Warship formation extraction and recognition based on density‐based spatial clustering of applications with noise and improved convolutional neural network
Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of...
Gespeichert in:
| Veröffentlicht in: | IET radar, sonar & navigation Jg. 16; H. 12; S. 1912 - 1923 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Wiley
01.12.2022
|
| Schlagworte: | |
| ISSN: | 1751-8784, 1751-8792 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors. |
|---|---|
| AbstractList | Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors. Abstract Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors. |
| Author | He, Haotian Wu, Ling Hu, Xianjun |
| Author_xml | – sequence: 1 givenname: Haotian orcidid: 0000-0001-5748-8375 surname: He fullname: He, Haotian email: 2016302590222@whu.edu.cn organization: Naval University of Engineering – sequence: 2 givenname: Ling surname: Wu fullname: Wu, Ling organization: Naval University of Engineering – sequence: 3 givenname: Xianjun surname: Hu fullname: Hu, Xianjun organization: Naval University of Engineering |
| BookMark | eNp9kU1OHDEQha0IpABhkxN4jTRgd_uvlwglAQklUhLE0qr2z2DosVt2D8PsOAIXyOVykvR0RyxQlFW9Kr33Leodor2YokPoIyWnlLDmLJdYndKqJvwdOqCS04WSTbX3qhV7jw5LuSeEc8GaA_TrFnK5Cz32Ka9gCCli9zRkMJOEaHF2Ji1jmPYWirN4FNbFEobt7-eX-VT6MQsdNt26DC6HuMTJY-j7LpiJWvAmDHc4plDchA2rPqfHMWpSfEzdemcaAdGt8zSGTcoPH9C-h66447_zCN18_vTz4nJx_e3L1cX59cIwyviCV8R465QFLiQA8IrWxBBhRSVdC9Jyz4SXvrLKqEYo1RjqiG_BtqRmbV0foauZaxPc6z6HFeStThD0dEh5qSEPwXRON7VpDbXSMy8YryUQMLVUSghCmaNmZJ3MLJNTKdn5Vx4leleS3pWkp5JGM3ljNmGYHjZ2ELp_R-gc2YTObf8D199_fK3mzB9uzK0F |
| CitedBy_id | crossref_primary_10_3389_fenrg_2023_1250717 crossref_primary_10_3390_ijgi14060214 crossref_primary_10_1007_s40747_025_01863_3 crossref_primary_10_1002_rnc_7453 |
| Cites_doi | 10.1155/2020/1648573 10.1016/0031‐3203(81)90009‐1 10.1007/s10898‐020‐00950‐8 10.1109/access.2018.2814605 10.1016/j.cja.2020.09.035 10.1007/s11042‐021‐11469‐9 10.1016/j.eswa.2021.115270 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/rsn2.12305 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8792 |
| EndPage | 1923 |
| ExternalDocumentID | oai_doaj_org_article_93cbc1d7f4f64537a0ac378866014e1c 10_1049_rsn2_12305 RSN212305 |
| Genre | article |
| GroupedDBID | .DC 0R~ 0ZK 1OC 24P 29I 4.4 4IJ 6IK 8FE 8FG 8VB 96U AAHHS AAHJG AAJGR ABJCF ABMDY ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADEYR ADZOD AEEZP AEGXH AENEX AEQDE AFAZI AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS AVUZU BENPR BGLVJ CCPQU DU5 EBS EJD ESX F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFIPE IGS IPLJI ITC JAVBF K1G L6V LAI M43 M7S MCNEO MS~ NXXTH O9- OCL OK1 P62 PTHSS QWB RIE RNS ROL RUI S0W U5U UNMZH ZL0 AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA IMI PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c4145-520cfde8da567aaa52130c06d627eba7d5f46f7f2d8c896889c1e0fbadb034b33 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8784 |
| IngestDate | Mon Nov 10 04:34:30 EST 2025 Wed Oct 29 21:16:39 EDT 2025 Tue Nov 18 20:57:31 EST 2025 Wed Jan 22 16:23:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4145-520cfde8da567aaa52130c06d627eba7d5f46f7f2d8c896889c1e0fbadb034b33 |
| ORCID | 0000-0001-5748-8375 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12305 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_93cbc1d7f4f64537a0ac378866014e1c crossref_primary_10_1049_rsn2_12305 crossref_citationtrail_10_1049_rsn2_12305 wiley_primary_10_1049_rsn2_12305_RSN212305 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | IET radar, sonar & navigation |
| PublicationYear | 2022 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2021; 79 2018; 6 2021; 34 2020; 2020 2010; 35 2020; 41 2013; 35 2020 2021; 28 1981; 13 2019 2008; 35 2017 2021; 183 2016 2012; 25 2016; 37 2021; 81 e_1_2_8_19_1 e_1_2_8_16_1 Liu W. (e_1_2_8_5_1) 2020; 41 Chollet F. (e_1_2_8_15_1) 2017 Leng H.P. (e_1_2_8_3_1) 2013; 35 Jie (e_1_2_8_17_1) 2019 Dong S.Q. (e_1_2_8_2_1) 2010; 35 Lou J.X. (e_1_2_8_9_1) 2021; 28 e_1_2_8_7_1 e_1_2_8_6_1 He K. (e_1_2_8_14_1) 2016 Krizhevsky A. (e_1_2_8_18_1) 2012; 25 Feng S.R. (e_1_2_8_8_1) 2008; 35 Wang Q. (e_1_2_8_13_1) 2020 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 Zhang Y.F. (e_1_2_8_4_1) 2016; 37 |
| References_xml | – volume: 183 issue: 5 year: 2021 article-title: DeepShip: an underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification publication-title: Expert Syst. Appl. – volume: 28 start-page: 64 issue: 5 year: 2021 end-page: 75 article-title: A Review on kernel learning method of moving target tracking publication-title: Aero Weaponry – volume: 2020 start-page: 1 issue: 23 year: 2020 end-page: 9 article-title: Spectral clustering algorithm based on improved Gaussian kernel function and beetle antennae search with damping factor publication-title: Comput. Intell. Neurosci. – year: 2019 article-title: Squeeze‐and‐Excitation networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 81 start-page: 2095 issue: 2 year: 2021 end-page: 2126 article-title: Adaptive hough transform with optimized deep learning followed by dynamic time warping for hand gesture recognition publication-title: Multimed. Tool. Appl. – volume: 35 start-page: 103 issue: 02 year: 2013 end-page: 106 article-title: Recognition of naval fleet line type formation based on domain knowledge publication-title: Ship Sci. Technol – volume: 41 start-page: 85 issue: 2 year: 2020 end-page: 89 article-title: Study on formation recognition and target selection method of shipborne aircraft against warship formation publication-title: J. Ordnance Equip. Eng. – volume: 25 issue: 2 year: 2012 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 13 start-page: 111 issue: 2 year: 1981 end-page: 122 article-title: Generalizing the Hough transform to detect arbitrary shapes publication-title: Pattern Recogn. – year: 2020 – volume: 79 start-page: 1 issue: 1 year: 2021 end-page: 18 article-title: A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem publication-title: J. Global Optim. – volume: 37 start-page: 648 issue: 04 year: 2016 end-page: 655 article-title: Warship Formation Recognition Algorithm Based on Hough Transform and Clustering publication-title: Acta Armamentarii – volume: 35 start-page: 523 issue: 3 year: 2008 end-page: 529 article-title: New method to improve DBSCAN clustering algorithm quality publication-title: J. Xidian Univ. – year: 2017 – year: 2016 – volume: 6 start-page: 18967 issue: 99 year: 2018 end-page: 18974 article-title: An improved ResNet based on the adjustable shortcut connections publication-title: IEEE Access – volume: 35 start-page: 167 issue: 11 year: 2010 end-page: 169 article-title: Identification algorithm of combat warship formation based on similarity between spatial directions publication-title: Fire Control & Command Control. – volume: 34 start-page: 165 issue: 2 year: 2021 end-page: 181 article-title: An unsupervised pattern recognition methodology based on factor analysis and a genetic‐DBSCAN algorithm to infer operational conditions from strain measurements in structural applications publication-title: Chin. J. Aeronaut. – volume: 25 issue: 2 year: 2012 ident: e_1_2_8_18_1 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume-title: Xception: Deep Learning with Depthwise Separable Convolutions year: 2017 ident: e_1_2_8_15_1 – volume: 28 start-page: 64 issue: 5 year: 2021 ident: e_1_2_8_9_1 article-title: A Review on kernel learning method of moving target tracking publication-title: Aero Weaponry – ident: e_1_2_8_10_1 doi: 10.1155/2020/1648573 – volume: 37 start-page: 648 issue: 04 year: 2016 ident: e_1_2_8_4_1 article-title: Warship Formation Recognition Algorithm Based on Hough Transform and Clustering publication-title: Acta Armamentarii – year: 2019 ident: e_1_2_8_17_1 article-title: Squeeze‐and‐Excitation networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_8_11_1 doi: 10.1016/0031‐3203(81)90009‐1 – ident: e_1_2_8_7_1 doi: 10.1007/s10898‐020‐00950‐8 – ident: e_1_2_8_19_1 doi: 10.1109/access.2018.2814605 – ident: e_1_2_8_6_1 doi: 10.1016/j.cja.2020.09.035 – volume: 35 start-page: 167 issue: 11 year: 2010 ident: e_1_2_8_2_1 article-title: Identification algorithm of combat warship formation based on similarity between spatial directions publication-title: Fire Control & Command Control. – ident: e_1_2_8_12_1 doi: 10.1007/s11042‐021‐11469‐9 – volume-title: Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2016 ident: e_1_2_8_14_1 – volume: 35 start-page: 103 issue: 02 year: 2013 ident: e_1_2_8_3_1 article-title: Recognition of naval fleet line type formation based on domain knowledge publication-title: Ship Sci. Technol – volume: 41 start-page: 85 issue: 2 year: 2020 ident: e_1_2_8_5_1 article-title: Study on formation recognition and target selection method of shipborne aircraft against warship formation publication-title: J. Ordnance Equip. Eng. – volume: 35 start-page: 523 issue: 3 year: 2008 ident: e_1_2_8_8_1 article-title: New method to improve DBSCAN clustering algorithm quality publication-title: J. Xidian Univ. – volume-title: ECA‐Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) year: 2020 ident: e_1_2_8_13_1 – ident: e_1_2_8_16_1 doi: 10.1016/j.eswa.2021.115270 |
| SSID | ssj0055649 |
| Score | 2.3597896 |
| Snippet | Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous... Abstract Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1912 |
| SubjectTerms | convolutional neural network DBSCAN deep learning formation extraction formation recognition |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSiQxEA4iHvSw-MuOrhLQywqt3Unl76iieJBBdEVvTX5hQHpkZlzw5iPsC_hy-yQm6Z5hBHEve-p0SCdNV3VVJfnyFUIH1DMDlNJCS0YK8FQVGoAUyiojDPVG6swzeyX6ffnwoK7nUn0lTFhLD9x-uGNFrbGVEwECB0aFLrVNHOg8ziTAVzZZ31Ko6WSqtcGM8Rz4Rt9Yxf9dwpSYFNTxaNyQo2ivU8K6OVeUGfs_RqjZxVysom9dbIhP2ndaQwu-WUcrc4yBG-jtXmfcMZ4dOsTRuo7a0wlYNw7PEEHxPrkoh2PBJZj65OXv65-2apxw1HEo-_iciBJi13gY8PxmNk4LtLgZDsY-dzvIiw_x0QRT79Q1dpDoMPMlg8k30d3F-a-zy6LLsFBYqIDFWWhpg_PSacaF1jr6clrakjtOhDdaOBaABxGIk1YqLqWylS-D0c6UFAylW2ixGTb-O8Kq8jFyDFYDcWDAS-INsEAU1zpQXvXQz-nHrm1HP56yYDzWeRscVJ0EU2fB9ND-rO1TS7rxaavTJLNZi0SUnSui-tSd-tT_Up8eOswS_2Kc-ua2T3Jp-3-MuIOWSTpCkSExP9DiZPTsd9GS_T0ZjEd7WY3fAfED-x0 priority: 102 providerName: Directory of Open Access Journals |
| Title | Warship formation extraction and recognition based on density‐based spatial clustering of applications with noise and improved convolutional neural network |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12305 https://doaj.org/article/93cbc1d7f4f64537a0ac378866014e1c |
| Volume | 16 |
| WOSCitedRecordID | wos000843538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-8792 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8792 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055649 issn: 1751-8784 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxUxEA6l9UEfvIvHSwnoi8LqJplkE_BFxaIgh-KF9m3JtRwoe2TPqeCbP6F_wD_XX9Jkds_aggjiy242TJIlmZlMkpkvhDwVUToQQlRWS15BFKayALwy3rjGiei0RZzZj818rg8Pzf4WebWJhRnwIaYNtyIZqK-LgFs33EKSjdo8iP2q4y-y3i0ApjuMiabwNIf9jR6WUqHxm-dHlmVewwacFMzL32UvTUeI2n_ZSsVpZu_G__3gTXJ9NC_p64EfbpGt2N0m1y6ADt4hvw4sui7TKW6RZgXdDwEO1HaBTk5F-bvMcoHmRCie7usfZz9Ph6xVccXOTfnjk4K1kKumy0QvnofTssdLu-ViFbHaBe5f5KLF033k-FxBQdTEF_qj3yVf9959efu-Gi9pqDwwkHkhW_sUog5WqsZam80BUftaBcWb6GwTZAKVmsSD9toorY1nsU7OBlcLcELcI9vdsov3CTUsZuMzeQs8gIOoeXQgEzfK2iQUm5Fnm7Fq_YhgXi7SOG7xJB1MW7q8xS6fkScT7bcBt-OPVG_KkE8UBWsbM5b9UTuKbmuEd56FJkFSIEVja-sLCr_Ka1mIzM_Ic2SDv7TTfvo855h68C_ED8lVXqIt0HvmEdle9yfxMbniv68Xq34XuX0XNxHy8-DD_BwdRQnU |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFA6lFtQLrX-4VmtAbxRGZ5KTTHKpYqm4LkUr9m7IryyUWZndCt75CL6AL-eTNCczO7ZQhOLVZMKZZEjOX5JzvhDylAdhgXNeGCVYAYHrwgCwQjtta8uDVSbjzE7r2UwdHemDITYHc2F6fIhxww0lI-trFHDckO4XnIAgmd2yZS-S4kUE0yuQzAxeYMDgYK2IhZDZ-00GskpCr2CNTgr65d9vz9mjDNt_3k3Ndmbv5n_-4Ta5MTiY9FXPEbfIRmhvk-tnYAfvkN9fTA5epmPmIk0quutTHKhpPR3DitI72jlPU8FjrPvqx5-fv_qqJQZjp67c8QmiLaSm6SLSsyfiFHd5abuYL0Nudp53MNKnGOs-8HxqADE18yNHpN8ln_feHr7ZL4ZrGgoHFYi0lC1d9EF5I2RtjEkOAS9dKb1kdbCm9iKCjHVkXjmlpVLaVaGM1nhbcrCc3yOb7aIN9wnVVUjuZ3QGmAcLQbFgQUSmpTGRy2pCnq0nq3EDhjlepXHc5LN00A0OeZOHfEKejLTfeuSOC6le45yPFIi2nSsW3ddmEN5Gc2dd5esIUYLgtSmNQxx-mVazECo3Ic8zH_yjn-bjpxnLpQeXIX5Mru4ffpg203ez9zvkGsPcixxL85BsrrqT8Ihsue-r-bLbzax_CkPQC7I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5SRfTBesWtVQP6ojB2JjnJJI9WXRTLsnjBvg25ykKZLbNboW_9Cf4B_5y_xJzM7NiCCOLTZMKZZEjOLck5Xwh5yoOwwDkvjBKsgMB1YQBYoZ22teXBKpNxZg_q2UwdHur5EJuDuTA9PsS44YaSkfU1Cng49rFfcAKCZHarlr1IihcRTC-DSEoWgZ1hvlHEQsjs_SYDWSWhV7BBJwW99_vbC_Yow_ZfdFOznZlu_-cf3iQ3BgeTvuw54ha5FNrb5Po52ME75McXk4OX6Zi5SJOK7voUB2paT8ewovSOds7TVPAY674-_Xn2va9aYTB26sodnSDaQmqaLiM9fyJOcZeXtsvFKuRmF3kHI32Kse4Dz6cGEFMzP3JE-l3yefrm06u3xXBNQ-GgApGWsqWLPihvhKyNMckh4KUrpZesDtbUXkSQsY7MK6e0VEq7KpTRGm9LDpbze2SrXbbhPqG6Csn9jM4A82AhKBYsiMi0NCZyWU3Is81kNW7AMMerNI6afJYOusEhb_KQT8iTkfa4R-74I9U-zvlIgWjbuWLZfW0G4W00d9ZVvo4QJQhem9I4xOGXaTULoXIT8jzzwV_6aT58nLFc2vkX4sfk6vz1tDl4N3v_gFxjmHqRQ2l2yda6OwkPyRX3bb1YdY8y5_8C2oMLNg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warship+formation+extraction+and+recognition+based+on+density%E2%80%90based+spatial+clustering+of+applications+with+noise+and+improved+convolutional+neural+network&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=He%2C+Haotian&rft.au=Wu%2C+Ling&rft.au=Hu%2C+Xianjun&rft.date=2022-12-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=16&rft.issue=12&rft.spage=1912&rft.epage=1923&rft_id=info:doi/10.1049%2Frsn2.12305&rft.externalDBID=10.1049%252Frsn2.12305&rft.externalDocID=RSN212305 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon |