OsaMOT: Occlusion and scale‐aware multi‐object tracking algorithm for low viewpoint

Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET image processing Jg. 16; H. 2; S. 622 - 640
Hauptverfasser: Yue, Yingying, Xu, Dan, He, Kangjian, Shi, Hongzhen, Zhang, Hao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.02.2022
ISSN:1751-9659, 1751-9667
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved.
AbstractList Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved.
Abstract Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets in each frame, is key technology in the field of computer vision. To address the problems of occlusion and scale variation in low‐viewpoint MOT, OsaMOT is proposed here. First, according to the global occlusion state of each frame, OsaMOT proposes the adaptive anti‐occlusion feature to enhance the awareness and adaptability for occlusion. At the same time, OsaMOT uses the cascade screening mechanism to reduce the “virtual new target” phenomenon due to the dramatic change in target features caused by scale variation and occlusion. Finally, considering that the occluded templates will affect the tracking performance, OsaMOT proposes an adaptive anti‐noise template update mechanism according to the partial occlusion state of the target, which improves the purity of the template library and further enhances the applicability to occlusion. The experimental results show that OsaMOT can weaken the influence of scale variation, partial occlusion, short‐term full occlusion and long‐term full occlusion in the low‐viewpoint tracking scenes. Most evaluation indexes of OsaMOT under low‐viewpoint tracking scenario are superior to those of some typical algorithms proposed in recent years, and the tracking robustness is improved.
Author He, Kangjian
Yue, Yingying
Zhang, Hao
Shi, Hongzhen
Xu, Dan
Author_xml – sequence: 1
  givenname: Yingying
  orcidid: 0000-0002-0099-4901
  surname: Yue
  fullname: Yue, Yingying
  organization: Yuxi Normal University
– sequence: 2
  givenname: Dan
  surname: Xu
  fullname: Xu, Dan
  email: danxu@ynu.edu.cn
  organization: Yunnan University
– sequence: 3
  givenname: Kangjian
  surname: He
  fullname: He, Kangjian
  organization: Yunnan University
– sequence: 4
  givenname: Hongzhen
  surname: Shi
  fullname: Shi, Hongzhen
  organization: Yunnan University
– sequence: 5
  givenname: Hao
  orcidid: 0000-0002-0404-6941
  surname: Zhang
  fullname: Zhang, Hao
  organization: Yunnan University
BookMark eNp9kM1KAzEUhYNUsFY3PkHWQjWZSZqMOxF_CpWKVFyGm0xSU9NJyYyW7nwEn9EncdqqCxFX94dzPu49-6hTxcoidETJCSWsOPWLlJ3QLBdyB3Wp4LRfDAai89PzYg_t1_WMEF4QybvocVzD7XhyhsfGhJfaxwpDVeLaQLAfb--whGTx_CU0vp2inlnT4CaBefbVFEOYxuSbpzl2MeEQl_jV2-Ui-qo5QLsOQm0Pv2oPPVxdTi5u-qPx9fDifNQ3jDLZF5pIwSx1XFtjmC5FnoMFyAsjCbED0CUHIYgzwITTgoGWkBkGhkmtqct7aLjllhFmapH8HNJKRfBqs4hpqiA13gSrWGacgBbqQDJHOLQsLkoqyozwTK5ZZMsyKdZ1sk4Z30DTZtJ-7IOiRK1DVuuQ1Sbk1nL8y_J9wp9iuhUvfbCrf5RqeHefbT2fBwWTIg
CitedBy_id crossref_primary_10_1109_TCSVT_2024_3481425
crossref_primary_10_1007_s11760_024_03547_w
crossref_primary_10_1049_ipr2_12874
crossref_primary_10_1109_JSEN_2023_3303691
Cites_doi 10.1109/CVPR.2011.5995395
10.1016/j.ins.2020.10.002
10.1007/978-3-030-58621-8_7
10.1109/ICCV.2019.00409
10.1007/978-3-642-33783-3_8
10.1109/CVPR.2008.4587584
10.1109/ICCV.2017.518
10.1109/CVPR46437.2021.00943
10.1109/CVPR.2012.6247879
10.1049/iet-ipr.2019.0827
10.24963/ijcai.2020/74
10.1109/CVPR42600.2020.00634
10.1109/CVPR.2017.143
10.1109/CVPR.2014.159
10.1109/CVPR.2016.100
10.1007/s00371-020-01854-0
10.1109/ICIP.2017.8296962
10.1109/LSP.2019.2940922
10.1109/TPAMI.2011.21
10.1109/TPAMI.2014.2300479
10.1109/CVPR42600.2020.00682
10.1109/ICCV.2015.169
10.1109/ICCV.2019.00103
10.1109/TPAMI.2013.103
10.1007/978-3-319-48881-3_8
10.1007/978-3-642-33709-3_25
10.1145/3343031.3350853
10.1109/CVPR42600.2020.00628
10.1109/CVPR46437.2021.01081
10.1007/978-3-030-66823-5_29
10.1016/j.patcog.2014.12.004
10.1109/CVPR.2011.5995604
10.1109/WACV.2019.00023
10.1109/CVPR.2016.90
10.1109/ICIP.2016.7533003
10.1007/s11263-013-0664-6
10.1109/TPAMI.2016.2577031
10.1109/TIP.2020.2993073
10.1109/CVPR.2015.7299138
10.1007/s11263-016-0890-9
10.1109/CVPR.2015.7299036
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12378
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 640
ExternalDocumentID oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f
10_1049_ipr2_12378
IPR212378
Genre article
GrantInformation_xml – fundername: Yunnan Province Ten Thousand Talents Program and Yunling Scholars Special Project
  funderid: YNWR‐YLXZ‐2018‐022
– fundername: the joint fund of Yunnan Science Foundation and the “Double First Class” Construction of Yunnan University
– fundername: Yunnan Science Foundation and the “Double First Class” Construction of Yunnan University
  funderid: 2019FY003012
– fundername: National Natural Science Foundation of China
  funderid: 61540062; 62162068; 61761046
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4148-7b0874e1f5becc4bd733aeaa39c800e6abd5a770fca47fb74ab8a2c4ac48bb1f3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000722243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Mon Nov 10 04:32:30 EST 2025
Wed Oct 29 21:14:20 EDT 2025
Tue Nov 18 20:39:34 EST 2025
Wed Jan 22 16:27:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4148-7b0874e1f5becc4bd733aeaa39c800e6abd5a770fca47fb74ab8a2c4ac48bb1f3
ORCID 0000-0002-0404-6941
0000-0002-0099-4901
OpenAccessLink https://doaj.org/article/42cf7a0e6fa84f05aab857d17d20528f
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f
crossref_citationtrail_10_1049_ipr2_12378
crossref_primary_10_1049_ipr2_12378
wiley_primary_10_1049_ipr2_12378_IPR212378
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2015; 48
2021; 37
2012
2011
2017; 39
2021
2020
2019; 26
2008
2019
2014; 36
2011; 33
2018
2017
2020; 14
2016
2015
2020; 34
2014
2021; 561
2014; 110
2016; 120
2020; 29
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_12_1
Redmon J. (e_1_2_9_33_1) 2018
Han S. (e_1_2_9_39_1) 2020
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
Wang G. (e_1_2_9_46_1) 2021
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_15_1
e_1_2_9_38_1
Tokmakov P. (e_1_2_9_45_1) 2021
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
Milan A. (e_1_2_9_31_1) 2016
e_1_2_9_42_1
Chu Q. (e_1_2_9_51_1) 2020; 34
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – year: 2016
  article-title: MOT16: A benchmark for multi‐object tracking
  publication-title: arXiv preprint arXiv:1603.00831
– year: 2021
  article-title: Learning to track with object permanence
  publication-title: arXiv preprint arXiv:2103.14258
– volume: 14
  start-page: 1701
  issue: 9
  year: 2020
  end-page: 1709
  article-title: Collaborative model tracking with robust occlusion handling
  publication-title: IET Image Process.
– start-page: 1273
  year: 2011
  end-page: 1280
  article-title: Multi‐object tracking as maximum weight independent set
– volume: 36
  start-page: 58
  issue: 1
  year: 2014
  end-page: 72
  article-title: Continuous energy minimization for multi‐target tracking
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 3464
  year: 2016
  end-page: 3468
  article-title: Simple online and realtime tracking
– start-page: 161
  year: 2019
  end-page: 170
  article-title: Online multi‐object tracking with instance‐aware tracker and dynamic model refreshment
– volume: 37
  start-page: 1089
  year: 2021
  end-page: 1099
  article-title: Online multi‐object tracking with pedestrian re‐identification and occlusion processing
  publication-title: Visual Comput.
– start-page: 1218
  year: 2014
  end-page: 1225
  article-title: Robust online multi‐object tracking based on tracklet confidence and online discriminative appearance learning
– start-page: 100
  year: 2016
  end-page: 111
  article-title: Multi‐person tracking by multicut and deep matching
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  end-page: 1149
  article-title: Faster r‐cnn: Towards real‐time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– start-page: 1201
  year: 2011
  end-page: 1208
  article-title: Globally‐optimal greedy algorithms for tracking a variable number of objects
– start-page: 4091
  year: 2015
  end-page: 4099
  article-title: Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking
– start-page: 3645
  year: 2017
  end-page: 3649
  article-title: Simple online and realtime tracking with a deep association metric
– start-page: 4836
  year: 2017
  end-page: 4845
  article-title: Online multi‐object tracking using CNN‐based single object tracker with spatial‐temporal attention mechanism
– volume: 33
  start-page: 1806
  issue: 9
  year: 2011
  end-page: 1819
  article-title: Multiple object tracking using k‐shortest paths optimization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2008
  end-page: 8
  article-title: Global data association for multi‐object tracking using network flows
– start-page: 1440
  year: 2015
  end-page: 1448
  article-title: Fast r‐cnn
– volume: 120
  start-page: 14
  issue: 1
  year: 2016
  end-page: 27
  article-title: Learning mutual visibility relationship for pedestrian detection with a deep model
  publication-title: Int. J. Comput. Vision
– start-page: 100
  year: 2012
  end-page: 114
  article-title: 2 T: Multiple people multiple parts tracker
– start-page: 10958
  year: 2021
  end-page: 10967
  article-title: Improving multiple pedestrian tracking by track management and occlusion handling
– start-page: 1815
  year: 2012
  end-page: 1821
  article-title: Part‐based multiple‐person tracking with partial occlusion handling
– start-page: 1273
  year: 2011
  end-page: 1280
  article-title: Multiobject tracking as maximum weight independent set
– start-page: 482
  year: 2019
  end-page: 490
  article-title: Exploit the connectivity: Multi‐object tracking with trackletnet
– volume: 26
  start-page: 1613
  issue: 11
  year: 2019
  end-page: 1617
  article-title: Aggregate tracklet appearance features for multi‐object tracking
  publication-title: IEEE Signal Process. Lett.
– start-page: 530
  year: 2020
  end-page: 536
  article-title: GSM: Graph similarity model for multi‐object tracking
– start-page: 7291
  year: 2017
  end-page: 7299
  article-title: Realtime multi‐person 2d pose estimation using part affinity fields
– start-page: 9553
  year: 2021
  end-page: 9562
  article-title: Discriminative appearance modeling with multi‐track pooling for real‐time multi‐object tracking
– year: 2019
– start-page: 941
  year: 2019
  end-page: 951
  article-title: Tracking without bells and whistles
– start-page: 3988
  year: 2019
  article-title: Spatial‐temporal relation networks for multi‐object tracking
– start-page: 5033
  year: 2015
  end-page: 5041
  article-title: Subgraph decomposition for multi‐target tracking
– start-page: 864
  year: 2016
  end-page: 873
  article-title: Factors in finetuning deep model for object detection with long‐tail distribution
– year: 2021
  article-title: Split and connect: A universal tracklet booster for multi‐object tracking
  publication-title: In arXiv preprint arXiv:2105.02426
– volume: 110
  start-page: 58
  issue: 1
  year: 2014
  end-page: 69
  article-title: Detection and tracking of occluded people
  publication-title: Int. J. Comput. Vision
– start-page: 343
  year: 2012
  end-page: 356
  article-title: Gmcp‐tracker: Global multi‐object tracking using generalized minimum clique graphs
– start-page: 1201
  year: 2011
  end-page: 1208
  article-title: Globally optimal greedy algorithm for tracking a variable number of objects
– start-page: 6308
  year: 2020
  end-page: 6318
  article-title: Tubetk: Adopting tubes to track multi‐object in a one‐step training model
– volume: 29
  start-page: 6694
  year: 2020
  end-page: 6706
  article-title: Long‐term tracking with deep tracklet association
  publication-title: IEEE Trans. Image Process.
– start-page: 485
  year: 2020
  end-page: 499
  article-title: Motion prediction for first‐person vision multi‐object tracking
– volume: 561
  start-page: 326
  year: 2021
  end-page: 351
  article-title: Online multiple pedestrians tracking using deep temporal appearance matching association
  publication-title: Inf. Sci.
– start-page: 6787
  year: 2020
  end-page: 6796
  article-title: How to train your deep multi‐object tracker
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  end-page: 1545
  article-title: Fast feature pyramids for object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 34
  start-page: 10672
  issue: 07
  year: 2020
  end-page: 10679
  article-title: Dasot: A unified framework integrating data association and single object tracking for online multi‐object tracking
  publication-title: Proc. AAAI Conf. Artif. Intell
– start-page: 107
  year: 2020
  end-page: 122
  article-title: Towards real‐time multi‐object tracking
– start-page: 6247
  year: 2020
  end-page: 6257
  article-title: Learning a neural solver for multiple object tracking
– volume: 48
  start-page: 1760
  issue: 5
  year: 2015
  end-page: 1772
  article-title: Robust multiple cameras pedestrian detection with multi‐view bayesian network
  publication-title: Pattern Recognit.
– year: 2018
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv e‐prints
– year: 2020
  article-title: Mat: Motion‐aware multi‐object tracking
  publication-title: arXiv preprint arXiv:2009.04794
– volume: 34
  start-page: 10672
  issue: 07
  year: 2020
  ident: e_1_2_9_51_1
  article-title: Dasot: A unified framework integrating data association and single object tracking for online multi‐object tracking
  publication-title: Proc. AAAI Conf. Artif. Intell
– ident: e_1_2_9_15_1
  doi: 10.1109/CVPR.2011.5995395
– ident: e_1_2_9_8_1
  doi: 10.1109/CVPR.2011.5995395
– year: 2018
  ident: e_1_2_9_33_1
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv e‐prints
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ins.2020.10.002
– ident: e_1_2_9_34_1
  doi: 10.1007/978-3-030-58621-8_7
– ident: e_1_2_9_28_1
  doi: 10.1109/ICCV.2019.00409
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-642-33783-3_8
– ident: e_1_2_9_13_1
  doi: 10.1109/CVPR.2008.4587584
– ident: e_1_2_9_26_1
  doi: 10.1109/ICCV.2017.518
– ident: e_1_2_9_29_1
  doi: 10.1109/CVPR46437.2021.00943
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2012.6247879
– ident: e_1_2_9_35_1
– ident: e_1_2_9_47_1
  doi: 10.1049/iet-ipr.2019.0827
– ident: e_1_2_9_40_1
  doi: 10.24963/ijcai.2020/74
– year: 2021
  ident: e_1_2_9_45_1
  article-title: Learning to track with object permanence
  publication-title: arXiv preprint arXiv:2103.14258
– year: 2021
  ident: e_1_2_9_46_1
  article-title: Split and connect: A universal tracklet booster for multi‐object tracking
  publication-title: In arXiv preprint arXiv:2105.02426
– year: 2020
  ident: e_1_2_9_39_1
  article-title: Mat: Motion‐aware multi‐object tracking
  publication-title: arXiv preprint arXiv:2009.04794
– ident: e_1_2_9_41_1
  doi: 10.1109/CVPR42600.2020.00634
– ident: e_1_2_9_5_1
  doi: 10.1109/CVPR.2017.143
– ident: e_1_2_9_20_1
  doi: 10.1109/CVPR.2014.159
– ident: e_1_2_9_10_1
  doi: 10.1109/CVPR.2016.100
– ident: e_1_2_9_48_1
  doi: 10.1007/s00371-020-01854-0
– ident: e_1_2_9_25_1
  doi: 10.1109/ICIP.2017.8296962
– ident: e_1_2_9_27_1
  doi: 10.1109/LSP.2019.2940922
– ident: e_1_2_9_7_1
  doi: 10.1109/TPAMI.2011.21
– ident: e_1_2_9_2_1
  doi: 10.1109/TPAMI.2014.2300479
– ident: e_1_2_9_42_1
  doi: 10.1109/CVPR42600.2020.00682
– ident: e_1_2_9_9_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_9_37_1
  doi: 10.1109/ICCV.2019.00103
– ident: e_1_2_9_14_1
  doi: 10.1109/TPAMI.2013.103
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-319-48881-3_8
– ident: e_1_2_9_16_1
  doi: 10.1007/978-3-642-33709-3_25
– ident: e_1_2_9_36_1
  doi: 10.1145/3343031.3350853
– ident: e_1_2_9_38_1
  doi: 10.1109/CVPR42600.2020.00628
– year: 2016
  ident: e_1_2_9_31_1
  article-title: MOT16: A benchmark for multi‐object tracking
  publication-title: arXiv preprint arXiv:1603.00831
– ident: e_1_2_9_44_1
  doi: 10.1109/CVPR46437.2021.01081
– ident: e_1_2_9_49_1
  doi: 10.1007/978-3-030-66823-5_29
– ident: e_1_2_9_4_1
  doi: 10.1016/j.patcog.2014.12.004
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2011.5995604
– ident: e_1_2_9_30_1
  doi: 10.1109/WACV.2019.00023
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_24_1
  doi: 10.1109/ICIP.2016.7533003
– ident: e_1_2_9_22_1
  doi: 10.1007/s11263-013-0664-6
– ident: e_1_2_9_3_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_9_43_1
  doi: 10.1109/TIP.2020.2993073
– ident: e_1_2_9_18_1
  doi: 10.1109/CVPR.2015.7299138
– ident: e_1_2_9_11_1
  doi: 10.1007/s11263-016-0890-9
– ident: e_1_2_9_6_1
  doi: 10.1109/CVPR.2011.5995604
– ident: e_1_2_9_17_1
  doi: 10.1109/CVPR.2015.7299036
SSID ssj0059085
Score 2.2614517
Snippet Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of multiple targets...
Abstract Multi‐object tracking (MOT), which uses the context information of image sequences to locate, maintain identities and generate trajectories of...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 622
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VwoELLQXEUoos0UuRArHjxAniUhBVe6C7qoroLRpP7HalJVll0_baR-AZeRJsJ7uoEqpUcUuiiRLPnz-PPTMAu8JNCQ7ma7cssTKS3PIoN4Ii66CzA9iKeNI3m1DHx_nZWTFZg0_LXJi-PsQq4OYtI_hrb-Co-y4kDtQ6IU7nrXjv_K7KH8BDzhPldVrIydIP-2beaUiH9I3ks7RYFieVxYe_796ajkLV_tsoNUwzBxv_94Ob8GSAl2y_14ensGbqLdgYoCYbDHnxDH6MF_htfPqRjYlmlz5ixrCu2MJJzPy--YXX2BoWDhu6u0b7YA3rWiQfWGc4O2_aaXfxkznEy2bNNfP7C_NmWnfP4fvB19Mvh9HQYyEi6WOJSse5kobb1AtT6kolCRrEpCAHJU2GukpRqdgSSmW1kqhzFCSRZK41t8kLWK-b2rwEZjiqrDCSEjIyiy1WOjFZJTSSWySmNIK9JatLGgqQ-z4YszJshMui9BwrA8dG8HZFO-_LbvyT6rOX2IrCl8oOD5r2vBwsr5SCrEI3FIu5tHGKbgSpqriqRJyK3I7gXZDiHd8pjyYnIly9ug_xNjwWPlkinPF-Detde2l24BFdddNF-yYo6x_1d-8-
  priority: 102
  providerName: Wiley-Blackwell
Title OsaMOT: Occlusion and scale‐aware multi‐object tracking algorithm for low viewpoint
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12378
https://doaj.org/article/42cf7a0e6fa84f05aab857d17d20528f
Volume 16
WOSCitedRecordID wos000722243700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS-QwFA4qHrzo-gtnXSWgF4Vqm6ZNuzcVRQ_ODKLorby8Jjow2w6dqlf_hP0b9y_ZJO0MI4hevJQ2BFK-17735SV5HyH7zIQEQ_OlmZZo7vFAB16iGHraUGdDsAUGYSM2Ibrd5OEh7c9Ifdk9YU154Aa4Y85QC_BVrCHh2o8AZBKJPBA58yOWaOt9fZFOJlOND7ZC3pE7CmlF5OMonRQm5enxYFSxI-OvrbDaTChyFfvfM1QXYi5-kOWWG9KT5p1WyZwq1shKyxNp-xeO18l9bwzXvdvftIc4fLbpLgpFTscGbvXv7S-8QqWo2ylonkppMy20rgBtVpzC8LGsBvXTH2roKh2Wr9QuDozKQVFvkLuL89uzS68VSPCQ20SgkH4iuAp0ZC3BZS7CEBRAmKLhgSoGmUcghK8RuNBScIMdMOSAPJEy0OEmWSjKQm0RqgIQcao4hqh47GvIZajinElAM8OLsEMOJlhl2FYPtyIWw8ytYvM0s7hmDtcO2Zv2HTU1Mz7sdWohn_awda5dg7F-1lo_-8r6HXLoDPbJONlV_4a5u5_fMeI2WWL2BITbuP2LLNTVs9ohi_hSD8bVLplnvL_rvkVzvb_q_gdl8eUy
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagINEL5a_qUgqW4AJSaOJM4qQ3iqha0e6u0CJ6i8aO3a60JKtsSq99hD5jn6QeJ7uoEkJC3JJoosQej-fzePwNY--EcwkO5iu3LLEQQGSjIDNCB9ZBZwewpY7irtiEHA6z09N83Ofm0FmYjh9iFXAjy_DzNRk4BaS7BScQSeZ03oiPbuKV2X32AJxboow-AePlREzVvBN_HpIqyadJvmQnhXz397t3_JGn7b8LU72fOdj4zz98wh73AJN_6kbEU3bPVM_YRg82eW_Ki-fsx2iBJ6PJHh9pPbugmBnHquQLpzNzc3WNl9gY7tMN3V2tKFzD2wY1hdY5zs7qZtqe_-QO8_JZfclph2FeT6v2Bft-8GXy-TDoqywEGiiaKFWYSTCRTUidoEoZx2gQ41w7MGlSVGWCUoZWI0irJKDKUGhADZlSkY032VpVV2aLcROhTHMDOtYG0tBiqWKTlkKhdsvERA_Y-2VfF7qnIKdKGLPCb4VDXlCPFb7HBuztSnbeEW_8UWqfVLaSILJs_6Buzore9goQ2kp0TbGYgQ0TdC1IZBnJUoSJyOyAffBq_Mt3iqPxN-GvXv6L8Bv26HByclwcHw2_brN1QUcnfMb3K7bWNhdmhz3Uv9rponntR-4tI13zIg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagIMSF8lexhYIluIAUmjjjOOFGgRUVsLtCRfQWjR27XWmbrLIpvfIIPCNPgsfJLqqEkBC3JJoosccz_jz2fMPYM-GnBA_ztV-WOIggcUmUW2Ei56GzB9jKJGlfbEJNJvnxcTEbzuZQLkzPD7EJuJFlBH9NBm6XlesXnEAkmfNlK156x6vyq-waSBXsUsBs7YipmrcM-ZBUST6TxZqdFIr93-9emo8Cbf9lmBrmmfH2f_7hbXZrAJj8dT8i7rArtr7LtgewyQdTXt1jX6cr_DQ9esWnxizOKWbGsa74yuvM_vz-Ay-wtTwcN_R3jaZwDe9aNBRa57g4adp5d3rGPebli-aC0w7DspnX3X32Zfzu6M37aKiyEBmgaKLSca7AJk6SOkFXKk3RIqaF8WDSZqgriUrFziAopxWgzlEYQAO51olLd9hW3dT2AeM2QZUVFkxqLGSxw0qnNquERuOXidKM2PN1X5dmoCCnShiLMmyFQ1FSj5Whx0bs6UZ22RNv_FHqgFS2kSCy7PCgaU_KwfZKEMYp9E1xmIOLJfoWSFUlqhKxFLkbsRdBjX_5Tnk4-yzC1e6_CD9hN2Zvx-XHw8mHh-ymoMyJcOD7Edvq2nO7x66bb9181T4OA_cXwfHynQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OsaMOT%3A+Occlusion+and+scale%E2%80%90aware+multi%E2%80%90object+tracking+algorithm+for+low+viewpoint&rft.jtitle=IET+image+processing&rft.au=Yingying+Yue&rft.au=Dan+Xu&rft.au=Kangjian+He&rft.au=Hongzhen+Shi&rft.date=2022-02-01&rft.pub=Wiley&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=16&rft.issue=2&rft.spage=622&rft.epage=640&rft_id=info:doi/10.1049%2Fipr2.12378&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_42cf7a0e6fa84f05aab857d17d20528f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon