Monolithic integration of four-colour InGaN-based nanocolumn LEDs

The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics letters Ročník 51; číslo 11; s. 852 - 854
Hlavní autoři: Kishino, K, Yanagihara, A, Ikeda, K, Yamano, K
Médium: Journal Article
Jazyk:angličtina
Vydáno: The Institution of Engineering and Technology 28.05.2015
Témata:
ISSN:0013-5194, 1350-911X, 1350-911X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)-colour-integrated nanocolumn LEDs.
AbstractList The monolithic integration of four‐colour indium gallium nitride (InGaN)‐based nanocolumn light‐emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue‐, sky‐blue‐, green‐ and yellow‐emitting micro‐LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red‐emitting micro‐LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm‐lattice‐constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)‐colour‐integrated nanocolumn LEDs.
The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1-4) with a 65 mu m diameter circular indium tin oxide emission window were arrayed in a 2 x 2 square lattice with a lattice constant of 190 mu m. LEDs 1-4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1-4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red-green-blue-yellow (RGBY)-colour-integrated nanocolumn LEDs.
The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)-colour-integrated nanocolumn LEDs.
Author Ikeda, K
Yamano, K
Kishino, K
Yanagihara, A
Author_xml – sequence: 1
  givenname: K
  surname: Kishino
  fullname: Kishino, K
  email: kishino@sophia.ac.jp
  organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan
– sequence: 2
  givenname: A
  surname: Yanagihara
  fullname: Yanagihara, A
  organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan
– sequence: 3
  givenname: K
  surname: Ikeda
  fullname: Ikeda, K
  organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan
– sequence: 4
  givenname: K
  surname: Yamano
  fullname: Yamano, K
  organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan
BookMark eNp9kM1KAzEURoNUsNbufIBZuHDh1CST-cmy1mktjLpRcBeSTEYjaVInM0jf3tQKilhXH1zOdy_3HIOBdVYBcIrgBEFCL5WZYIjSCcxzeACGKElhTBF6GoAhhCiJU0TJERh7rwVEBJEMEjQE01tnndHdi5aRtp16bnmnnY1cEzWub2PpTIhoaRf8Lhbcqzqy3Low7lc2qsprfwIOG268Gn_lCDzOy4fZTVzdL5azaRXLcIzEAocQAgqOijQRHFPe5DirKVYipZIoLJusyGqkMA0gJDKrlaQiySQXEmXJCJzv9q5b99Yr37GV9lIZw61yvWeogAXMSZIWAcU7VLbO-1Y1TOru86-u5dowBNlWGVOGbZWxrbJQuvhVWrd6xdvNPjzd4e_aqM2_LCurCl_NIU4p-X5Dq469Brc2SNt34uwPtKx-bF7XTfIB3vOXDw
CitedBy_id crossref_primary_10_1002_adfm_202209880
crossref_primary_10_1002_sdtp_12410
crossref_primary_10_3390_app10093050
crossref_primary_10_1063_5_0097267
crossref_primary_10_1016_j_pquantelec_2020_100263
crossref_primary_10_1016_j_pquantelec_2022_100401
crossref_primary_10_1002_pssa_201800420
crossref_primary_10_3390_cryst8040178
crossref_primary_10_1002_admi_202100300
crossref_primary_10_1063_5_0029292
crossref_primary_10_1515_nanoph_2021_0210
crossref_primary_10_1109_JQE_2022_3151965
crossref_primary_10_1093_nsr_nwae306
crossref_primary_10_1109_JQE_2018_2870439
crossref_primary_10_1002_lpor_201900141
crossref_primary_10_1016_j_apsusc_2022_153150
crossref_primary_10_1063_5_0136880
crossref_primary_10_1088_0957_4484_28_2_025202
crossref_primary_10_1002_pssr_202100628
crossref_primary_10_1364_AO_476400
crossref_primary_10_1002_sdtp_13897
crossref_primary_10_3390_coatings10080719
crossref_primary_10_1515_nanoph_2022_0388
crossref_primary_10_1016_j_mssp_2016_03_002
crossref_primary_10_35848_1882_0786_ad10ec
crossref_primary_10_1364_PRJ_450465
crossref_primary_10_1038_s41598_023_39791_2
crossref_primary_10_1109_MNANO_2019_2891370
crossref_primary_10_1088_1361_6641_ac3962
crossref_primary_10_1002_adom_202301472
crossref_primary_10_1002_jsid_899
crossref_primary_10_1088_1361_6528_aae76b
crossref_primary_10_1002_pssa_202500261
crossref_primary_10_1063_1_5142538
crossref_primary_10_3390_mi12040421
crossref_primary_10_1002_pssa_201900771
crossref_primary_10_1063_1_5022298
crossref_primary_10_1088_0022_3727_48_40_403001
crossref_primary_10_1007_s11664_017_5900_3
crossref_primary_10_1063_1_4968176
Cites_doi 10.1016/S0022-0248(97)00386-2
10.1143/JJAP.38.3976
10.1143/JJAP.36.L459
10.1016/j.jcrysgro.2008.11.056
10.1103/PhysRevB.62.16826
10.1063/1.3694674
10.1063/1.3443734
10.1016/j.jcrysgro.2006.11.036
10.7567/APEX.6.012101
10.1109/JQE.2014.2325013
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
DBID AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1049/el.2015.0770
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList CrossRef
Engineering Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1350-911X
EndPage 854
ExternalDocumentID 10_1049_el_2015_0770
ELL2BF02594
Genre rapidPublication
GrantInformation_xml – fundername: Ministry of Education, Culture, Sports, Science, and Technology
  grantid: Specially Promoted Research/24000013
– fundername: Ministry of Education, Culture, Sports, Science, and Technology
  funderid: Specially Promoted Research/24000013
GroupedDBID 0R
24P
29G
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ABZEH
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
F5P
HZ
IFIPE
IPLJI
JAVBF
KBT
LAI
LOTEE
LXI
LXO
LXU
M43
MS
NADUK
NXXTH
O9-
OCL
P2P
QWB
RIE
RNS
RUI
TN5
U5U
UNMZH
UNR
WH7
X
ZL0
ZZ
-4A
-~X
.DC
0R~
0ZK
1OC
2QL
3EH
4.4
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
ADIYS
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AI.
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BBWZM
BENPR
BGLVJ
CCPQU
EBS
EJD
ELQJU
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFBGX
ITC
K1G
K7-
L6V
M7S
MCNEO
MS~
OK1
P0-
P62
PTHSS
R4Z
RIG
VH1
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c4144-b2414bb0ba1853ba29af726d92eb59c4e2cf686d1e2914b04c6dec9b36cabc163
IEDL.DBID 24P
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354773500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0013-5194
1350-911X
IngestDate Fri Sep 05 13:14:53 EDT 2025
Wed Oct 29 21:16:25 EDT 2025
Tue Nov 18 21:45:01 EST 2025
Wed Jan 22 16:59:09 EST 2025
Tue Jan 05 21:46:16 EST 2021
Thu May 09 18:34:50 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords gallium compounds
multiple quantum wells
ITO
monolithic integration
lattice constant
indium compounds
integrated optoelectronics
light-emitting diodes
lattice constants
blue-emitting microLED
light emitting diodes
four-colour InGaN-based nanocolumn LED
InGaN-GaN
circular indium tin oxide emission window
triangular lattice
semiconductor quantum wells
yellow-emitting microLED
nanoelectronics
wide band gap semiconductors
sky-blue-emitting microLED
green-emitting microLED
size 65 mum to 231 nm
III-V semiconductors
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4144-b2414bb0ba1853ba29af726d92eb59c4e2cf686d1e2914b04c6dec9b36cabc163
Notes K. Kishino: Also with the Sophia Nanotechnology Research Center, Sophia University, Tokyo, Japan
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2015.0770
PQID 1808074358
PQPubID 23500
PageCount 3
ParticipantIDs wiley_primary_10_1049_el_2015_0770_ELL2BF02594
crossref_citationtrail_10_1049_el_2015_0770
crossref_primary_10_1049_el_2015_0770
iet_journals_10_1049_el_2015_0770
proquest_miscellaneous_1808074358
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2015-05-28
PublicationDateYYYYMMDD 2015-05-28
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-28
  day: 28
PublicationDecade 2010
PublicationTitle Electronics letters
PublicationYear 2015
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Kishino, K.; Nagashima, K.; Yamano, K. (C1) 2013; 6
Li, S.; Waag, A. (C7) 2012; 111
Calleja, E.; Sánchez-García, M.A.; Sánchez, F.J.; Calle, F.; Naranji, F.B.; Muñoz, E.; Jahn, U.; Ploog, K. (C5) 2000; 62
Sekiguchi, H.; Kishino, K.; Kikuchi, A. (C8) 2010; 96
Kishino, K.; Sekiguchi, H.; Kikuchi, A. (C9) 2009; 311
Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. (C3) 1997; 36
Mukai, T.; Yamada, M.; Nakamura, S. (C2) 1999; 38
Kishino, K.; Koji, K. (C10) 2014; 50
Sanchez-Garcia, M.A.; Calleja, E.; Monroy, E.; Sanchez, F.J.; Calle, F.; Muñoz, E.; Beresford, R. (C4) 1998; 183
Sekiguchi, H.; Nakazato, T.; Kikuchi, A.; Kishino, K. (C6) 2007; 300
2000; 62
2007; 300
2009; 311
2012; 111
2014; 50
2013; 6
2010; 96
1999; 38
1997; 36
1998; 183
e_1_2_7_6_1
e_1_2_7_11_1
e_1_2_7_5_1
e_1_2_7_10_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_2_1
References_xml – volume: 62
  start-page: 16826
  year: 2000
  end-page: 16834
  ident: C5
  article-title: Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy
  publication-title: Phys. Rev. B
– volume: 96
  start-page: 231104
  year: 2010
  ident: C8
  article-title: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate
  publication-title: Appl. Phys. Lett.
– volume: 38
  start-page: 3976
  year: 1999
  end-page: 3981
  ident: C2
  article-title: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes
  publication-title: Jpn. J. Appl. Phys.
– volume: 300
  start-page: 259
  year: 2007
  end-page: 262
  ident: C6
  article-title: Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by RF-plasma-assisted molecular-beam epitaxy
  publication-title: J. Cryst. Growth
– volume: 111
  start-page: 071101-1
  year: 2012
  end-page: 071101-23
  ident: C7
  article-title: GaN based nanorods for solid state lighting
  publication-title: J. Appl. Phys.
– volume: 36
  start-page: L459
  year: 1997
  end-page: L462
  ident: C3
  article-title: Growth of self-organized GaN nanostructures on Al O (0001) by RF-radical source molecular beam epitaxy
  publication-title: Jpn. J. Appl. Phys.
– volume: 311
  start-page: 2063
  year: 2009
  end-page: 2068
  ident: C9
  article-title: Improved Ti-mask selective-area growth (SAG) by RF-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays
  publication-title: J. Cryst. Growth
– volume: 183
  start-page: 23
  year: 1998
  end-page: 30
  ident: C4
  article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111)
  publication-title: J. Cryst. Growth
– volume: 50
  start-page: 538
  year: 2014
  end-page: 547
  ident: C10
  article-title: Green-light nanocolumn light emitting diodes with triangular-lattice uniform arrays of InGaN-based nanocolumns
  publication-title: IEEE J. Quantum Electron.
– volume: 6
  start-page: 012101-1
  year: 2013
  end-page: 012101-3
  ident: C1
  article-title: Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors
  publication-title: Appl. Phys. Express
– volume: 96
  start-page: 231104
  year: 2010
  article-title: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate
  publication-title: Appl. Phys. Lett.
– volume: 311
  start-page: 2063
  year: 2009
  end-page: 2068
  article-title: Improved Ti‐mask selective‐area growth (SAG) by RF‐plasma‐assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays
  publication-title: J. Cryst. Growth
– volume: 111
  start-page: 071101‐1
  year: 2012
  end-page: 071101‐23
  article-title: GaN based nanorods for solid state lighting
  publication-title: J. Appl. Phys.
– volume: 50
  start-page: 538
  year: 2014
  end-page: 547
  article-title: Green‐light nanocolumn light emitting diodes with triangular‐lattice uniform arrays of InGaN‐based nanocolumns
  publication-title: IEEE J. Quantum Electron.
– volume: 300
  start-page: 259
  year: 2007
  end-page: 262
  article-title: Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by RF‐plasma‐assisted molecular‐beam epitaxy
  publication-title: J. Cryst. Growth
– volume: 6
  start-page: 012101‐1
  year: 2013
  end-page: 012101‐3
  article-title: Monolithic integration of InGaN‐based nanocolumn light‐emitting diodes with different emission colors
  publication-title: Appl. Phys. Express
– volume: 38
  start-page: 3976
  year: 1999
  end-page: 3981
  article-title: Characteristics of InGaN‐based UV/blue/green/amber/red light‐emitting diodes
  publication-title: Jpn. J. Appl. Phys.
– volume: 36
  start-page: L459
  year: 1997
  end-page: L462
  article-title: Growth of self‐organized GaN nanostructures on Al O (0001) by RF‐radical source molecular beam epitaxy
  publication-title: Jpn. J. Appl. Phys.
– volume: 183
  start-page: 23
  year: 1998
  end-page: 30
  article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN‐ and AlN‐layers grown by molecular beam epitaxy on Si(111)
  publication-title: J. Cryst. Growth
– volume: 62
  start-page: 16826
  year: 2000
  end-page: 16834
  article-title: Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy
  publication-title: Phys. Rev. B
– ident: e_1_2_7_5_1
  doi: 10.1016/S0022-0248(97)00386-2
– ident: e_1_2_7_3_1
  doi: 10.1143/JJAP.38.3976
– ident: e_1_2_7_4_1
  doi: 10.1143/JJAP.36.L459
– ident: e_1_2_7_10_1
  doi: 10.1016/j.jcrysgro.2008.11.056
– ident: e_1_2_7_6_1
  doi: 10.1103/PhysRevB.62.16826
– ident: e_1_2_7_8_1
  doi: 10.1063/1.3694674
– ident: e_1_2_7_9_1
  doi: 10.1063/1.3443734
– ident: e_1_2_7_7_1
  doi: 10.1016/j.jcrysgro.2006.11.036
– ident: e_1_2_7_2_1
  doi: 10.7567/APEX.6.012101
– ident: e_1_2_7_11_1
  doi: 10.1109/JQE.2014.2325013
SSID ssib014146041
ssj0012997
Score 2.3981233
Snippet The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated...
The monolithic integration of four‐colour indium gallium nitride (InGaN)‐based nanocolumn light‐emitting diodes (LEDs) is demonstrated. In the integrated...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 852
SubjectTerms Arrays
blue‐emitting microLED
circular indium tin oxide emission window
Emission
four‐colour InGaN‐based nanocolumn LED
gallium compounds
Gallium nitrides
green‐emitting microLED
III‐V semiconductors
indium compounds
Indium gallium nitrides
InGaN‐GaN
integrated optoelectronics
ITO
lattice constant
lattice constants
Lattice parameters
Lattices
Light-emitting diodes
monolithic integration
multiple quantum wells
nanoelectronics
Nanostructure
Photonics
semiconductor quantum wells
size 65 mum to 231 nm
sky‐blue‐emitting microLED
triangular lattice
wide band gap semiconductors
yellow‐emitting microLED
Title Monolithic integration of four-colour InGaN-based nanocolumn LEDs
URI http://digital-library.theiet.org/content/journals/10.1049/el.2015.0770
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2015.0770
https://www.proquest.com/docview/1808074358
Volume 51
WOSCitedRecordID wos000354773500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1350-911X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012997
  issn: 0013-5194
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7FqJYKeJJpsNo89-mi1UEoPir2FfQULJSl9ePYn-Bv9Jc4kaW0PFcRLIMnMsOxkZr7d2cwQcgEQSGpHBGBI3LcZdZgdJZ60haTauMbxEi7yZhNhux11u7xTbrjhvzBFfYjZhhtaRu6v0cCFLLqQAKhFJWLiwPWvnTCEJfua63oRtm6grDPLIoCrzZureL6DRt0tD74D_80890JIWu2Z8QLanMesedBpbP93uDtkq4Sb1m3xfeySFZPukc25IoT7pA5mjYfg3nrKmhaPAGVZWWIlwP718YmFrSdDq5k-ijbcYuDTVirSTKFrS61W_WF0QF4a9ef7J7tsrmArBosoW0LoZlI6UmDEloJykYQ00Jwa6XPFDFVJEAXaNZQDocNUoI3i0guUkApQ3CGppFlqjogVuoL7fkSVZiBUBREDn-mGidFMM25ElVxN5zdWZeVxbIDRj_MMOOOx6cc4OTFOTpVczqgHRcWNJXTnoKq4NLnREpraAk299fMuHugEZEwVHYNZYa5EpCabgDSstwnoyo-qpNDrr4MByS161wAAydnxXxlOyAY-xzMJNDollfFwYmpkXb2Pe6PhWf5Jw_W12f4G1Cz2ww
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VFIlygFJADdCyleipcrHX68ceeSQkqmtxCGpuq31ZRIrsKA_O_AR-I7-EGdsJySFIqEfLM6PVzs7Mt971N4S8Awikra9iCCQReZz53EuLUHtKM-sC54eFUHWziSTP0_FYfG37nOK_MA0_xOaDG0ZGna8xwPGDdLPh5EiS6fDkIIiu_SSBPfshB6yBvRvuhvnmGAFybd1dJYx8jOpxe_Md9N9va-_UpAcTt9yBm9ugta46_af3Hu8xedICTvqhWSHPyIErT8jjLRrC56QHgY3X4L5PDF3TR4C7aFXQAtR___yF1NarOR2WX1QOj1j6LC1VWRlMbiXNep8XL8i3fm_0aeC17RU8w2Eb5Wko3lxrXyus2VoxoYqExVYwpyNhuGOmiNPYBo4JEPS5ia0zQoexUdoAjntJOmVVulNCk0CJKEqZsRyMmjjlkDWDpHCWWy6c6pKr9QRL03KPYwuMqazPwLmQbipxciROTpdcbqRnDefGHrkL8JVsg26xR-ZsR6aX_X0nZ7YAG2tPSwgsPC1RpatWYA0ZNwFfRWmXNI7952DAcsY-9gFCCv7qfxXekkeD0W0ms2F-85ocoQzeUGDpG9JZzlfujDw0P5aTxfy8Xt9_AF2B-gw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58IXrwLVatRtCTRJPN5rFHH62KpfSg0Nuyr2BBUunDsz_B3-gvcSZJa3uoIB5DZoZlZ-exmck3hJxCCqSMJyMwJB66jHrMTdJAuVJRY33rBSmX-bCJuNlM2m3eKuec4r8wBT7E-IMbWkbur9HA7ZtJiwsnQ5BMi5UDP7zw4hju7IssjH081pS1xmUE8LX5dJUg9NCq22XnO_BfTnJPxaT5jh1MpZuTSWsederr_17vBlkrE07nqjghm2TOZltkdQKGcJvUwLCxDe6lo50RfASoy-mmTgrsXx-fCG097DkP2Z1swiOGPuNkMutqdG6Z06jd9nfIc732dHPvluMVXM3gGuUqCN5MKU9JjNlKUi7TmEaGU6tCrpmlOo2SyPiWciD0mI6M1VwFkZZKQx63Sxaybmb3iBP7kodhQrVhIFRHCQOv6cepNcwwbmWFnI82WOgSexxHYLyKvAbOuLCvAjdH4OZUyNmY-q3A3JhBdwK6EqXR9WfQVKdoao2fdwL0AzJGmhZgWFgtkZntDkEaIm5CfhUmFVIo9tfFgOQGva5DCsnZ_l8Zjsly67YuGg_NxwOygiTYoECTQ7Iw6A1tlSzp90Gn3zvKj_c3cPD5Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monolithic+integration+of+four-colour+InGaN-based+nanocolumn+LEDs&rft.jtitle=Electronics+letters&rft.au=Kishino%2C+K&rft.au=Yanagihara%2C+A&rft.au=Ikeda%2C+K&rft.au=Yamano%2C+K&rft.date=2015-05-28&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=51&rft.issue=11&rft.spage=852&rft.epage=854&rft_id=info:doi/10.1049%2Fel.2015.0770&rft.externalDocID=10_1049_el_2015_0770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon