Warship formation extraction and recognition based on density‐based spatial clustering of applications with noise and improved convolutional neural network

Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET radar, sonar & navigation Jg. 16; H. 12; S. 1912 - 1923
Hauptverfasser: He, Haotian, Wu, Ling, Hu, Xianjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.12.2022
Schlagworte:
ISSN:1751-8784, 1751-8792
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors.
AbstractList Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors.
Abstract Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous decision‐making. However, few studies have explored formation extraction prior to recognition. This paper introduces a density‐based spatial clustering of applications with noise (DBSCAN) method based on Gaussian kernel to extract formation targets. On this basis, a depthwise separable convolutional neural network (DSCNN) method is proposed for formation recognition. A track simulation system is established to form a track dataset containing three different proportions of clutter, and the formation extraction method is examined using track dataset. Subsequently, the image dataset with eight different types of formation is formulated, on the basis of various detection errors, the DSCNN method for formation recognition is compared with several typical deep learning methods. As exposed in experimental results, the DBSCAN method based on Gaussian kernel can guarantee accurate extraction of formation targets subject to different proportions of clutter. Hence, it is greatly robust and capable of effective formation extraction. Under different radar detection errors, the formation recognition accuracy of DSCNN is 91.5%–99.5%, which achieves performance improvement by up to 12.5% compared with other deep learning methods. The combination of DBSCAN and DSCNN can well realise formation extraction and recognition with different proportions of clutter in tracks and various radar detection errors.
Author He, Haotian
Wu, Ling
Hu, Xianjun
Author_xml – sequence: 1
  givenname: Haotian
  orcidid: 0000-0001-5748-8375
  surname: He
  fullname: He, Haotian
  email: 2016302590222@whu.edu.cn
  organization: Naval University of Engineering
– sequence: 2
  givenname: Ling
  surname: Wu
  fullname: Wu, Ling
  organization: Naval University of Engineering
– sequence: 3
  givenname: Xianjun
  surname: Hu
  fullname: Hu, Xianjun
  organization: Naval University of Engineering
BookMark eNp9kU1OHDEQha0IpABhkxN4jTRgd_uvlwglAQklUhLE0qr2z2DosVt2D8PsOAIXyOVykvR0RyxQlFW9Kr33Leodor2YokPoIyWnlLDmLJdYndKqJvwdOqCS04WSTbX3qhV7jw5LuSeEc8GaA_TrFnK5Cz32Ka9gCCli9zRkMJOEaHF2Ji1jmPYWirN4FNbFEobt7-eX-VT6MQsdNt26DC6HuMTJY-j7LpiJWvAmDHc4plDchA2rPqfHMWpSfEzdemcaAdGt8zSGTcoPH9C-h66447_zCN18_vTz4nJx_e3L1cX59cIwyviCV8R465QFLiQA8IrWxBBhRSVdC9Jyz4SXvrLKqEYo1RjqiG_BtqRmbV0foauZaxPc6z6HFeStThD0dEh5qSEPwXRON7VpDbXSMy8YryUQMLVUSghCmaNmZJ3MLJNTKdn5Vx4leleS3pWkp5JGM3ljNmGYHjZ2ELp_R-gc2YTObf8D199_fK3mzB9uzK0F
CitedBy_id crossref_primary_10_3389_fenrg_2023_1250717
crossref_primary_10_3390_ijgi14060214
crossref_primary_10_1007_s40747_025_01863_3
crossref_primary_10_1002_rnc_7453
Cites_doi 10.1155/2020/1648573
10.1016/0031‐3203(81)90009‐1
10.1007/s10898‐020‐00950‐8
10.1109/access.2018.2814605
10.1016/j.cja.2020.09.035
10.1007/s11042‐021‐11469‐9
10.1016/j.eswa.2021.115270
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
DOA
DOI 10.1049/rsn2.12305
DatabaseName Wiley Online Library Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8792
EndPage 1923
ExternalDocumentID oai_doaj_org_article_93cbc1d7f4f64537a0ac378866014e1c
10_1049_rsn2_12305
RSN212305
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABMDY
ABQXS
ACCFJ
ACCMX
ACESK
ACGFS
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
IMI
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4145-520cfde8da567aaa52130c06d627eba7d5f46f7f2d8c896889c1e0fbadb034b33
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000843538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8784
IngestDate Mon Nov 10 04:34:30 EST 2025
Wed Oct 29 21:16:39 EDT 2025
Tue Nov 18 20:57:31 EST 2025
Wed Jan 22 16:23:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4145-520cfde8da567aaa52130c06d627eba7d5f46f7f2d8c896889c1e0fbadb034b33
ORCID 0000-0001-5748-8375
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12305
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_93cbc1d7f4f64537a0ac378866014e1c
crossref_primary_10_1049_rsn2_12305
crossref_citationtrail_10_1049_rsn2_12305
wiley_primary_10_1049_rsn2_12305_RSN212305
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle IET radar, sonar & navigation
PublicationYear 2022
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 79
2018; 6
2021; 34
2020; 2020
2010; 35
2020; 41
2013; 35
2020
2021; 28
1981; 13
2019
2008; 35
2017
2021; 183
2016
2012; 25
2016; 37
2021; 81
e_1_2_8_19_1
e_1_2_8_16_1
Liu W. (e_1_2_8_5_1) 2020; 41
Chollet F. (e_1_2_8_15_1) 2017
Leng H.P. (e_1_2_8_3_1) 2013; 35
Jie (e_1_2_8_17_1) 2019
Dong S.Q. (e_1_2_8_2_1) 2010; 35
Lou J.X. (e_1_2_8_9_1) 2021; 28
e_1_2_8_7_1
e_1_2_8_6_1
He K. (e_1_2_8_14_1) 2016
Krizhevsky A. (e_1_2_8_18_1) 2012; 25
Feng S.R. (e_1_2_8_8_1) 2008; 35
Wang Q. (e_1_2_8_13_1) 2020
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
Zhang Y.F. (e_1_2_8_4_1) 2016; 37
References_xml – volume: 183
  issue: 5
  year: 2021
  article-title: DeepShip: an underwater acoustic benchmark dataset and a separable convolution based autoencoder for classification
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 64
  issue: 5
  year: 2021
  end-page: 75
  article-title: A Review on kernel learning method of moving target tracking
  publication-title: Aero Weaponry
– volume: 2020
  start-page: 1
  issue: 23
  year: 2020
  end-page: 9
  article-title: Spectral clustering algorithm based on improved Gaussian kernel function and beetle antennae search with damping factor
  publication-title: Comput. Intell. Neurosci.
– year: 2019
  article-title: Squeeze‐and‐Excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 81
  start-page: 2095
  issue: 2
  year: 2021
  end-page: 2126
  article-title: Adaptive hough transform with optimized deep learning followed by dynamic time warping for hand gesture recognition
  publication-title: Multimed. Tool. Appl.
– volume: 35
  start-page: 103
  issue: 02
  year: 2013
  end-page: 106
  article-title: Recognition of naval fleet line type formation based on domain knowledge
  publication-title: Ship Sci. Technol
– volume: 41
  start-page: 85
  issue: 2
  year: 2020
  end-page: 89
  article-title: Study on formation recognition and target selection method of shipborne aircraft against warship formation
  publication-title: J. Ordnance Equip. Eng.
– volume: 25
  issue: 2
  year: 2012
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 13
  start-page: 111
  issue: 2
  year: 1981
  end-page: 122
  article-title: Generalizing the Hough transform to detect arbitrary shapes
  publication-title: Pattern Recogn.
– year: 2020
– volume: 79
  start-page: 1
  issue: 1
  year: 2021
  end-page: 18
  article-title: A combination of RANSAC and DBSCAN methods for solving the multiple geometrical object detection problem
  publication-title: J. Global Optim.
– volume: 37
  start-page: 648
  issue: 04
  year: 2016
  end-page: 655
  article-title: Warship Formation Recognition Algorithm Based on Hough Transform and Clustering
  publication-title: Acta Armamentarii
– volume: 35
  start-page: 523
  issue: 3
  year: 2008
  end-page: 529
  article-title: New method to improve DBSCAN clustering algorithm quality
  publication-title: J. Xidian Univ.
– year: 2017
– year: 2016
– volume: 6
  start-page: 18967
  issue: 99
  year: 2018
  end-page: 18974
  article-title: An improved ResNet based on the adjustable shortcut connections
  publication-title: IEEE Access
– volume: 35
  start-page: 167
  issue: 11
  year: 2010
  end-page: 169
  article-title: Identification algorithm of combat warship formation based on similarity between spatial directions
  publication-title: Fire Control & Command Control.
– volume: 34
  start-page: 165
  issue: 2
  year: 2021
  end-page: 181
  article-title: An unsupervised pattern recognition methodology based on factor analysis and a genetic‐DBSCAN algorithm to infer operational conditions from strain measurements in structural applications
  publication-title: Chin. J. Aeronaut.
– volume: 25
  issue: 2
  year: 2012
  ident: e_1_2_8_18_1
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume-title: Xception: Deep Learning with Depthwise Separable Convolutions
  year: 2017
  ident: e_1_2_8_15_1
– volume: 28
  start-page: 64
  issue: 5
  year: 2021
  ident: e_1_2_8_9_1
  article-title: A Review on kernel learning method of moving target tracking
  publication-title: Aero Weaponry
– ident: e_1_2_8_10_1
  doi: 10.1155/2020/1648573
– volume: 37
  start-page: 648
  issue: 04
  year: 2016
  ident: e_1_2_8_4_1
  article-title: Warship Formation Recognition Algorithm Based on Hough Transform and Clustering
  publication-title: Acta Armamentarii
– year: 2019
  ident: e_1_2_8_17_1
  article-title: Squeeze‐and‐Excitation networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: e_1_2_8_11_1
  doi: 10.1016/0031‐3203(81)90009‐1
– ident: e_1_2_8_7_1
  doi: 10.1007/s10898‐020‐00950‐8
– ident: e_1_2_8_19_1
  doi: 10.1109/access.2018.2814605
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cja.2020.09.035
– volume: 35
  start-page: 167
  issue: 11
  year: 2010
  ident: e_1_2_8_2_1
  article-title: Identification algorithm of combat warship formation based on similarity between spatial directions
  publication-title: Fire Control & Command Control.
– ident: e_1_2_8_12_1
  doi: 10.1007/s11042‐021‐11469‐9
– volume-title: Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: e_1_2_8_14_1
– volume: 35
  start-page: 103
  issue: 02
  year: 2013
  ident: e_1_2_8_3_1
  article-title: Recognition of naval fleet line type formation based on domain knowledge
  publication-title: Ship Sci. Technol
– volume: 41
  start-page: 85
  issue: 2
  year: 2020
  ident: e_1_2_8_5_1
  article-title: Study on formation recognition and target selection method of shipborne aircraft against warship formation
  publication-title: J. Ordnance Equip. Eng.
– volume: 35
  start-page: 523
  issue: 3
  year: 2008
  ident: e_1_2_8_8_1
  article-title: New method to improve DBSCAN clustering algorithm quality
  publication-title: J. Xidian Univ.
– volume-title: ECA‐Net: Efficient Channel Attention for Deep Convolutional Neural Networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2020
  ident: e_1_2_8_13_1
– ident: e_1_2_8_16_1
  doi: 10.1016/j.eswa.2021.115270
SSID ssj0055649
Score 2.3597896
Snippet Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous...
Abstract Formation recognition is a significant focus of maritime target recognition. Automatic formation extraction and recognition facilitate autonomous...
SourceID doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1912
SubjectTerms convolutional neural network
DBSCAN
deep learning
formation extraction
formation recognition
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSiQxEA4iHvSw-MuOrhLQywqt3Unl76iieJBBdEVvTX5hQHpkZlzw5iPsC_hy-yQm6Z5hBHEve-p0SCdNV3VVJfnyFUIH1DMDlNJCS0YK8FQVGoAUyiojDPVG6swzeyX6ffnwoK7nUn0lTFhLD9x-uGNFrbGVEwECB0aFLrVNHOg8ziTAVzZZ31Ko6WSqtcGM8Rz4Rt9Yxf9dwpSYFNTxaNyQo2ivU8K6OVeUGfs_RqjZxVysom9dbIhP2ndaQwu-WUcrc4yBG-jtXmfcMZ4dOsTRuo7a0wlYNw7PEEHxPrkoh2PBJZj65OXv65-2apxw1HEo-_iciBJi13gY8PxmNk4LtLgZDsY-dzvIiw_x0QRT79Q1dpDoMPMlg8k30d3F-a-zy6LLsFBYqIDFWWhpg_PSacaF1jr6clrakjtOhDdaOBaABxGIk1YqLqWylS-D0c6UFAylW2ixGTb-O8Kq8jFyDFYDcWDAS-INsEAU1zpQXvXQz-nHrm1HP56yYDzWeRscVJ0EU2fB9ND-rO1TS7rxaavTJLNZi0SUnSui-tSd-tT_Up8eOswS_2Kc-ua2T3Jp-3-MuIOWSTpCkSExP9DiZPTsd9GS_T0ZjEd7WY3fAfED-x0
  priority: 102
  providerName: Directory of Open Access Journals
Title Warship formation extraction and recognition based on density‐based spatial clustering of applications with noise and improved convolutional neural network
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Frsn2.12305
https://doaj.org/article/93cbc1d7f4f64537a0ac378866014e1c
Volume 16
WOSCitedRecordID wos000843538400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8792
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055649
  issn: 1751-8784
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxUxEA6l9UEfvIvHSwnoi8LqJplkE_BFxaIgh-KF9m3JtRwoe2TPqeCbP6F_wD_XX9Jkds_aggjiy242TJIlmZlMkpkvhDwVUToQQlRWS15BFKayALwy3rjGiei0RZzZj818rg8Pzf4WebWJhRnwIaYNtyIZqK-LgFs33EKSjdo8iP2q4y-y3i0ApjuMiabwNIf9jR6WUqHxm-dHlmVewwacFMzL32UvTUeI2n_ZSsVpZu_G__3gTXJ9NC_p64EfbpGt2N0m1y6ADt4hvw4sui7TKW6RZgXdDwEO1HaBTk5F-bvMcoHmRCie7usfZz9Ph6xVccXOTfnjk4K1kKumy0QvnofTssdLu-ViFbHaBe5f5KLF033k-FxBQdTEF_qj3yVf9959efu-Gi9pqDwwkHkhW_sUog5WqsZam80BUftaBcWb6GwTZAKVmsSD9toorY1nsU7OBlcLcELcI9vdsov3CTUsZuMzeQs8gIOoeXQgEzfK2iQUm5Fnm7Fq_YhgXi7SOG7xJB1MW7q8xS6fkScT7bcBt-OPVG_KkE8UBWsbM5b9UTuKbmuEd56FJkFSIEVja-sLCr_Ka1mIzM_Ic2SDv7TTfvo855h68C_ED8lVXqIt0HvmEdle9yfxMbniv68Xq34XuX0XNxHy8-DD_BwdRQnU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFA6lFtQLrX-4VmtAbxRGZ5KTTHKpYqm4LkUr9m7IryyUWZndCt75CL6AL-eTNCczO7ZQhOLVZMKZZEjOX5JzvhDylAdhgXNeGCVYAYHrwgCwQjtta8uDVSbjzE7r2UwdHemDITYHc2F6fIhxww0lI-trFHDckO4XnIAgmd2yZS-S4kUE0yuQzAxeYMDgYK2IhZDZ-00GskpCr2CNTgr65d9vz9mjDNt_3k3Ndmbv5n_-4Ta5MTiY9FXPEbfIRmhvk-tnYAfvkN9fTA5epmPmIk0quutTHKhpPR3DitI72jlPU8FjrPvqx5-fv_qqJQZjp67c8QmiLaSm6SLSsyfiFHd5abuYL0Nudp53MNKnGOs-8HxqADE18yNHpN8ln_feHr7ZL4ZrGgoHFYi0lC1d9EF5I2RtjEkOAS9dKb1kdbCm9iKCjHVkXjmlpVLaVaGM1nhbcrCc3yOb7aIN9wnVVUjuZ3QGmAcLQbFgQUSmpTGRy2pCnq0nq3EDhjlepXHc5LN00A0OeZOHfEKejLTfeuSOC6le45yPFIi2nSsW3ddmEN5Gc2dd5esIUYLgtSmNQxx-mVazECo3Ic8zH_yjn-bjpxnLpQeXIX5Mru4ffpg203ez9zvkGsPcixxL85BsrrqT8Ihsue-r-bLbzax_CkPQC7I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA5SRfTBesWtVQP6ojB2JjnJJI9WXRTLsnjBvg25ykKZLbNboW_9Cf4B_5y_xJzM7NiCCOLTZMKZZEjOLck5Xwh5yoOwwDkvjBKsgMB1YQBYoZ22teXBKpNxZg_q2UwdHur5EJuDuTA9PsS44YaSkfU1Cng49rFfcAKCZHarlr1IihcRTC-DSEoWgZ1hvlHEQsjs_SYDWSWhV7BBJwW99_vbC_Yow_ZfdFOznZlu_-cf3iQ3BgeTvuw54ha5FNrb5Po52ME75McXk4OX6Zi5SJOK7voUB2paT8ewovSOds7TVPAY674-_Xn2va9aYTB26sodnSDaQmqaLiM9fyJOcZeXtsvFKuRmF3kHI32Kse4Dz6cGEFMzP3JE-l3yefrm06u3xXBNQ-GgApGWsqWLPihvhKyNMckh4KUrpZesDtbUXkSQsY7MK6e0VEq7KpTRGm9LDpbze2SrXbbhPqG6Csn9jM4A82AhKBYsiMi0NCZyWU3Is81kNW7AMMerNI6afJYOusEhb_KQT8iTkfa4R-74I9U-zvlIgWjbuWLZfW0G4W00d9ZVvo4QJQhem9I4xOGXaTULoXIT8jzzwV_6aT58nLFc2vkX4sfk6vz1tDl4N3v_gFxjmHqRQ2l2yda6OwkPyRX3bb1YdY8y5_8C2oMLNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Warship+formation+extraction+and+recognition+based+on+density%E2%80%90based+spatial+clustering+of+applications+with+noise+and+improved+convolutional+neural+network&rft.jtitle=IET+radar%2C+sonar+%26+navigation&rft.au=He%2C+Haotian&rft.au=Wu%2C+Ling&rft.au=Hu%2C+Xianjun&rft.date=2022-12-01&rft.issn=1751-8784&rft.eissn=1751-8792&rft.volume=16&rft.issue=12&rft.spage=1912&rft.epage=1923&rft_id=info:doi/10.1049%2Frsn2.12305&rft.externalDBID=10.1049%252Frsn2.12305&rft.externalDocID=RSN212305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8784&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8784&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8784&client=summon