Monolithic integration of four-colour InGaN-based nanocolumn LEDs
The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission w...
Uloženo v:
| Vydáno v: | Electronics letters Ročník 51; číslo 11; s. 852 - 854 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
The Institution of Engineering and Technology
28.05.2015
|
| Témata: | |
| ISSN: | 0013-5194, 1350-911X, 1350-911X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)-colour-integrated nanocolumn LEDs. |
|---|---|
| AbstractList | The monolithic integration of four‐colour indium gallium nitride (InGaN)‐based nanocolumn light‐emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue‐, sky‐blue‐, green‐ and yellow‐emitting micro‐LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red‐emitting micro‐LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm‐lattice‐constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)‐colour‐integrated nanocolumn LEDs. The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1-4) with a 65 mu m diameter circular indium tin oxide emission window were arrayed in a 2 x 2 square lattice with a lattice constant of 190 mu m. LEDs 1-4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1-4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red-green-blue-yellow (RGBY)-colour-integrated nanocolumn LEDs. The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated nanocolumn LED unit, blue-, sky-blue-, green- and yellow-emitting micro-LEDs (LEDs 1–4) with a 65 μm diameter circular indium tin oxide emission window were arrayed in a 2 × 2 square lattice with a lattice constant of 190 μm. LEDs 1–4 consisted of nanocolumn arrays arranged in a triangular lattice with a lattice constant of 300 nm and their nanocolumn diameters at the position of the InGaN/gallium nitride (GaN) multiple quantum wells (MQWs) were 119, 145, 188 and 231 nm, respectively. The increase in nanocolumn diameter from LED 1 to LED 4 resulted in increasing emission peak wavelengths, which were 465, 489, 510 and 570 nm for LEDs 1–4, respectively. On the same substrate, a red-emitting micro-LED was prepared, in which the nanocolumn diameter was increased to 260 nm by using a 350 nm-lattice-constant nanocolumn array. A combination of different lattice constants in an integrated LED unit is expected to contribute to the achievement of red–green–blue–yellow (RGBY)-colour-integrated nanocolumn LEDs. |
| Author | Ikeda, K Yamano, K Kishino, K Yanagihara, A |
| Author_xml | – sequence: 1 givenname: K surname: Kishino fullname: Kishino, K email: kishino@sophia.ac.jp organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan – sequence: 2 givenname: A surname: Yanagihara fullname: Yanagihara, A organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan – sequence: 3 givenname: K surname: Ikeda fullname: Ikeda, K organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan – sequence: 4 givenname: K surname: Yamano fullname: Yamano, K organization: Sophia University, 7-1 Kioicho Chiyodaku, Tokyo 102-8554, Japan |
| BookMark | eNp9kM1KAzEURoNUsNbufIBZuHDh1CST-cmy1mktjLpRcBeSTEYjaVInM0jf3tQKilhXH1zOdy_3HIOBdVYBcIrgBEFCL5WZYIjSCcxzeACGKElhTBF6GoAhhCiJU0TJERh7rwVEBJEMEjQE01tnndHdi5aRtp16bnmnnY1cEzWub2PpTIhoaRf8Lhbcqzqy3Low7lc2qsprfwIOG268Gn_lCDzOy4fZTVzdL5azaRXLcIzEAocQAgqOijQRHFPe5DirKVYipZIoLJusyGqkMA0gJDKrlaQiySQXEmXJCJzv9q5b99Yr37GV9lIZw61yvWeogAXMSZIWAcU7VLbO-1Y1TOru86-u5dowBNlWGVOGbZWxrbJQuvhVWrd6xdvNPjzd4e_aqM2_LCurCl_NIU4p-X5Dq469Brc2SNt34uwPtKx-bF7XTfIB3vOXDw |
| CitedBy_id | crossref_primary_10_1002_adfm_202209880 crossref_primary_10_1002_sdtp_12410 crossref_primary_10_3390_app10093050 crossref_primary_10_1063_5_0097267 crossref_primary_10_1016_j_pquantelec_2020_100263 crossref_primary_10_1016_j_pquantelec_2022_100401 crossref_primary_10_1002_pssa_201800420 crossref_primary_10_3390_cryst8040178 crossref_primary_10_1002_admi_202100300 crossref_primary_10_1063_5_0029292 crossref_primary_10_1515_nanoph_2021_0210 crossref_primary_10_1109_JQE_2022_3151965 crossref_primary_10_1093_nsr_nwae306 crossref_primary_10_1109_JQE_2018_2870439 crossref_primary_10_1002_lpor_201900141 crossref_primary_10_1016_j_apsusc_2022_153150 crossref_primary_10_1063_5_0136880 crossref_primary_10_1088_0957_4484_28_2_025202 crossref_primary_10_1002_pssr_202100628 crossref_primary_10_1364_AO_476400 crossref_primary_10_1002_sdtp_13897 crossref_primary_10_3390_coatings10080719 crossref_primary_10_1515_nanoph_2022_0388 crossref_primary_10_1016_j_mssp_2016_03_002 crossref_primary_10_35848_1882_0786_ad10ec crossref_primary_10_1364_PRJ_450465 crossref_primary_10_1038_s41598_023_39791_2 crossref_primary_10_1109_MNANO_2019_2891370 crossref_primary_10_1088_1361_6641_ac3962 crossref_primary_10_1002_adom_202301472 crossref_primary_10_1002_jsid_899 crossref_primary_10_1088_1361_6528_aae76b crossref_primary_10_1002_pssa_202500261 crossref_primary_10_1063_1_5142538 crossref_primary_10_3390_mi12040421 crossref_primary_10_1002_pssa_201900771 crossref_primary_10_1063_1_5022298 crossref_primary_10_1088_0022_3727_48_40_403001 crossref_primary_10_1007_s11664_017_5900_3 crossref_primary_10_1063_1_4968176 |
| Cites_doi | 10.1016/S0022-0248(97)00386-2 10.1143/JJAP.38.3976 10.1143/JJAP.36.L459 10.1016/j.jcrysgro.2008.11.056 10.1103/PhysRevB.62.16826 10.1063/1.3694674 10.1063/1.3443734 10.1016/j.jcrysgro.2006.11.036 10.7567/APEX.6.012101 10.1109/JQE.2014.2325013 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology |
| DBID | AAYXX CITATION 7SP 8FD F28 FR3 L7M |
| DOI | 10.1049/el.2015.0770 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
| DatabaseTitleList | CrossRef Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1350-911X |
| EndPage | 854 |
| ExternalDocumentID | 10_1049_el_2015_0770 ELL2BF02594 |
| Genre | rapidPublication |
| GrantInformation_xml | – fundername: Ministry of Education, Culture, Sports, Science, and Technology grantid: Specially Promoted Research/24000013 – fundername: Ministry of Education, Culture, Sports, Science, and Technology funderid: Specially Promoted Research/24000013 |
| GroupedDBID | 0R 24P 29G 4IJ 5GY 6IK 8VB AAJGR ABPTK ABZEH ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX F5P HZ IFIPE IPLJI JAVBF KBT LAI LOTEE LXI LXO LXU M43 MS NADUK NXXTH O9- OCL P2P QWB RIE RNS RUI TN5 U5U UNMZH UNR WH7 X ZL0 ZZ -4A -~X .DC 0R~ 0ZK 1OC 2QL 3EH 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ACCFJ ACCMX ACESK ACGFO ACXQS ADEYR ADIYS ADZOD AEEZP AEGXH AEQDE AFAZI AFKRA AI. AIAGR AIWBW AJBDE ALUQN ARAPS AVUZU BBWZM BENPR BGLVJ CCPQU EBS EJD ELQJU F8P GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO IFBGX ITC K1G K7- L6V M7S MCNEO MS~ OK1 P0- P62 PTHSS R4Z RIG VH1 ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA PHGZM PHGZT PQGLB WIN 7SP 8FD F28 FR3 L7M |
| ID | FETCH-LOGICAL-c4144-b2414bb0ba1853ba29af726d92eb59c4e2cf686d1e2914b04c6dec9b36cabc163 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354773500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0013-5194 1350-911X |
| IngestDate | Fri Sep 05 13:14:53 EDT 2025 Wed Oct 29 21:16:25 EDT 2025 Tue Nov 18 21:45:01 EST 2025 Wed Jan 22 16:59:09 EST 2025 Tue Jan 05 21:46:16 EST 2021 Thu May 09 18:34:50 EDT 2019 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | gallium compounds multiple quantum wells ITO monolithic integration lattice constant indium compounds integrated optoelectronics light-emitting diodes lattice constants blue-emitting microLED light emitting diodes four-colour InGaN-based nanocolumn LED InGaN-GaN circular indium tin oxide emission window triangular lattice semiconductor quantum wells yellow-emitting microLED nanoelectronics wide band gap semiconductors sky-blue-emitting microLED green-emitting microLED size 65 mum to 231 nm III-V semiconductors |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4144-b2414bb0ba1853ba29af726d92eb59c4e2cf686d1e2914b04c6dec9b36cabc163 |
| Notes | K. Kishino: Also with the Sophia Nanotechnology Research Center, Sophia University, Tokyo, Japan ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/el.2015.0770 |
| PQID | 1808074358 |
| PQPubID | 23500 |
| PageCount | 3 |
| ParticipantIDs | wiley_primary_10_1049_el_2015_0770_ELL2BF02594 crossref_citationtrail_10_1049_el_2015_0770 crossref_primary_10_1049_el_2015_0770 iet_journals_10_1049_el_2015_0770 proquest_miscellaneous_1808074358 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2015-05-28 |
| PublicationDateYYYYMMDD | 2015-05-28 |
| PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationTitle | Electronics letters |
| PublicationYear | 2015 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Kishino, K.; Nagashima, K.; Yamano, K. (C1) 2013; 6 Li, S.; Waag, A. (C7) 2012; 111 Calleja, E.; Sánchez-García, M.A.; Sánchez, F.J.; Calle, F.; Naranji, F.B.; Muñoz, E.; Jahn, U.; Ploog, K. (C5) 2000; 62 Sekiguchi, H.; Kishino, K.; Kikuchi, A. (C8) 2010; 96 Kishino, K.; Sekiguchi, H.; Kikuchi, A. (C9) 2009; 311 Yoshizawa, M.; Kikuchi, A.; Mori, M.; Fujita, N.; Kishino, K. (C3) 1997; 36 Mukai, T.; Yamada, M.; Nakamura, S. (C2) 1999; 38 Kishino, K.; Koji, K. (C10) 2014; 50 Sanchez-Garcia, M.A.; Calleja, E.; Monroy, E.; Sanchez, F.J.; Calle, F.; Muñoz, E.; Beresford, R. (C4) 1998; 183 Sekiguchi, H.; Nakazato, T.; Kikuchi, A.; Kishino, K. (C6) 2007; 300 2000; 62 2007; 300 2009; 311 2012; 111 2014; 50 2013; 6 2010; 96 1999; 38 1997; 36 1998; 183 e_1_2_7_6_1 e_1_2_7_11_1 e_1_2_7_5_1 e_1_2_7_10_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_2_1 |
| References_xml | – volume: 62 start-page: 16826 year: 2000 end-page: 16834 ident: C5 article-title: Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy publication-title: Phys. Rev. B – volume: 96 start-page: 231104 year: 2010 ident: C8 article-title: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate publication-title: Appl. Phys. Lett. – volume: 38 start-page: 3976 year: 1999 end-page: 3981 ident: C2 article-title: Characteristics of InGaN-based UV/blue/green/amber/red light-emitting diodes publication-title: Jpn. J. Appl. Phys. – volume: 300 start-page: 259 year: 2007 end-page: 262 ident: C6 article-title: Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by RF-plasma-assisted molecular-beam epitaxy publication-title: J. Cryst. Growth – volume: 111 start-page: 071101-1 year: 2012 end-page: 071101-23 ident: C7 article-title: GaN based nanorods for solid state lighting publication-title: J. Appl. Phys. – volume: 36 start-page: L459 year: 1997 end-page: L462 ident: C3 article-title: Growth of self-organized GaN nanostructures on Al O (0001) by RF-radical source molecular beam epitaxy publication-title: Jpn. J. Appl. Phys. – volume: 311 start-page: 2063 year: 2009 end-page: 2068 ident: C9 article-title: Improved Ti-mask selective-area growth (SAG) by RF-plasma-assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays publication-title: J. Cryst. Growth – volume: 183 start-page: 23 year: 1998 end-page: 30 ident: C4 article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si(111) publication-title: J. Cryst. Growth – volume: 50 start-page: 538 year: 2014 end-page: 547 ident: C10 article-title: Green-light nanocolumn light emitting diodes with triangular-lattice uniform arrays of InGaN-based nanocolumns publication-title: IEEE J. Quantum Electron. – volume: 6 start-page: 012101-1 year: 2013 end-page: 012101-3 ident: C1 article-title: Monolithic integration of InGaN-based nanocolumn light-emitting diodes with different emission colors publication-title: Appl. Phys. Express – volume: 96 start-page: 231104 year: 2010 article-title: Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate publication-title: Appl. Phys. Lett. – volume: 311 start-page: 2063 year: 2009 end-page: 2068 article-title: Improved Ti‐mask selective‐area growth (SAG) by RF‐plasma‐assisted molecular beam epitaxy demonstrating extremely uniform GaN nanocolumn arrays publication-title: J. Cryst. Growth – volume: 111 start-page: 071101‐1 year: 2012 end-page: 071101‐23 article-title: GaN based nanorods for solid state lighting publication-title: J. Appl. Phys. – volume: 50 start-page: 538 year: 2014 end-page: 547 article-title: Green‐light nanocolumn light emitting diodes with triangular‐lattice uniform arrays of InGaN‐based nanocolumns publication-title: IEEE J. Quantum Electron. – volume: 300 start-page: 259 year: 2007 end-page: 262 article-title: Structural and optical properties of GaN nanocolumns grown on (0001) sapphire substrates by RF‐plasma‐assisted molecular‐beam epitaxy publication-title: J. Cryst. Growth – volume: 6 start-page: 012101‐1 year: 2013 end-page: 012101‐3 article-title: Monolithic integration of InGaN‐based nanocolumn light‐emitting diodes with different emission colors publication-title: Appl. Phys. Express – volume: 38 start-page: 3976 year: 1999 end-page: 3981 article-title: Characteristics of InGaN‐based UV/blue/green/amber/red light‐emitting diodes publication-title: Jpn. J. Appl. Phys. – volume: 36 start-page: L459 year: 1997 end-page: L462 article-title: Growth of self‐organized GaN nanostructures on Al O (0001) by RF‐radical source molecular beam epitaxy publication-title: Jpn. J. Appl. Phys. – volume: 183 start-page: 23 year: 1998 end-page: 30 article-title: The effect of the III/V ratio and substrate temperature on the morphology and properties of GaN‐ and AlN‐layers grown by molecular beam epitaxy on Si(111) publication-title: J. Cryst. Growth – volume: 62 start-page: 16826 year: 2000 end-page: 16834 article-title: Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy publication-title: Phys. Rev. B – ident: e_1_2_7_5_1 doi: 10.1016/S0022-0248(97)00386-2 – ident: e_1_2_7_3_1 doi: 10.1143/JJAP.38.3976 – ident: e_1_2_7_4_1 doi: 10.1143/JJAP.36.L459 – ident: e_1_2_7_10_1 doi: 10.1016/j.jcrysgro.2008.11.056 – ident: e_1_2_7_6_1 doi: 10.1103/PhysRevB.62.16826 – ident: e_1_2_7_8_1 doi: 10.1063/1.3694674 – ident: e_1_2_7_9_1 doi: 10.1063/1.3443734 – ident: e_1_2_7_7_1 doi: 10.1016/j.jcrysgro.2006.11.036 – ident: e_1_2_7_2_1 doi: 10.7567/APEX.6.012101 – ident: e_1_2_7_11_1 doi: 10.1109/JQE.2014.2325013 |
| SSID | ssib014146041 ssj0012997 |
| Score | 2.3981233 |
| Snippet | The monolithic integration of four-colour indium gallium nitride (InGaN)-based nanocolumn light-emitting diodes (LEDs) is demonstrated. In the integrated... The monolithic integration of four‐colour indium gallium nitride (InGaN)‐based nanocolumn light‐emitting diodes (LEDs) is demonstrated. In the integrated... |
| SourceID | proquest crossref wiley iet |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 852 |
| SubjectTerms | Arrays blue‐emitting microLED circular indium tin oxide emission window Emission four‐colour InGaN‐based nanocolumn LED gallium compounds Gallium nitrides green‐emitting microLED III‐V semiconductors indium compounds Indium gallium nitrides InGaN‐GaN integrated optoelectronics ITO lattice constant lattice constants Lattice parameters Lattices Light-emitting diodes monolithic integration multiple quantum wells nanoelectronics Nanostructure Photonics semiconductor quantum wells size 65 mum to 231 nm sky‐blue‐emitting microLED triangular lattice wide band gap semiconductors yellow‐emitting microLED |
| Title | Monolithic integration of four-colour InGaN-based nanocolumn LEDs |
| URI | http://digital-library.theiet.org/content/journals/10.1049/el.2015.0770 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fel.2015.0770 https://www.proquest.com/docview/1808074358 |
| Volume | 51 |
| WOSCitedRecordID | wos000354773500028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1350-911X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012997 issn: 0013-5194 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60etCDb7FqJYKeJJpsNo89-mi1UEoPir2FfQULJSl9ePYn-Bv9Jc4kaW0PFcRLIMnMsOxkZr7d2cwQcgEQSGpHBGBI3LcZdZgdJZ60haTauMbxEi7yZhNhux11u7xTbrjhvzBFfYjZhhtaRu6v0cCFLLqQAKhFJWLiwPWvnTCEJfua63oRtm6grDPLIoCrzZureL6DRt0tD74D_80890JIWu2Z8QLanMesedBpbP93uDtkq4Sb1m3xfeySFZPukc25IoT7pA5mjYfg3nrKmhaPAGVZWWIlwP718YmFrSdDq5k-ijbcYuDTVirSTKFrS61W_WF0QF4a9ef7J7tsrmArBosoW0LoZlI6UmDEloJykYQ00Jwa6XPFDFVJEAXaNZQDocNUoI3i0guUkApQ3CGppFlqjogVuoL7fkSVZiBUBREDn-mGidFMM25ElVxN5zdWZeVxbIDRj_MMOOOx6cc4OTFOTpVczqgHRcWNJXTnoKq4NLnREpraAk299fMuHugEZEwVHYNZYa5EpCabgDSstwnoyo-qpNDrr4MByS161wAAydnxXxlOyAY-xzMJNDollfFwYmpkXb2Pe6PhWf5Jw_W12f4G1Cz2ww |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF6VFIlygFJADdCyleipcrHX68ceeSQkqmtxCGpuq31ZRIrsKA_O_AR-I7-EGdsJySFIqEfLM6PVzs7Mt971N4S8Awikra9iCCQReZz53EuLUHtKM-sC54eFUHWziSTP0_FYfG37nOK_MA0_xOaDG0ZGna8xwPGDdLPh5EiS6fDkIIiu_SSBPfshB6yBvRvuhvnmGAFybd1dJYx8jOpxe_Md9N9va-_UpAcTt9yBm9ugta46_af3Hu8xedICTvqhWSHPyIErT8jjLRrC56QHgY3X4L5PDF3TR4C7aFXQAtR___yF1NarOR2WX1QOj1j6LC1VWRlMbiXNep8XL8i3fm_0aeC17RU8w2Eb5Wko3lxrXyus2VoxoYqExVYwpyNhuGOmiNPYBo4JEPS5ia0zQoexUdoAjntJOmVVulNCk0CJKEqZsRyMmjjlkDWDpHCWWy6c6pKr9QRL03KPYwuMqazPwLmQbipxciROTpdcbqRnDefGHrkL8JVsg26xR-ZsR6aX_X0nZ7YAG2tPSwgsPC1RpatWYA0ZNwFfRWmXNI7952DAcsY-9gFCCv7qfxXekkeD0W0ms2F-85ocoQzeUGDpG9JZzlfujDw0P5aTxfy8Xt9_AF2B-gw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58IXrwLVatRtCTRJPN5rFHH62KpfSg0Nuyr2BBUunDsz_B3-gvcSZJa3uoIB5DZoZlZ-exmck3hJxCCqSMJyMwJB66jHrMTdJAuVJRY33rBSmX-bCJuNlM2m3eKuec4r8wBT7E-IMbWkbur9HA7ZtJiwsnQ5BMi5UDP7zw4hju7IssjH081pS1xmUE8LX5dJUg9NCq22XnO_BfTnJPxaT5jh1MpZuTSWsederr_17vBlkrE07nqjghm2TOZltkdQKGcJvUwLCxDe6lo50RfASoy-mmTgrsXx-fCG097DkP2Z1swiOGPuNkMutqdG6Z06jd9nfIc732dHPvluMVXM3gGuUqCN5MKU9JjNlKUi7TmEaGU6tCrpmlOo2SyPiWciD0mI6M1VwFkZZKQx63Sxaybmb3iBP7kodhQrVhIFRHCQOv6cepNcwwbmWFnI82WOgSexxHYLyKvAbOuLCvAjdH4OZUyNmY-q3A3JhBdwK6EqXR9WfQVKdoao2fdwL0AzJGmhZgWFgtkZntDkEaIm5CfhUmFVIo9tfFgOQGva5DCsnZ_l8Zjsly67YuGg_NxwOygiTYoECTQ7Iw6A1tlSzp90Gn3zvKj_c3cPD5Iw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monolithic+integration+of+four-colour+InGaN-based+nanocolumn+LEDs&rft.jtitle=Electronics+letters&rft.au=Kishino%2C+K&rft.au=Yanagihara%2C+A&rft.au=Ikeda%2C+K&rft.au=Yamano%2C+K&rft.date=2015-05-28&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=0013-5194&rft.eissn=1350-911X&rft.volume=51&rft.issue=11&rft.spage=852&rft.epage=854&rft_id=info:doi/10.1049%2Fel.2015.0770&rft.externalDocID=10_1049_el_2015_0770 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5194&client=summon |