An IGDT‐stochastic model for low‐carbon economic dispatch of integrated electricity‐natural gas systems considering grid‐enhancing technologies

Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing technologies, and carbon capture and storage can help to low carbon operation of integrated electricity‐gas systems (IEGSs). Accordingly, this paper pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET generation, transmission & distribution Jg. 18; H. 24; S. 4042 - 4064
Hauptverfasser: Talebi, Amir, Agabalaye‐Rahvar, Masoud, Mohammadi‐Ivatloo, Behnam, Zare, Kazem, Anvari‐Moghaddam, Amjad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.12.2024
Schlagworte:
ISSN:1751-8687, 1751-8695
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing technologies, and carbon capture and storage can help to low carbon operation of integrated electricity‐gas systems (IEGSs). Accordingly, this paper proposes a low‐carbon economic dispatch model for the IEGS, in which gas‐fuel generators, DR, and gas‐fuel generator are considered to realize the economic and environmentally friendly operation of these systems. Also, the flexible AC transmission system device as one of the grid‐enhancing technologies is innovatively included in IEGSs to guarantee that wind power is deliverable entire the electricity system. Besides, power‐to‐gas equipped with hydrogen storage is used to absorb the excess wind power to produce CH4. On the other hand, to capture the inherent flexibility of the gas network, the gas‐storing characteristic of pipelines is shown by line pack modelling. To manage uncertainties associated with wind power and DR program, the proposed model is formulated as an IGDT‐stochastic problem. For efficient computation purposes, the present work follows the mixed‐integer linear programming framework. Different case studies are performed on an integrated test system. Numerical simulation results show that the proposed model leads to reducing the total cost, carbon emissions, and wind curtailment by 29%, 16.4%, and 100%, respectively. It can be seen that the proposed low‐carbon ED model is environmentally friendly and has economic benefits. This paper has presented a low‐carbon economic dispatch model for integrated electricity and gas systems, in which flexibility from the generation side (gas‐fuel generator and carbon capture and storage), network side (grid enhancing technologies and line pack), demand side (demand response program), and storage side (power to gas technology equipped with hydrogen storage) is considered to support the environment‐friendly and low‐cost operation. There is no similar work that considers all the mentioned flexible resources in the low‐carbon operation of integrated electricity and gas systems. The obtained results from case studies show that by employing flexible resources (from generation, network, load and storage sides), total cost, total emission, load shedding, and wind curtailment are decreased by 29%, 16.4%, 100%, and 100% respectively. On the other hand, due to the weather conditions and changes in consumer behaviour, the actual response of consumers in the demand response (DR) program and also the output of WE are uncertain. Unlike the uncertainty of wind which follow probability distribution function (PDF), there is no specified PDF for DR uncertainty. Therefore, for the first time, this paper has used a hybrid IGDT‐stochastic method to handle the uncertainties of DR and wind. IGDT is non‐probabilistic approach which does not require PDF.
AbstractList Abstract Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing technologies, and carbon capture and storage can help to low carbon operation of integrated electricity‐gas systems (IEGSs). Accordingly, this paper proposes a low‐carbon economic dispatch model for the IEGS, in which gas‐fuel generators, DR, and gas‐fuel generator are considered to realize the economic and environmentally friendly operation of these systems. Also, the flexible AC transmission system device as one of the grid‐enhancing technologies is innovatively included in IEGSs to guarantee that wind power is deliverable entire the electricity system. Besides, power‐to‐gas equipped with hydrogen storage is used to absorb the excess wind power to produce CH4. On the other hand, to capture the inherent flexibility of the gas network, the gas‐storing characteristic of pipelines is shown by line pack modelling. To manage uncertainties associated with wind power and DR program, the proposed model is formulated as an IGDT‐stochastic problem. For efficient computation purposes, the present work follows the mixed‐integer linear programming framework. Different case studies are performed on an integrated test system. Numerical simulation results show that the proposed model leads to reducing the total cost, carbon emissions, and wind curtailment by 29%, 16.4%, and 100%, respectively. It can be seen that the proposed low‐carbon ED model is environmentally friendly and has economic benefits.
Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing technologies, and carbon capture and storage can help to low carbon operation of integrated electricity‐gas systems (IEGSs). Accordingly, this paper proposes a low‐carbon economic dispatch model for the IEGS, in which gas‐fuel generators, DR, and gas‐fuel generator are considered to realize the economic and environmentally friendly operation of these systems. Also, the flexible AC transmission system device as one of the grid‐enhancing technologies is innovatively included in IEGSs to guarantee that wind power is deliverable entire the electricity system. Besides, power‐to‐gas equipped with hydrogen storage is used to absorb the excess wind power to produce CH4. On the other hand, to capture the inherent flexibility of the gas network, the gas‐storing characteristic of pipelines is shown by line pack modelling. To manage uncertainties associated with wind power and DR program, the proposed model is formulated as an IGDT‐stochastic problem. For efficient computation purposes, the present work follows the mixed‐integer linear programming framework. Different case studies are performed on an integrated test system. Numerical simulation results show that the proposed model leads to reducing the total cost, carbon emissions, and wind curtailment by 29%, 16.4%, and 100%, respectively. It can be seen that the proposed low‐carbon ED model is environmentally friendly and has economic benefits. This paper has presented a low‐carbon economic dispatch model for integrated electricity and gas systems, in which flexibility from the generation side (gas‐fuel generator and carbon capture and storage), network side (grid enhancing technologies and line pack), demand side (demand response program), and storage side (power to gas technology equipped with hydrogen storage) is considered to support the environment‐friendly and low‐cost operation. There is no similar work that considers all the mentioned flexible resources in the low‐carbon operation of integrated electricity and gas systems. The obtained results from case studies show that by employing flexible resources (from generation, network, load and storage sides), total cost, total emission, load shedding, and wind curtailment are decreased by 29%, 16.4%, 100%, and 100% respectively. On the other hand, due to the weather conditions and changes in consumer behaviour, the actual response of consumers in the demand response (DR) program and also the output of WE are uncertain. Unlike the uncertainty of wind which follow probability distribution function (PDF), there is no specified PDF for DR uncertainty. Therefore, for the first time, this paper has used a hybrid IGDT‐stochastic method to handle the uncertainties of DR and wind. IGDT is non‐probabilistic approach which does not require PDF.
Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing technologies, and carbon capture and storage can help to low carbon operation of integrated electricity‐gas systems (IEGSs). Accordingly, this paper proposes a low‐carbon economic dispatch model for the IEGS, in which gas‐fuel generators, DR, and gas‐fuel generator are considered to realize the economic and environmentally friendly operation of these systems. Also, the flexible AC transmission system device as one of the grid‐enhancing technologies is innovatively included in IEGSs to guarantee that wind power is deliverable entire the electricity system. Besides, power‐to‐gas equipped with hydrogen storage is used to absorb the excess wind power to produce CH 4 . On the other hand, to capture the inherent flexibility of the gas network, the gas‐storing characteristic of pipelines is shown by line pack modelling. To manage uncertainties associated with wind power and DR program, the proposed model is formulated as an IGDT‐stochastic problem. For efficient computation purposes, the present work follows the mixed‐integer linear programming framework. Different case studies are performed on an integrated test system. Numerical simulation results show that the proposed model leads to reducing the total cost, carbon emissions, and wind curtailment by 29%, 16.4%, and 100%, respectively. It can be seen that the proposed low‐carbon ED model is environmentally friendly and has economic benefits.
Author Talebi, Amir
Zare, Kazem
Anvari‐Moghaddam, Amjad
Mohammadi‐Ivatloo, Behnam
Agabalaye‐Rahvar, Masoud
Author_xml – sequence: 1
  givenname: Amir
  surname: Talebi
  fullname: Talebi, Amir
  organization: University of Tabriz
– sequence: 2
  givenname: Masoud
  orcidid: 0000-0002-2677-6910
  surname: Agabalaye‐Rahvar
  fullname: Agabalaye‐Rahvar, Masoud
  email: m.agabalaye@tabrizu.ac.ir
  organization: University of Tabriz
– sequence: 3
  givenname: Behnam
  surname: Mohammadi‐Ivatloo
  fullname: Mohammadi‐Ivatloo, Behnam
  organization: LUT University
– sequence: 4
  givenname: Kazem
  orcidid: 0000-0003-4729-1741
  surname: Zare
  fullname: Zare, Kazem
  organization: University of Tabriz
– sequence: 5
  givenname: Amjad
  surname: Anvari‐Moghaddam
  fullname: Anvari‐Moghaddam, Amjad
  organization: Aalborg University
BookMark eNp9UUtuFDEQbaEgkQQ2nMBrpAm2279eRgkMI0ViM6ytarvc46jHjmyjaHYcgR33y0noyQALhFhVqd5HpfcuurOUE3bdW0avGBXD-6l5fsX6nusX3TnTkq2MGuTZn93oV91FrfeUSqmEPu9-XCeyWd9un759ry27HdQWHdlnjzMJuZA5Py6QgzLmRNDllPcL7mN9gOZ2JAcSU8OpQENPcEbXSnSxHRZRgva1wEwmqKQeasN9JYtBjR5LTBOZSvQLDdMOkjseGrpdynOeItbX3csAc8U3v-Zl9-Xjh-3Np9Xd5_Xm5vpu5QQTeiW4NwaQqzBy5b0eBiUMytC74PwQRteDGrzmMlAcRK90H0YhQTvJjWJe9Jfd5uTrM9zbhxL3UA42Q7TPh1wmC2WJZEZrGNcGPHUChECkgzKjl3pwSsvRuLB40ZOXK7nWgsEuSUCLObUCcbaM2mNJ9liSfS5pkbz7S_L7hX-S2Yn8GGc8_Idp19tbftL8BHlHrEo
CitedBy_id crossref_primary_10_1049_gtd2_70126
crossref_primary_10_1016_j_epsr_2025_111447
crossref_primary_10_1007_s42835_025_02286_3
crossref_primary_10_1016_j_ijhydene_2025_150659
crossref_primary_10_1016_j_segan_2025_101948
crossref_primary_10_1049_rpg2_70113
Cites_doi 10.1109/TPWRS.2014.2341691
10.1109/TPWRS.2013.2274176
10.1016/j.apenergy.2022.119002
10.3390/en13226131
10.1016/j.energy.2021.122748
10.1109/ACCESS.2020.3048978
10.1016/j.apenergy.2020.115609
10.1016/j.apenergy.2022.118997
10.1049/rpg2.12439
10.1016/j.apenergy.2022.120268
10.1016/j.energy.2021.120267
10.1109/TPWRS.2017.2756074
10.1109/TIA.2019.2934088
10.1016/j.apenergy.2017.02.063
10.1109/TPWRS.2020.2987982
10.1016/j.energy.2021.120781
10.1016/j.apenergy.2023.121047
10.1109/JSYST.2015.2423498
10.1016/j.energy.2022.124918
10.1016/j.jclepro.2018.07.195
10.1109/TIA.2021.3079329
10.1109/TPWRS.2015.2447453
10.1109/TEC.2010.2051948
10.1016/j.apenergy.2018.04.119
10.1049/rpg2.12436
10.1016/j.energy.2021.121827
10.1016/j.apenergy.2022.118967
10.1109/TPWRS.2014.2299533
10.1109/TPWRS.2013.2244231
10.1016/j.energy.2021.121392
10.1016/j.jclepro.2022.133283
10.1109/SGC.2018.8777813
10.1016/j.ejor.2018.06.036
10.1016/j.ijepes.2018.07.013
10.1061/(ASCE)EE.1943-7870.0000007
10.1109/EI247390.2019.9061966
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/gtd2.13327
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 4064
ExternalDocumentID oai_doaj_org_article_81278ad0c4a44ee0968bd579c675b8cf
10_1049_gtd2_13327
GTD213327
Genre researchArticle
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4147-42d88ae26fb26dd799648e5f3cfcd9fbc3a69d725f0e943673fb45a7c52861d43
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001370489400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
IngestDate Fri Oct 03 12:46:11 EDT 2025
Wed Oct 29 21:47:41 EDT 2025
Tue Nov 18 20:29:14 EST 2025
Wed Jan 22 17:13:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License Attribution-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4147-42d88ae26fb26dd799648e5f3cfcd9fbc3a69d725f0e943673fb45a7c52861d43
ORCID 0000-0003-4729-1741
0000-0002-2677-6910
OpenAccessLink https://doaj.org/article/81278ad0c4a44ee0968bd579c675b8cf
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_81278ad0c4a44ee0968bd579c675b8cf
crossref_citationtrail_10_1049_gtd2_13327
crossref_primary_10_1049_gtd2_13327
wiley_primary_10_1049_gtd2_13327_GTD213327
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2022; 371
2013; 28
2023; 340
2019; 55
2015; 31
2018; 200
2021; 226
2018; 224
2019; 104
2017; 193
2009; 135
2020; 35
2020; 13
2023; 329
2014; 29
2008; 2
2022; 316
2022; 239
2022; 314
2021; 57
2022; 261
2022; 240
2010; 25
2021; 11
2021; 236
2017; 33
2017; 11
2019
2018
2020; 277
2021; 230
2014; 30
2019; 272
2022; 16
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
Liu X. (e_1_2_11_23_1) 2021; 11
e_1_2_11_39_1
e_1_2_11_19_1
Lucquiaud M. (e_1_2_11_9_1) 2008; 2
References_xml – volume: 316
  year: 2022
  article-title: A coupled transient gas flow calculation with a simultaneous calorific‐value‐gradient improved hydrogen tracking
  publication-title: Appl. Energy
– volume: 25
  start-page: 853
  issue: 3
  year: 2010
  end-page: 861
  article-title: Modeling flexible operation mechanism of CO2 capture power plant and its effects on power‐system operation
  publication-title: IEEE Trans. Energy Convers.
– volume: 240
  year: 2022
  article-title: Thermo‐economic and environmental analysis of integrated power plant with carbon capture and storage technology
  publication-title: Energy
– start-page: 1
  year: 2018
  end-page: 6
  article-title: Co‐optimization of electricity and natural gas networks considering ac constraints and natural gas storage
– volume: 35
  start-page: 4396
  issue: 6
  year: 2020
  end-page: 4407
  article-title: Transmission expansion planning including TCSCs and SFCLs: a MINLP approach
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2019
  end-page: 8
  article-title: Low‐carbon power system economic dispatch considering renewable energy accommodation
– volume: 200
  start-page: 161
  year: 2018
  end-page: 173
  article-title: Low carbon unit commitment (LCUC) with post carbon capture and storage (CCS) technology considering resource sensitivity
  publication-title: J. Cleaner Prod.
– volume: 340
  year: 2023
  article-title: A robust bi‐level optimization framework for participation of multi‐energy service providers in integrated power and natural gas markets
  publication-title: Appl. Energy
– volume: 11
  start-page: 1674
  issue: 3
  year: 2017
  end-page: 1683
  article-title: Stochastic security‐constrained scheduling of coordinated electricity and natural gas infrastructures
  publication-title: IEEE Syst. J.
– volume: 30
  start-page: 1056
  issue: 2
  year: 2014
  end-page: 1063
  article-title: Optimizing spinning reserve requirement of power system with carbon capture plants
  publication-title: IEEE Trans. Power Syst.
– start-page: 39
  year: 2019
  end-page: 43
  article-title: Low‐carbon economic dispatching for integrated energy system based on coordinated optimization of power to gas and carbon capture power plant
– volume: 314
  year: 2022
  article-title: Data‐driven optimal scheduling of multi‐energy system virtual power plant (MEVPP) incorporating carbon capture system (CCS), electric vehicle flexibility, and clean energy marketer (CEM) strategy
  publication-title: Appl. Energy
– volume: 28
  start-page: 2708
  issue: 3
  year: 2013
  end-page: 2717
  article-title: Multi‐stage robust unit commitment considering wind and demand response uncertainties
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 2792
  issue: 3
  year: 2017
  end-page: 2803
  article-title: The interdependence between transmission switching and variable‐impedance series FACTS devices
  publication-title: IEEE Trans. Power Syst.
– volume: 226
  year: 2021
  article-title: Low‐carbon economic dispatch of electricity‐gas systems
  publication-title: Energy
– volume: 371
  year: 2022
  article-title: A mixed conditional value‐at‐risk/information gap decision theory framework for optimal participation of a multi‐energy distribution system in multiple energy markets
  publication-title: J. Cleaner Prod.
– volume: 16
  start-page: 2566
  year: 2022
  end-page: 2578
  article-title: Low‐carbon coordinated scheduling of integrated electricity‐gas distribution system with hybrid AC/DC network
  publication-title: IET Renewable Power Gener.
– volume: 193
  start-page: 440
  year: 2017
  end-page: 454
  article-title: An integrated techno‐economic and life cycle environmental assessment of power‐to‐gas systems
  publication-title: Appl. Energy
– volume: 2
  start-page: 177
  issue: 3
  year: 2008
  end-page: 183
  article-title: Potential for flexible operation of pulverised coal power plants with CO2 capture
  publication-title: Energy Mater.
– volume: 224
  start-page: 357
  year: 2018
  end-page: 370
  article-title: Low‐carbon economic dispatch for electricity and natural gas systems considering carbon capture systems and power‐to‐gas
  publication-title: Appl. Energy
– volume: 277
  year: 2020
  article-title: Economic and environmental policy analysis for emission‐neutral multi‐carrier microgrid deployment
  publication-title: Appl. Energy
– volume: 314
  year: 2022
  article-title: A novel integrated stochastic programming‐information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties
  publication-title: Appl. Energy
– volume: 29
  start-page: 2150
  issue: 5
  year: 2014
  end-page: 2159
  article-title: Minimizing wind power spillage using an OPF with FACTS devices
  publication-title: IEEE Trans. Power Syst.
– volume: 329
  year: 2023
  article-title: Electrolyzer cell‐methanation/Sabatier reactors integration for power‐to‐gas energy storage: thermo‐economic analysis and multi‐objective optimization
  publication-title: Appl. Energy
– volume: 57
  start-page: 3341
  year: 2021
  end-page: 3351
  article-title: Economic‐emission dispatch problem in power systems with carbon capture power plants
  publication-title: IEEE Trans. Ind. Appl.
– volume: 230
  year: 2021
  article-title: Adaptive robust co‐optimization of wind energy generation, electric vehicle batteries and flexible AC transmission system devices
  publication-title: Energy
– volume: 31
  start-page: 2204
  issue: 3
  year: 2015
  end-page: 2213
  article-title: A fast LP approach for enhanced utilization of variable impedance based FACTS devices
  publication-title: IEEE Trans. Power Syst.
– volume: 13
  start-page: 6131
  issue: 22
  year: 2020
  article-title: Robust optimal operation strategy for a hybrid energy system based on gas‐fired unit, power‐to‐gas facility and wind power in energy markets
  publication-title: Energies
– volume: 104
  start-page: 311
  year: 2019
  end-page: 325
  article-title: FACTS devices and energy storage in unit commitment
  publication-title: Int. J. Electr. Power & Energy Syst.
– volume: 261
  year: 2022
  article-title: Maximizing wind energy utilization in smart power systems using a flexible network‐constrained unit commitment through dynamic lines and transformers rating
  publication-title: Energy
– volume: 55
  start-page: 5543
  issue: 6
  year: 2019
  end-page: 5553
  article-title: Optimal sizing of shipboard carbon capture system for maritime greenhouse emission control
  publication-title: IEEE Trans. Ind. Appl.
– volume: 272
  start-page: 642
  issue: 2
  year: 2019
  end-page: 654
  article-title: An integrated market for electricity and natural gas systems with stochastic power producers
  publication-title: Eur. J. Oper. Res.
– article-title: Advancing innovation, technology transitions, and early investments
– volume: 9
  start-page: 5716
  year: 2021
  end-page: 5733
  article-title: Decarbonization scheduling strategy optimization for electricity‐gas system considering electric vehicles and refined operation model of power‐to‐gas
  publication-title: IEEE Access
– volume: 11
  start-page: 25077
  year: 2021
  end-page: 25089
  article-title: Low‐carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
  publication-title: Trans. Inst. Meas. Control
– volume: 28
  start-page: 4615
  issue: 4
  year: 2013
  end-page: 4623
  article-title: Low‐carbon power system dispatch incorporating carbon capture power plants
  publication-title: IEEE Trans. Power Syst.
– volume: 236
  year: 2021
  article-title: Modeling and optimization of combined heat and power with power‐to‐gas and carbon capture system in integrated energy system
  publication-title: Energy
– volume: 135
  start-page: 449
  issue: 6
  year: 2009
  end-page: 458
  article-title: Flexible operation of coal fired power plants with postcombustion capture of carbon dioxide
  publication-title: J. Environ. Eng.
– volume: 16
  start-page: 2617
  year: 2022
  end-page: 2629
  article-title: Data‐driven distributionally robust economic dispatch for park integrated energy systems with coordination of carbon capture and storage devices and combined heat and power plants
  publication-title: IET Renewable Power Gener.
– volume: 239
  year: 2022
  article-title: Equilibrium models of coordinated electricity and natural gas markets with different coupling information exchanging channels
  publication-title: Energy
– ident: e_1_2_11_13_1
  doi: 10.1109/TPWRS.2014.2341691
– ident: e_1_2_11_15_1
  doi: 10.1109/TPWRS.2013.2274176
– ident: e_1_2_11_39_1
  doi: 10.1016/j.apenergy.2022.119002
– ident: e_1_2_11_6_1
  doi: 10.3390/en13226131
– ident: e_1_2_11_33_1
  doi: 10.1016/j.energy.2021.122748
– ident: e_1_2_11_30_1
  doi: 10.1109/ACCESS.2020.3048978
– ident: e_1_2_11_2_1
  doi: 10.1016/j.apenergy.2020.115609
– ident: e_1_2_11_32_1
  doi: 10.1016/j.apenergy.2022.118997
– ident: e_1_2_11_25_1
  doi: 10.1049/rpg2.12439
– ident: e_1_2_11_5_1
  doi: 10.1016/j.apenergy.2022.120268
– ident: e_1_2_11_29_1
  doi: 10.1016/j.energy.2021.120267
– ident: e_1_2_11_19_1
  doi: 10.1109/TPWRS.2017.2756074
– ident: e_1_2_11_14_1
  doi: 10.1109/TIA.2019.2934088
– ident: e_1_2_11_34_1
  doi: 10.1016/j.apenergy.2017.02.063
– ident: e_1_2_11_4_1
  doi: 10.1109/TPWRS.2020.2987982
– ident: e_1_2_11_21_1
  doi: 10.1016/j.energy.2021.120781
– volume: 11
  start-page: 25077
  year: 2021
  ident: e_1_2_11_23_1
  article-title: Low‐carbon economic dispatch of integrated electricity and natural gas energy system considering carbon capture device
  publication-title: Trans. Inst. Meas. Control
– ident: e_1_2_11_31_1
  doi: 10.1016/j.apenergy.2023.121047
– ident: e_1_2_11_41_1
  doi: 10.1109/JSYST.2015.2423498
– ident: e_1_2_11_17_1
  doi: 10.1016/j.energy.2022.124918
– ident: e_1_2_11_12_1
  doi: 10.1016/j.jclepro.2018.07.195
– ident: e_1_2_11_16_1
  doi: 10.1109/TIA.2021.3079329
– ident: e_1_2_11_36_1
  doi: 10.1109/TPWRS.2015.2447453
– ident: e_1_2_11_10_1
  doi: 10.1109/TEC.2010.2051948
– ident: e_1_2_11_22_1
  doi: 10.1016/j.apenergy.2018.04.119
– ident: e_1_2_11_26_1
– ident: e_1_2_11_28_1
  doi: 10.1049/rpg2.12436
– ident: e_1_2_11_37_1
  doi: 10.1016/j.energy.2021.121827
– ident: e_1_2_11_7_1
  doi: 10.1016/j.apenergy.2022.118967
– ident: e_1_2_11_18_1
  doi: 10.1109/TPWRS.2014.2299533
– ident: e_1_2_11_8_1
  doi: 10.1109/TPWRS.2013.2244231
– ident: e_1_2_11_27_1
  doi: 10.1016/j.energy.2021.121392
– volume: 2
  start-page: 177
  issue: 3
  year: 2008
  ident: e_1_2_11_9_1
  article-title: Potential for flexible operation of pulverised coal power plants with CO2 capture
  publication-title: Energy Mater.
– ident: e_1_2_11_35_1
  doi: 10.1016/j.jclepro.2022.133283
– ident: e_1_2_11_40_1
  doi: 10.1109/SGC.2018.8777813
– ident: e_1_2_11_38_1
  doi: 10.1016/j.ejor.2018.06.036
– ident: e_1_2_11_20_1
  doi: 10.1016/j.ijepes.2018.07.013
– ident: e_1_2_11_3_1
– ident: e_1_2_11_11_1
  doi: 10.1061/(ASCE)EE.1943-7870.0000007
– ident: e_1_2_11_24_1
  doi: 10.1109/EI247390.2019.9061966
SSID ssj0055647
Score 2.4573593
Snippet Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing...
Abstract Utilizing wind power alongside flexible resources such as power‐to‐gas technology, gas‐fuel generator, demand response (DR) program, grid‐enhancing...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 4042
SubjectTerms carbon capture and storage
flexible alternating current transmission system
global warming
mathematical programming
power generation dispatch
power system interconnection
renewables and storage
risk management
sustainable development
uncertainty handling
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVKYUEXlFdFeckSbEAKJM71S2LTUlrYVF0MUneRn9ORqgRlprDtJ3TH__ElXDvJQCWEhNhFzrVs-V7b5zrxOYS8TLerhQi6cC7GAoyyhRG8KrhhTAPiWV76LDYhj4_V6ak-2SDvprswAz_E-sAtzYy8XqcJbuygQoKgFp04X3n2BjMsJm-Qm1VVyxTTDE6mdZhzkeXFcH-sCiWUnMhJQb_9VffadpRZ-6-j1LzNHG7_XwfvkjsjvKR7QzzcIxuhvU-2fiMdfEC-77X009HB7MflFQI_d2YSUzPNijgUESw9777hK2d627U0jPeWqV_g0oMepl2ka4oJTwcVnYVDLI-VMksoNj83SzpQRC-pGxVBsW067xcezUJ7llg-sGA1Hexjvv6QfD78MHv_sRjlGQoHFcgCmFfKBCaiZcJ7iZkTqMBj7aLzOlpXG6G9ZDyWQUMtZB0tcCMdZ0pUHuodstl2bXhEKFdCllaV3pYAnBsNpUXcYIV0ZaxY3CWvJi81buQuTxIa503-hg66SYPd5MHeJS_Wtl8Gxo4_Wu0nZ68tEst2Luj6eTNO2gbBj1TGlw4MQAiY7SnrudQOsyyrHHbrdQ6Av7TTHM0OWH56_C_GT8hthuhp-G_mKdlc9RfhGbnlvq4Wy_55jvOfvyMF4Q
  priority: 102
  providerName: Wiley-Blackwell
Title An IGDT‐stochastic model for low‐carbon economic dispatch of integrated electricity‐natural gas systems considering grid‐enhancing technologies
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.13327
https://doaj.org/article/81278ad0c4a44ee0968bd579c675b8cf
Volume 18
WOSCitedRecordID wos001370489400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Open Access
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8687
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4gAHVF5ioa0swQWkUMcZv44tpaWXVQ-L6C3yc7tSlUW7S3vlJ3Dj__FLGDvZ1SIhuHCJomSiiTwjzzeJ_X2EvM67q6WMpvI-pQqsdpWVoq6E5dwA4lnBQhGbUOOxvrw0F1tSX3lNWE8P3A_cIRYgpW1gHixAjIi4tQtCGY9I12mf8uzLlFk3U_0cLIQs0mJYG-tKS63WxKRgDqerwN9hZ5Z1ZLZKUWHs_x2hlhJzukseDtiQHvXv9Ijcid1j8mCLMfAJ-XHU0fOzk8nPb98Rtfkrm2mWaZGzoQg_6fX8Fm95u3DzjsZh0zENM5w3MDx0nuiGHyLQXgJn5hGI40OF4hPdT-2S9vzOS-oHOU_0TaeLWUCz2F1lig68sFp_lcdm-yn5dPph8v5jNWgrVB5qUBXwoLWNXCbHZQgK2x7QUaTGJx9Mcr6x0gTFRWLRQCNVkxwIq7zgWtYBmmdkp5t38TmhQkvFnGbBMQAhrAHmsOg7qTxLNU8j8mY9zK0fiMez_sV1W36Ag2lzSNoSkhF5tbH90tNt_NHqOEdrY5EpsssFTJx2SJz2X4kzIm9LrP_ipz2bnPBy9uJ_eHxJ7nOERP1imD2ys1p8jfvknr9ZzZaLA3KXw8VBSWM8fj4f_wIy6vvS
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JaxRBFC40CurBXRLXAr0odOyufrUdozELxiGHEXJrap0MhO7QM-rVn-DN_-cv8VV1z2hABPHWVL-iitre92r5PkJepNfVQgRdOBdjAUbZwgheFdwwpgHxLC99FpuQk4k6OdHH492c9BZm4IdYb7ilmZHX6zTB04b0EHBCIsmcLT3bxhCLycvkCqBbSjf6GByvFmLORdYXQwdZFUoouWInBf36V94L_ijT9l-EqdnP7N36zxreJjdHgEl3hhFxh1wK7V1y4zfawXvk-05LD_d3pz--fkPo505N4mqmWROHIoalZ90X_OVMb7uWhvHlMvVzXHywj2kX6ZpkwtNBR2fuEM1jpswTisXPzIIOJNEL6kZNUCybzvq5R7PQniaeD0xYrrb2MWK_Tz7uvZu-PShGgYbCQQWyAOaVMoGJaJnwXmLsBCrwWLvovI7W1UZoLxmPZdBQC1lHC9xIx5kSlYf6AdlouzZsEsqVkKVVpbclAOdGQ2kROVghXRkrFrfIy1U3NW5kL08iGmdNPkUH3aTGbnJjb5Hna9vzgbPjj1ZvUm-vLRLPdk7o-lkzTtsG4Y9UxpcODEAIGO8p67nUDuMsqxxW61UeAX8pp9mf7rL89fBfjJ-RawfTD0fN0eHk_SNynSGWGm7RPCYby_5TeEKuus_L-aJ_mgf9TzaoCcU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LihQxFA06iujCt8z4DOhGocaq1M1rOdr2OChNL1qYXZFnT8NQNXT36NZPcOf_-SXepKpbB0QQd0XqhoQkNzk3j3MIeZFeVwsRdOFcjAUYZQsjeFVww5gGxLO89FlsQk4m6vhYT4e7OektTM8Psd1wS56R5-vk4OHMxz7ghESSOV97to8hFpOXyRXgMvslg-lmIuZcZH0xXCCrQgklN-ykoF__ynthPcq0_Rdhal5nxrf-s4a3yc0BYNKDfkTcIZdCe5fc-I128B75ftDSo8PR7MfXbwj93IlJXM00a-JQxLD0tPuCv5xZ2q6lYXi5TP0CJx_sY9pFuiWZ8LTX0Vk4RPOYKfOEYvFzs6I9SfSKukETFMum8-XCo1loTxLPByasN1v7GLHfJ5_G72Zv3xeDQEPhoAJZAPNKmcBEtEx4LzF2AhV4rF10XkfraiO0l4zHMmiohayjBW6k40yJykP9gOy0XRt2CeVKyNKq0tsSgHOjobSIHKyQrowVi3vk5aabGjewlycRjdMmn6KDblJjN7mx98jzre1Zz9nxR6s3qbe3FolnOyd0y3kzuG2D8Ecq40sHBiAEjPeU9Vxqh3GWVQ6r9SqPgL-U0xzORix_PfwX42fk2nQ0bj4eTT48ItcZQqn-Es1jsrNenocn5Kr7vF6slk_zmP8JtTgJQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+IGDT%E2%80%90stochastic+model+for+low%E2%80%90carbon+economic+dispatch+of+integrated+electricity%E2%80%90natural+gas+systems+considering+grid%E2%80%90enhancing+technologies&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Amir+Talebi&rft.au=Masoud+Agabalaye%E2%80%90Rahvar&rft.au=Behnam+Mohammadi%E2%80%90Ivatloo&rft.au=Kazem+Zare&rft.date=2024-12-01&rft.pub=Wiley&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=18&rft.issue=24&rft.spage=4042&rft.epage=4064&rft_id=info:doi/10.1049%2Fgtd2.13327&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_81278ad0c4a44ee0968bd579c675b8cf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon