Hyperspectral image, video compression using sparse tucker tensor decomposition

Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change detection, and so on. However, with the rapid improvements in technology, the data size has increased many folds. To properly handle the enormous data volume...

Full description

Saved in:
Bibliographic Details
Published in:IET image processing Vol. 15; no. 4; pp. 964 - 973
Main Author: Das, Samiran
Format: Journal Article
Language:English
Published: Wiley 01.03.2021
Subjects:
ISSN:1751-9659, 1751-9667
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change detection, and so on. However, with the rapid improvements in technology, the data size has increased many folds. To properly handle the enormous data volume, efficient methods are required to compress the data. This paper proposes a multi‐way approach for compression of the hyperspectral image or video sequence. In this approach, a differential representation of the data is first obtained. In the case of hyperspectral images, the difference between consecutive bands is obtained and in case of videos, the difference between consecutive frames is computed. In the next step, a sparse Tucker tensor decomposition is performed and the sparse core tensor obtained. Finally, the core tensor and the corresponding factor matrices are truncated and the data encoded to obtain the compressed version for transmission. The compression method utilises the multi‐way structure of the data and hence can be extended for hyperspectral videos. Experimental results on several real data imply that the proposed compression approach obtains better efficiency in terms of compression ratio, signal to noise ratio.
AbstractList Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change detection, and so on. However, with the rapid improvements in technology, the data size has increased many folds. To properly handle the enormous data volume, efficient methods are required to compress the data. This paper proposes a multi‐way approach for compression of the hyperspectral image or video sequence. In this approach, a differential representation of the data is first obtained. In the case of hyperspectral images, the difference between consecutive bands is obtained and in case of videos, the difference between consecutive frames is computed. In the next step, a sparse Tucker tensor decomposition is performed and the sparse core tensor obtained. Finally, the core tensor and the corresponding factor matrices are truncated and the data encoded to obtain the compressed version for transmission. The compression method utilises the multi‐way structure of the data and hence can be extended for hyperspectral videos. Experimental results on several real data imply that the proposed compression approach obtains better efficiency in terms of compression ratio, signal to noise ratio.
Abstract Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change detection, and so on. However, with the rapid improvements in technology, the data size has increased many folds. To properly handle the enormous data volume, efficient methods are required to compress the data. This paper proposes a multi‐way approach for compression of the hyperspectral image or video sequence. In this approach, a differential representation of the data is first obtained. In the case of hyperspectral images, the difference between consecutive bands is obtained and in case of videos, the difference between consecutive frames is computed. In the next step, a sparse Tucker tensor decomposition is performed and the sparse core tensor obtained. Finally, the core tensor and the corresponding factor matrices are truncated and the data encoded to obtain the compressed version for transmission. The compression method utilises the multi‐way structure of the data and hence can be extended for hyperspectral videos. Experimental results on several real data imply that the proposed compression approach obtains better efficiency in terms of compression ratio, signal to noise ratio.
Author Das, Samiran
Author_xml – sequence: 1
  givenname: Samiran
  orcidid: 0000-0003-4895-1270
  surname: Das
  fullname: Das, Samiran
  email: itzsamirandas@gmail.com
  organization: Indian Institute of Technology Kharagpur
BookMark eNp9kE9LAzEQxYNUsFYvfoI9i635u8kepagtFCqi55BkZ0vqdrMkW6Xf3m2rHkQ8zTD83uPNO0eDJjSA0BXBE4J5cevbSCeEYilP0JBIQcZFnsvBzy6KM3Se0hpjUWAlhmg527UQUwuui6bO_Mas4CZ79yWEzIVNGyElH5psm3yzylJrYoKs27o3iFkHTQoxK2EPhuS7HrxAp5WpE1x-zRF6fbh_mc7Gi-XjfHq3GDtOuBxTpmRRESUwttwqy8FyIgGMMozIqqSGMcgZ5dRJzpkzWFpFLCaQA6UlYyM0P_qWwax1G_vgcaeD8fpwCHGlTey8q0FzZauc55JJKzjFqhBCUguVUJJX1tHeCx-9XAwpRai0853Zf9N34mtNsN6Xq_fl6kO5veT6l-Q7wp8wOcIfvobdP6SePz3To-YTBkqMfg
CitedBy_id crossref_primary_10_1007_s11042_022_13057_x
crossref_primary_10_1049_ipr2_12285
crossref_primary_10_1007_s10851_024_01188_9
crossref_primary_10_1109_TGRS_2022_3215431
crossref_primary_10_32604_cmes_2023_025832
crossref_primary_10_1002_advs_202508506
crossref_primary_10_1007_s11760_023_02979_0
crossref_primary_10_1117_1_JRS_17_046509
crossref_primary_10_1109_JSTARS_2024_3398201
crossref_primary_10_3390_rs13152930
crossref_primary_10_1007_s11042_023_14738_x
crossref_primary_10_1109_MGRS_2022_3227063
crossref_primary_10_1007_s11277_023_10455_8
crossref_primary_10_3233_JIFS_231684
crossref_primary_10_1049_cvi2_12083
crossref_primary_10_1080_01431161_2024_2388861
crossref_primary_10_1049_rsn2_12348
crossref_primary_10_3390_e26040316
crossref_primary_10_1007_s11042_023_16528_x
crossref_primary_10_1155_2023_8961271
Cites_doi 10.1109/MSP.2013.2279731
10.1109/TGRS.2016.2574757
10.1109/TGRS.2019.2927434
10.1007/BF02294556
10.1109/JSTARS.2019.2917088
10.1007/978-3-319-13254-9_72
10.3390/rs10060907
10.1109/JSTARS.2017.2666264
10.1016/S0167-9473(99)00017-1
10.1016/j.ins.2019.02.008
10.1109/SCIS-ISIS.2014.7044685
10.1109/TGRS.2015.2478379
10.1109/JSTARS.2011.2173906
10.1109/LGRS.2004.824762
10.1007/s11042-017-4724-8
10.1109/ICIP.2003.1246661
10.1109/IPTA.2010.5586739
10.1109/TGRS.2010.2098413
10.1016/j.neucom.2014.06.052
10.1109/LGRS.2018.2888580
10.1109/LSP.2005.862604
10.1109/JSTARS.2014.2320754
10.1109/TGRS.2004.831865
10.1109/36.823937
10.1109/TIT.2009.2027527
10.1109/LGRS.2005.859942
10.1049/el.2010.1788
10.1109/IGARSS.2005.1526121
10.1109/TSP.2006.881199
10.1109/MSP.2013.2297439
10.1364/OE.20.010658
10.1109/LGRS.2006.888109
10.1137/07070111X
10.1109/TCYB.2016.2605044
10.1109/LGRS.2016.2644726
10.1109/TSP.2016.2620965
10.1109/TSP.2017.2690524
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/ipr2.12077
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1751-9667
EndPage 973
ExternalDocumentID oai_doaj_org_article_48bf646737b5420895572bef5874fbc2
10_1049_ipr2_12077
IPR212077
Genre article
GroupedDBID .DC
0R~
1OC
24P
29I
4.4
5GY
6IK
8FE
8FG
8VB
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADZOD
AEEZP
AENEX
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
O9-
OCL
OK1
P2P
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4147-23879f18500b4b8b4eb417eea8a317fd2a33e63242c7443ca07b81b01e6e22d33
IEDL.DBID 24P
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000605065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-9659
IngestDate Fri Oct 03 12:53:49 EDT 2025
Wed Oct 29 21:14:52 EDT 2025
Tue Nov 18 22:32:46 EST 2025
Wed Jan 22 16:31:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4147-23879f18500b4b8b4eb417eea8a317fd2a33e63242c7443ca07b81b01e6e22d33
ORCID 0000-0003-4895-1270
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12077
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_48bf646737b5420895572bef5874fbc2
crossref_citationtrail_10_1049_ipr2_12077
crossref_primary_10_1049_ipr2_12077
wiley_primary_10_1049_ipr2_12077_IPR212077
PublicationCentury 2000
PublicationDate March 2021
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: March 2021
PublicationDecade 2020
PublicationTitle IET image processing
PublicationYear 2021
Publisher Wiley
Publisher_xml – name: Wiley
References 2004; 42
1997; 62
2002; 19
2006; 13
2010
2006; 54
2015; 147
2019; 57
2019; 12
2017; 65
2015; 32
2016; 54
2019; 16
2006; 3
2004; 1
2011; 5
2019; 485
2009; 55
2009; 51
2000; 38
2010; 46
2017; 14
2000
2017; 76
2017; 10
2003; 2
2019
2017
2005; 1
2007; 4
1999; 31
2015
2014
2011; 49
2018; 10
2014; 7
2016; 48
2012; 20
2014; 31
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Landgrebe D. (e_1_2_7_2_1) 2002; 19
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 5
  start-page: 451
  issue: 2
  year: 2011
  end-page: 461
  article-title: Performance evaluation of the h
  publication-title: 264/avc video coding standard for lossy hyperspectral image compression. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 19
  issue: 1
  year: 2002
  article-title: Hyperspectral image data analysis
  publication-title: IEEE
– volume: 55
  start-page: 4723
  issue: 10
  year: 2009
  end-page: 4741
  article-title: Comparing measures of sparsity
  publication-title: IEEE Trans. Inf. Theory
– volume: 51
  start-page: 455
  issue: 3
  year: 2009
  end-page: 500
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– start-page: 252
  year: 2000
  end-page: 255
  article-title: An efficient adaptive klt for multispectral image compression
– volume: 2
  start-page: II
  year: 2003
  end-page: 239
  article-title: 3d set partitioning coding methods in hyperspectral image compression
– volume: 65
  start-page: 1196
  issue: 5
  year: 2017
  end-page: 1206
  article-title: Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria
  publication-title: IEEE Trans. Signal Process.
– volume: 38
  start-page: 416
  issue: 1
  year: 2000
  end-page: 428
  article-title: Compression of multispectral images by three‐dimensional SPIHT algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  end-page: 4322
  article-title: K‐svd: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– year: 2017
  article-title: Hyperspectral unmixing: Ground truth labeling, datasets, benchmark performances and survey
– volume: 7
  start-page: 2246
  issue: 6
  year: 2014
  end-page: 2255
  article-title: Compression of hyperspectral images containing a subpixel target
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 147
  start-page: 358
  year: 2015
  end-page: 363
  article-title: Compression of hyperspectral remote sensing images by tensor approach
  publication-title: Neurocomputing
– volume: 48
  start-page: 16
  issue: 1
  year: 2016
  end-page: 28
  article-title: Simultaneous spectral‐spatial feature selection and extraction for hyperspectral images
  publication-title: IEEE Trans. Cybern.
– start-page: 478
  year: 2014
  end-page: 483
  article-title: Multilinear tensor rank estimation via sparse tucker decomposition
– volume: 31
  start-page: 67
  issue: 1
  year: 2014
  end-page: 81
  article-title: A signal processing perspective on hyperspectral unmixing: Insights from remote sensing
  publication-title: IEEE Signal Process Mag.
– volume: 46
  start-page: 1601
  issue: 24
  year: 2010
  end-page: 1602
  article-title: Hyperspectral image compression based on 3D reversible integer lapped transform
  publication-title: Electron. Lett.
– volume: 62
  start-page: 349
  issue: 3
  year: 1997
  end-page: 374
  article-title: Uniqueness of three‐mode factor models with sparse cores: The 3 3 3 case
  publication-title: Psychometrika
– volume: 42
  start-page: 1778
  issue: 8
  year: 2004
  end-page: 1790
  article-title: Classification of hyperspectral remote sensing images with support vector machines
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 13
  start-page: 157
  issue: 3
  year: 2006
  end-page: 160
  article-title: Lossless compression of hyperspectral images using lookup tables
  publication-title: IEEE Signal Process Lett.
– volume: 32
  start-page: 145
  issue: 2
  year: 2015
  end-page: 163
  article-title: Phan: Tensor decompositions for signal processing applications: From two‐way to multiway component analysis
  publication-title: IEEE Signal Process Mag.
– volume: 65
  start-page: 3551
  issue: 13
  year: 2017
  end-page: 3582
  article-title: Tensor decomposition for signal processing and machine learning
  publication-title: IEEE Trans. Signal Process.
– volume: 54
  start-page: 5884
  issue: 10
  year: 2016
  end-page: 5894
  article-title: Hyperspectral image compression optimized for spectral unmixing
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1
  start-page: 4
  year: 2005
  end-page: pp
  article-title: JPEG2000 coding strategies for hyperspectral data
– volume: 10
  start-page: 907
  issue: 6
  year: 2018
  article-title: Hyperspectral image compression using vector quantization, PCA and JPEG2000
  publication-title: Remote Sens.
– volume: 16
  start-page: 937
  issue: 6
  year: 2019
  end-page: 941
  article-title: Covariance similarity approach for semiblind unmixing of hyperspectral image
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 14
  start-page: 394
  issue: 3
  year: 2017
  end-page: 398
  article-title: Fast and lightweight rate control for onboard predictive coding of hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 57
  start-page: 9544
  issue: 12
  year: 2019
  end-page: 9553
  article-title: High‐throughput onboard hyperspectral image compression with ground‐based CNN reconstruction
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 20
  start-page: 10 658
  issue: 10
  year: 2012
  end-page: 10 673
  article-title: Hyperspectral video restoration using optical flow and sparse coding
  publication-title: Opt. Express
– volume: 4
  start-page: 201
  issue: 2
  year: 2007
  end-page: 205
  article-title: Hyperspectral image compression using JPEG2000 and principal component analysis
  publication-title: IEEE Geosci. Remote Sens. Lett.
– start-page: 122
  year: 2010
  end-page: 125
  article-title: Hyperspectral image compression based on tucker decomposition and discrete cosine transform
– year: 2019
  article-title: Rethinking lossy compression: The rate‐distortion‐perception tradeoff
– volume: 3
  start-page: 125
  issue: 1
  year: 2006
  end-page: 129
  article-title: Progressive 3‐d coding of hyperspectral images based on JPEG 2000
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 31
  start-page: 255
  issue: 3
  year: 1999
  end-page: 278
  article-title: A general algorithm for obtaining simple structure of core arrays in N‐way PCA with application to fluorometric data
  publication-title: Comput. Stat. Data Anal.
– start-page: 366
  year: 2015
  end-page: 370
  article-title: Predictive accuracy of classification and regression trees (cart) versus conjoint analysis
– volume: 12
  start-page: 2792
  issue: 8
  year: 2019
  end-page: 2809
  article-title: Real‐time hyperspectral image compression onto embedded GPUs
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 76
  start-page: 25 003
  issue: 23
  year: 2017
  end-page: 25 014
  article-title: Hyperspectral image compression based on online learning spectral features dictionary
  publication-title: Multimedia Tools and Applications
– volume: 10
  start-page: 2036
  issue: 5
  year: 2017
  end-page: 2045
  article-title: Sparse representation‐based hyperspectral data processing: Lossy compression
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 485
  start-page: 154
  year: 2019
  end-page: 169
  article-title: Hyperspectral image unsupervised classification by robust manifold matrix factorization
  publication-title: Inf. Sci.
– volume: 54
  start-page: 1349
  issue: 3
  year: 2016
  end-page: 1362
  article-title: Unsupervised deep feature extraction for remote sensing image classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 49
  start-page: 2014
  issue: 6
  year: 2011
  end-page: 2039
  article-title: Sparse unmixing of hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 1
  start-page: 136
  issue: 2
  year: 2004
  end-page: 140
  article-title: Three‐dimensional tarp coding for the compression of hyperspectral images
  publication-title: IEEE Geosci. Remote Sens. Lett.
– ident: e_1_2_7_27_1
  doi: 10.1109/MSP.2013.2279731
– ident: e_1_2_7_34_1
– ident: e_1_2_7_23_1
  doi: 10.1109/TGRS.2016.2574757
– ident: e_1_2_7_22_1
  doi: 10.1109/TGRS.2019.2927434
– ident: e_1_2_7_29_1
  doi: 10.1007/BF02294556
– ident: e_1_2_7_24_1
  doi: 10.1109/JSTARS.2019.2917088
– ident: e_1_2_7_38_1
  doi: 10.1007/978-3-319-13254-9_72
– ident: e_1_2_7_3_1
– ident: e_1_2_7_12_1
  doi: 10.3390/rs10060907
– ident: e_1_2_7_21_1
  doi: 10.1109/JSTARS.2017.2666264
– ident: e_1_2_7_30_1
  doi: 10.1016/S0167-9473(99)00017-1
– ident: e_1_2_7_37_1
  doi: 10.1016/j.ins.2019.02.008
– ident: e_1_2_7_31_1
  doi: 10.1109/SCIS-ISIS.2014.7044685
– ident: e_1_2_7_40_1
  doi: 10.1109/TGRS.2015.2478379
– ident: e_1_2_7_9_1
  doi: 10.1109/JSTARS.2011.2173906
– ident: e_1_2_7_10_1
  doi: 10.1109/LGRS.2004.824762
– ident: e_1_2_7_18_1
  doi: 10.1007/s11042-017-4724-8
– ident: e_1_2_7_6_1
  doi: 10.1109/ICIP.2003.1246661
– ident: e_1_2_7_11_1
  doi: 10.1109/IPTA.2010.5586739
– ident: e_1_2_7_42_1
  doi: 10.1109/TGRS.2010.2098413
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neucom.2014.06.052
– ident: e_1_2_7_16_1
– ident: e_1_2_7_41_1
  doi: 10.1109/LGRS.2018.2888580
– ident: e_1_2_7_19_1
  doi: 10.1109/LSP.2005.862604
– ident: e_1_2_7_15_1
  doi: 10.1109/JSTARS.2014.2320754
– ident: e_1_2_7_39_1
  doi: 10.1109/TGRS.2004.831865
– ident: e_1_2_7_5_1
  doi: 10.1109/36.823937
– ident: e_1_2_7_32_1
  doi: 10.1109/TIT.2009.2027527
– ident: e_1_2_7_7_1
  doi: 10.1109/LGRS.2005.859942
– ident: e_1_2_7_8_1
  doi: 10.1049/el.2010.1788
– ident: e_1_2_7_13_1
  doi: 10.1109/IGARSS.2005.1526121
– ident: e_1_2_7_17_1
  doi: 10.1109/TSP.2006.881199
– ident: e_1_2_7_26_1
  doi: 10.1109/MSP.2013.2297439
– volume: 19
  issue: 1
  year: 2002
  ident: e_1_2_7_2_1
  article-title: Hyperspectral image data analysis
  publication-title: IEEE
– ident: e_1_2_7_35_1
  doi: 10.1364/OE.20.010658
– ident: e_1_2_7_14_1
  doi: 10.1109/LGRS.2006.888109
– ident: e_1_2_7_25_1
  doi: 10.1137/07070111X
– ident: e_1_2_7_36_1
  doi: 10.1109/TCYB.2016.2605044
– ident: e_1_2_7_4_1
  doi: 10.1109/LGRS.2016.2644726
– ident: e_1_2_7_33_1
  doi: 10.1109/TSP.2016.2620965
– ident: e_1_2_7_28_1
  doi: 10.1109/TSP.2017.2690524
SSID ssj0059085
Score 2.3420804
Snippet Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change detection, and...
Abstract Hyperspectral image and videos provide rich spectral information content, which facilitates accurate classification, unmixing, temporal change...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 964
SubjectTerms Computer vision and image processing techniques
Image and video coding
Instrumentation and techniques for geophysical, hydrospheric and lower atmosphere research
Optical, image and video signal processing
Video signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8iHrz4Lc4vAnpRrOvy0SRHFce8zCEKu5UmTWSg3eimf795STcciF68lfKalPfalxfye78fQueyICkVLktsIYuEFZYnhStNwk0GiLayVCqKTYh-Xw6HavBN6gswYZEeODquzaR2GQM1Fc3hKFhxLoi2jkvBnDYh-_pB55upmINByJuHVkgQkc-4mhOTMtUeTWpy3SGpEEtLUWDsX65QwxLT3UIbTW2Ib-I7baMVW-2gzaZOxM1fON1Fjz2_eYw9krW3H737nHCFoaFujAEiHqGtFQZM-yv2KaOeWjwLAAoMgPVxjUsLhg1gaw-9dO-f73pJI4yQGNYBZgUqhXJ-pU1TzbTUzGrWERbc7csBV5KCUgs87MQIxqgpUqF9eZp2bGYJKSndR6vVuLIHCPvHS7_Js9I4zZS1svAjcS0pTTU1SrXQxdxHuWlYw0G84i0Pp9dM5eDPPPizhc4WtpPIlfGj1S24emEB_Nbhho963kQ9_yvqLXQZAvXLPPnD4ImEq8P_mPEIrROAswT42TFandUf9gStmc_ZaFqfhq_vC9X-3Ag
  priority: 102
  providerName: Directory of Open Access Journals
Title Hyperspectral image, video compression using sparse tucker tensor decomposition
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12077
https://doaj.org/article/48bf646737b5420895572bef5874fbc2
Volume 15
WOSCitedRecordID wos000605065500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-9667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059085
  issn: 1751-9659
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RpYde2EJbsRSQJXpp1UDij9iWuFAE2r1sV6hVuUW246CVYIOyC7-_HifZCgkhVVyiKBonkcdjj5M37wF8UYamTFZ54o0yCTdeJKYqXSJcjoi2stS6FZuQ06m6vtazDTjta2Fafoj1BzeMjDhfY4Ab26qQhKQ2OHF-39DjjKZSvoHNLGMKhRson_XzMIp5i1gOiULyudA9OSnXJ__aPlmOImv_0yw1LjOXw9e94HvY6tJLctaOh23Y8IsdGHapJukCefkBfo7D_rMts2yC_fwuTCvfCdbk1QRR5i06dkEQFn9DwqzTLD1ZRQwGQcx73ZDSo2GH-foIvy8vfp2Pk05bIXE8Q3IGpqSuwmKdppZbZbm3PJMePRYyiqqkhjGPVO7USc6ZM6m0IcNNM597SkvGPsFgUS_8LpDQvAz7RK9cZbn2XplwJ2EVY6llTusRfO27uHAd8TjqX9wW8Qc41wX2VBF7agRHa9v7lm7jWasf6Km1BVJkxwt1c1N0EVdwZaucowyPFYgh0EJIan0llOSVdXQE36L3XnhOMZld0Xi29z_Gn-EdReRLRKrtw2DVPPgDeOseV_NlcxgH6WHc-4fjn8n0Lx256zw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS-QwFD54A31xXHfF8RrQF2WrnVya5FHFYQbdUURZ30qTpsOAzkhn9Pebk3ZGhGVBfCvlpC1JzslJ-p3vAzhUGY2ZLJLIZSqLeOZElBW5jYRNENGW51pXYhOy11OPj_q2xuZgLUzFDzE7cEPPCPEaHRwPpKsNJ0eSzMFLSU9aNJZyHha5zzRQueFvtzcNxKjmLUI9JCrJJ0JP2Um5Pv1o-2k9CrT9n9PUsM60G9_8wjVYrRNMclbNiB8w54br0KiTTVK78vgn3HT8DrQqtCy9_eDZB5bfBKvyRgRx5hU-dkgQGN8nPu6UY0cmAYVBEPU-Kknu0LBGff2Ch_bl_UUnqtUVIstbSM_AlNSFX67j2HCjDHeGt6TDMfM5RZHTjDGHZO7USs6ZzWJpfI4bt1ziKM0Z24CF4WjoNoH45rnfKTplC8O1cyrzTxJGMRYbZrVuwtG0j1NbU4-jAsZTGn6Bc51iT6Whp5pwMLN9qQg3_ml1jkM1s0CS7HBjVPbT2udSrkyRcBTiMQJRBFoISY0rhJK8MJY24TgM33_ek3Zv72i42vqK8T4sd-7_XKfX3d7VNqxQxMEE3NoOLEzKV7cLS_ZtMhiXe2HGvgOnFe2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD5sXSl9WbeuY9lVsL5s1K2tiyU97hZaNrJQVuibseSjENiS4KT7_dORnZRCKZS9GXNkG-ncJH_nOwCHpua50KHMsDZ1JmtUWR0anylfEqKtaaztmk3o0chcXtpxj82hWpiOH2Jz4EaWkfw1GTgumtBtOCWRZE4XLT8ueK71Q3gklS5Iqbkcrx0xdfNWqR6SOsmXyq7ZSaU9uR57Ix4l2v6baWqKM8O9__zCJ_C4TzDZp04jnsIDnO3DXp9sst6Ul8_g52ncgXaFlm2Un_6JjuWIUVXenBHOvMPHzhgB4ycs-p12iWyVUBiMUO_zljVIgj3q6wAuht9-fTnN-u4KmZcF0TMIo22I4TrPnXTGSXSy0EhrFnOK0PBaCCQyd-61lMLXuXYxx80LLJHzRojnsDWbz_AFsDi8iTtFND44aRFNHZ-knBEid8JbO4AP6zmufE89Th0wflfpF7i0Fc1UlWZqAO83souOcONWqc-0VBsJIslON-btpOptrpLGhVJSIx6nCEVgldLcYVBGy-A8H8DHtHx3vKc6G5_zdPXyPsLvYGf8dVj9OBt9fwW7nGAwCbb2GrZW7RW-gW3_dzVdtm-Twv4D1XDspw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperspectral+image%2C+video+compression+using+sparse+tucker+tensor+decomposition&rft.jtitle=IET+image+processing&rft.au=Das%2C+Samiran&rft.date=2021-03-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=15&rft.issue=4&rft.spage=964&rft.epage=973&rft_id=info:doi/10.1049%2Fipr2.12077&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12077
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon