2_9_28_1 doi: 10.1109/ICCV.2019.00409 – ident: e_1_2_9_21_1 doi: 10.1007/978-3-642-33783-3_8 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2008.4587584 – ident: e_1_2_9_26_1 doi: 10.1109/ICCV.2017.518 – ident: e_1_2_9_29_1 doi: 10.1109/CVPR46437.2021.00943 – ident: e_1_2_9_23_1 doi: 10.1109/CVPR.2012.6247879 – ident: e_1_2_9_35_1 – ident: e_1_2_9_47_1 doi: 10.1049/iet-ipr.2019.0827 – ident: e_1_2_9_40_1 doi: 10.24963/ijcai.2020/74 – year: 2021 ident: e_1_2_9_45_1 article-title: Learning to track with object permanence publication-title: arXiv preprint arXiv:2103.14258 – year: 2021 ident: e_1_2_9_46_1 article-title: Split and connect: A universal tracklet booster for multi‐object tracking publication-title: In arXiv preprint arXiv:2105.02426 – year: 2020 ident: e_1_2_9_39_1 article-title: Mat: Motion‐aware multi‐object tracking publication-title: arXiv preprint arXiv:2009.04794 – ident: e_1_2_9_41_1 doi: 10.1109/CVPR42600.2020.00634 – ident: e_1_2_9_5_1 doi: 10.1109/CVPR.2017.143 – ident: e_1_2_9_20_1 doi: 10.1109/CVPR.2014.159 – ident: e_1_2_9_10_1 doi: 10.1109/CVPR.2016.100 – ident: e_1_2_9_48_1 doi: 10.1007/s00371-020-01854-0 – ident: e_1_2_9_25_1 doi: 10.1109/ICIP.2017.8296962 – ident: e_1_2_9_27_1 doi: 10.1109/LSP.2019.2940922 – ident: e_1_2_9_7_1 doi: 10.1109/TPAMI.2011.21 – ident: e_1_2_9_2_1 doi: 10.1109/TPAMI.2014.2300479 – ident: e_1_2_9_42_1 doi: 10.1109/CVPR42600.2020.00682 – ident: e_1_2_9_9_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_2_9_37_1 doi: 10.1109/ICCV.2019.00103 – ident: e_1_2_9_14_1 doi: 10.1109/TPAMI.2013.103 – ident: e_1_2_9_19_1 doi: 10.1007/978-3-319-48881-3_8 – ident: e_1_2_9_16_1 doi: 10.1007/978-3-642-33709-3_25 – ident: e_1_2_9_36_1 doi: 10.1145/3343031.3350853 – ident: e_1_2_9_38_1 doi: 10.1109/CVPR42600.2020.00628 – year: 2016 ident: e_1_2_9_31_1 article-title: MOT16: A benchmark for multi‐object tracking publication-title: arXiv preprint arXiv:1603.00831 – ident: e_1_2_9_44_1 doi: 10.1109/CVPR46437.2021.01081 – ident: e_1_2_9_49_1 doi: 10.1007/978-3-030-66823-5_29 – ident: e_1_2_9_4_1 doi: 10.1016/j.patcog.2014.12.004 – ident: e_1_2_9_12_1 doi: 10.1109/CVPR.2011.5995604 – ident: e_1_2_9_30_1 doi: 10.1109/WACV.2019.00023 – ident: e_1_2_9_32_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_24_1 doi: 10.1109/ICIP.2016.7533003 – ident: e_1_2_9_22_1 doi: 10.1007/s11263-013-0664-6 – ident: e_1_2_9_3_1 doi: 10.1109/TPAMI.2016.2577031 – ident: e_1_2_9_43_1 doi: 10.1109/TIP.2020.2993073 – ident: e_1_2_9_18_1 doi: 10.1109/CVPR.2015.7299138 – ident: e_1_2_9_11_1 doi: 10.1007/s11263-016-0890-9 – ident: e_1_2_9_6_1 doi: 10.1109/CVPR.2011.5995604 – ident: e_1_2_9_17_1 doi: 10.1109/CVPR.2015.7299036 |
| SSID | ssj0059085 |
| Score | 2.2614517 |
| Snippet | Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets... Abstract Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 622 |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VwoELLQXEUoos0UuRArHjxAniUhBVe6C7qoroLRpP7HalJVll0_baR-AZeRJsJ7uoEqpUcUuiiRLPnz-PPTMAu8JNCQ7ma7cssTKS3PIoN4Ii66CzA9iKeNI3m1DHx_nZWTFZg0_LXJi-PsQq4OYtI_hrb-Co-y4kDtQ6IU7nrXjv_K7KH8BDzhPldVrIydIP-2beaUiH9I3ks7RYFieVxYe_796ajkLV_tsoNUwzBxv_94Ob8GSAl2y_14ensGbqLdgYoCYbDHnxDH6MF_htfPqRjYlmlz5ixrCu2MJJzPy--YXX2BoWDhu6u0b7YA3rWiQfWGc4O2_aaXfxkznEy2bNNfP7C_NmWnfP4fvB19Mvh9HQYyEi6WOJSse5kobb1AtT6kolCRrEpCAHJU2GukpRqdgSSmW1kqhzFCSRZK41t8kLWK-b2rwEZjiqrDCSEjIyiy1WOjFZJTSSWySmNIK9JatLGgqQ-z4YszJshMui9BwrA8dG8HZFO-_LbvyT6rOX2IrCl8oOD5r2vBwsr5SCrEI3FIu5tHGKbgSpqriqRJyK3I7gXZDiHd8pjyYnIly9ug_xNjwWPlkinPF-Detde2l24BFdddNF-yYo6x_1d-8- priority: 102 providerName: Wiley-Blackwell |
| Title | OsaMOT: Occlusion and scale‐aware multi‐object tracking algorithm for low viewpoint |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12378 https://doaj.org/article/42cf7a0e6fa84f05aab857d17d20528f |
| Volume | 16 |
| WOSCitedRecordID | wos000722243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4qHrzo-gtnXSWgF4Vqm6ZNuzcVRQ_ODKLorby8Jjow2w6dqlf_hP0b9y_ZJO0MI4hevJQ2BFK-17735SV5HyH7zIQEQ_OlmZZo7vFAB16iGHraUGdDsAUGYSM2Ibrd5OEh7c9Ifdk9YU154Aa4Y85QC_BVrCHh2o8AZBKJPBA58yOWaOt9fZFOJlOND7ZC3pE7CmlF5OMonRQm5enxYFSxI-OvrbDaTChyFfvfM1QXYi5-kOWWG9KT5p1WyZwq1shKyxNp-xeO18l9bwzXvdvftIc4fLbpLgpFTscGbvXv7S-8QqWo2ylonkppMy20rgBtVpzC8LGsBvXTH2roKh2Wr9QuDozKQVFvkLuL89uzS68VSPCQ20SgkH4iuAp0ZC3BZS7CEBRAmKLhgSoGmUcghK8RuNBScIMdMOSAPJEy0OEmWSjKQm0RqgIQcao4hqh47GvIZajinElAM8OLsEMOJlhl2FYPtyIWw8ytYvM0s7hmDtcO2Zv2HTU1Mz7sdWohn_awda5dg7F-1lo_-8r6HXLoDPbJONlV_4a5u5_fMeI2WWL2BITbuP2LLNTVs9ohi_hSD8bVLplnvL_rvkVzvb_q_gdl8eUy |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagINEL5a_qUgqW4AJSaOJM4qQ3iqha0e6u0CJ6i8aO3a60JKtsSq99hD5jn6QeJ7uoEkJC3JJoosQej-fzePwNY--EcwkO5iu3LLEQQGSjIDNCB9ZBZwewpY7irtiEHA6z09N83Ofm0FmYjh9iFXAjy_DzNRk4BaS7BScQSeZ03oiPbuKV2X32AJxboow-AePlREzVvBN_HpIqyadJvmQnhXz397t3_JGn7b8LU72fOdj4zz98wh73AJN_6kbEU3bPVM_YRg82eW_Ki-fsx2iBJ6PJHh9pPbugmBnHquQLpzNzc3WNl9gY7tMN3V2tKFzD2wY1hdY5zs7qZtqe_-QO8_JZfclph2FeT6v2Bft-8GXy-TDoqywEGiiaKFWYSTCRTUidoEoZx2gQ41w7MGlSVGWCUoZWI0irJKDKUGhADZlSkY032VpVV2aLcROhTHMDOtYG0tBiqWKTlkKhdsvERA_Y-2VfF7qnIKdKGLPCb4VDXlCPFb7HBuztSnbeEW_8UWqfVLaSILJs_6Buzore9goQ2kp0TbGYgQ0TdC1IZBnJUoSJyOyAffBq_Mt3iqPxN-GvXv6L8Bv26HByclwcHw2_brN1QUcnfMb3K7bWNhdmhz3Uv9rponntR-4tI13zIg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagIMSF8lexhYIluIAUmjjjOOFGgRUVsLtCRfQWjR27XWmbrLIpvfIIPCNPgsfJLqqEkBC3JJoosccz_jz2fMPYM-GnBA_ztV-WOIggcUmUW2Ei56GzB9jKJGlfbEJNJvnxcTEbzuZQLkzPD7EJuJFlBH9NBm6XlesXnEAkmfNlK156x6vyq-waSBXsUsBs7YipmrcM-ZBUST6TxZqdFIr93-9emo8Cbf9lmBrmmfH2f_7hbXZrAJj8dT8i7rArtr7LtgewyQdTXt1jX6cr_DQ9esWnxizOKWbGsa74yuvM_vz-Ay-wtTwcN_R3jaZwDe9aNBRa57g4adp5d3rGPebli-aC0w7DspnX3X32Zfzu6M37aKiyEBmgaKLSca7AJk6SOkFXKk3RIqaF8WDSZqgriUrFziAopxWgzlEYQAO51olLd9hW3dT2AeM2QZUVFkxqLGSxw0qnNquERuOXidKM2PN1X5dmoCCnShiLMmyFQ1FSj5Whx0bs6UZ22RNv_FHqgFS2kSCy7PCgaU_KwfZKEMYp9E1xmIOLJfoWSFUlqhKxFLkbsRdBjX_5Tnk4-yzC1e6_CD9hN2Zvx-XHw8mHh-ymoMyJcOD7Edvq2nO7x66bb9181T4OA_cXwfHynQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsaMOT%3A+Occlusion+and+scale%E2%80%90aware+multi%E2%80%90object+tracking+algorithm+for+low+viewpoint&rft.jtitle=IET+image+processing&rft.au=Yingying+Yue&rft.au=Dan+Xu&rft.au=Kangjian+He&rft.au=Hongzhen+Shi&rft.date=2022-02-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=2&rft.spage=622&rft.epage=640&rft_id=info:doi/10.1049%2Fipr2.12378&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |