Multi‐scale feature fusion pyramid attention network for single image dehazing
Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide mor...
Uloženo v:
| Vydáno v: | IET image processing Ročník 17; číslo 9; s. 2726 - 2735 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Wiley
01.07.2023
|
| Témata: | |
| ISSN: | 1751-9659, 1751-9667 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing is proposed. In PAN, combined with the attention mechanism, a shallow and deep feature fusion (SDF) strategy is designed. SDF considers multi‐scale as well as channel‐level fusion to provide feature information under different receptive fields while also highlighting important channels, such as texture and color information. DC is designed as a latent space mapping module to learn a mapping relationship between the latent space representation of the hazy image at low resolution and the corresponding latent space representation of the haze‐free image. Additionally, network deconvolution (ND) and deformed convolution network (DCN) are introduced into PAN. The ND module can remove pixel‐wise and channel‐wise correlation of features, reduce data redundancy to obtain sparse representation of features, and speed up network convergence. The DCN module can use its adaptive receptive field to focus on the area of interest for calculation and play a role in texture feature enhancement. Finally, the perceptual loss is chosen as the regularization item of the loss function, which makes style features of the restored image closer to the real fog‐free image. Extensive experiments reveal that the proposed PAN outperforms other existing dehazing methods on real‐world and synthetic datasets.
Texture and color distortion are common in existing learning‐based dehazing algorithms, and we argue that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, we propose a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing. |
|---|---|
| AbstractList | Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing is proposed. In PAN, combined with the attention mechanism, a shallow and deep feature fusion (SDF) strategy is designed. SDF considers multi‐scale as well as channel‐level fusion to provide feature information under different receptive fields while also highlighting important channels, such as texture and color information. DC is designed as a latent space mapping module to learn a mapping relationship between the latent space representation of the hazy image at low resolution and the corresponding latent space representation of the haze‐free image. Additionally, network deconvolution (ND) and deformed convolution network (DCN) are introduced into PAN. The ND module can remove pixel‐wise and channel‐wise correlation of features, reduce data redundancy to obtain sparse representation of features, and speed up network convergence. The DCN module can use its adaptive receptive field to focus on the area of interest for calculation and play a role in texture feature enhancement. Finally, the perceptual loss is chosen as the regularization item of the loss function, which makes style features of the restored image closer to the real fog‐free image. Extensive experiments reveal that the proposed PAN outperforms other existing dehazing methods on real‐world and synthetic datasets. Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing is proposed. In PAN, combined with the attention mechanism, a shallow and deep feature fusion (SDF) strategy is designed. SDF considers multi‐scale as well as channel‐level fusion to provide feature information under different receptive fields while also highlighting important channels, such as texture and color information. DC is designed as a latent space mapping module to learn a mapping relationship between the latent space representation of the hazy image at low resolution and the corresponding latent space representation of the haze‐free image. Additionally, network deconvolution (ND) and deformed convolution network (DCN) are introduced into PAN. The ND module can remove pixel‐wise and channel‐wise correlation of features, reduce data redundancy to obtain sparse representation of features, and speed up network convergence. The DCN module can use its adaptive receptive field to focus on the area of interest for calculation and play a role in texture feature enhancement. Finally, the perceptual loss is chosen as the regularization item of the loss function, which makes style features of the restored image closer to the real fog‐free image. Extensive experiments reveal that the proposed PAN outperforms other existing dehazing methods on real‐world and synthetic datasets. Texture and color distortion are common in existing learning‐based dehazing algorithms, and we argue that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, we propose a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing. Abstract Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow features of fog images are underutilized, and the deep features of fog images are insufficient for single image dehazing. In order to provide more texture and color information for image restoration, more shallow features need to be added in the process of image decoding. Therefore, a multi‐scale feature fusion pyramid attention network (PAN) for single image dehazing is proposed. In PAN, combined with the attention mechanism, a shallow and deep feature fusion (SDF) strategy is designed. SDF considers multi‐scale as well as channel‐level fusion to provide feature information under different receptive fields while also highlighting important channels, such as texture and color information. DC is designed as a latent space mapping module to learn a mapping relationship between the latent space representation of the hazy image at low resolution and the corresponding latent space representation of the haze‐free image. Additionally, network deconvolution (ND) and deformed convolution network (DCN) are introduced into PAN. The ND module can remove pixel‐wise and channel‐wise correlation of features, reduce data redundancy to obtain sparse representation of features, and speed up network convergence. The DCN module can use its adaptive receptive field to focus on the area of interest for calculation and play a role in texture feature enhancement. Finally, the perceptual loss is chosen as the regularization item of the loss function, which makes style features of the restored image closer to the real fog‐free image. Extensive experiments reveal that the proposed PAN outperforms other existing dehazing methods on real‐world and synthetic datasets. |
| Author | Liu, Jianlei Zhang, Yuanke Liu, Peng |
| Author_xml | – sequence: 1 givenname: Jianlei surname: Liu fullname: Liu, Jianlei organization: Qufu Normal University – sequence: 2 givenname: Peng orcidid: 0000-0002-7906-3009 surname: Liu fullname: Liu, Peng organization: Qufu Normal University – sequence: 3 givenname: Yuanke surname: Zhang fullname: Zhang, Yuanke email: yuankezhang@163.com organization: Qufu Normal University |
| BookMark | eNp9kM1KA0EQhAdRMFEvPsGehej8Z_cowZ9AxCB6HnpmeuPEzW6YnSDx5CP4jD6JGyM5iHiqpqj6aKpP9uumRkJOGT1nVBYXYRn5OeM5F3ukx4aKDQqth_u7WxWHpN-2c0pVQXPVI9O7VZXC5_tH66DCrERIq9jpqg1NnS3XERbBZ5AS1mnj1Jhem_iSlU3M2lDPuk5YwAwzj8_w1hnH5KCEqsWTHz0iT9dXj6PbweT-Zjy6nAycZFIMtOMehULmKUWlvWKlkh55qRgf2qLEXFmkOh9Kq63XnnF0hfLWAqOMUiuOyHjL9Q3MzTJ2X8S1aSCYb6OJMwMxBVehARDaCpHnwmsJmkKOjAsnuXRUSYsd62zLcrFp24jljseo2exqNrua7127MP0VdiHBZpwUIVR_V9i28hoqXP8DN-PpA992vgCLiY57 |
| CitedBy_id | crossref_primary_10_1007_s00371_023_03177_2 crossref_primary_10_3390_s25123750 crossref_primary_10_1049_ipr2_70043 |
| Cites_doi | 10.1007/978-3-642-33715-4_54 10.1109/CVPRW50498.2020.00230 10.1109/CVPR.2016.90 10.1109/ICCV.2019.00254 10.1109/CVPR.2017.106 10.1016/j.patcog.2020.107255 10.1109/ICCV.2017.511 10.1023/A:1016328200723 10.1007/s11263-015-0816-y 10.1145/3478457 10.1109/ICICSE55337.2022.9828891 10.1109/TMM.2022.3155937 10.1109/TPAMI.2018.2882478 10.1109/TIP.2018.2867951 10.1063/1.3037551 10.1109/ICCV.2019.00337 10.1109/CVPR46437.2021.01041 10.1109/TGRS.2022.3204890 10.1007/978-3-319-46475-6_10 10.1049/ipr2.12455 10.1109/WACV.2019.00151 10.1016/j.sigpro.2018.03.008 10.1109/TIP.2022.3214093 10.1049/ipr2.12467 10.1109/TIP.2021.3060873 10.1109/TIP.2015.2446191 10.1007/978-3-319-46475-6_43 10.1109/CVPR.2014.383 10.1109/TIP.2016.2598681 10.1109/CVPR.2018.00745 10.1007/s00521‐021‐06296‐w 10.1109/CVPR52688.2022.01167 10.1109/ICCV.2017.89 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION DOA |
| DOI | 10.1049/ipr2.12823 |
| DatabaseName | Wiley Online Library Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1751-9667 |
| EndPage | 2735 |
| ExternalDocumentID | oai_doaj_org_article_aa36b33883d64a60a8e123c424c054be 10_1049_ipr2_12823 IPR212823 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61773243 |
| GroupedDBID | .DC 0R~ 1OC 24P 29I 5GY 6IK 8VB AAHHS AAHJG AAJGR ABQXS ACCFJ ACCMX ACESK ACGFS ACIWK ACXQS ADZOD AEEZP AENEX AEQDE AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU CS3 DU5 EBS ESX GROUPED_DOAJ HZ~ IAO IFIPE IPLJI ITC JAVBF K1G LAI MCNEO MS~ O9- OCL OK1 P2P QWB RIE RNS ROL RUI ZL0 4.4 8FE 8FG AAMMB AAYXX ABJCF AEFGJ AFFHD AFKRA AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ CCPQU CITATION EJD HCIFZ IDLOA L6V M43 M7S P62 PHGZM PHGZT PQGLB PTHSS S0W WIN |
| ID | FETCH-LOGICAL-c4143-6c2de35e1d00e56d51f54de2f5127b9fe85be06874b6bd6d12ec95dbba10100b3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000985022400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-9659 |
| IngestDate | Fri Oct 03 12:37:02 EDT 2025 Wed Oct 29 21:25:23 EDT 2025 Tue Nov 18 22:33:50 EST 2025 Wed Jan 22 16:19:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4143-6c2de35e1d00e56d51f54de2f5127b9fe85be06874b6bd6d12ec95dbba10100b3 |
| ORCID | 0000-0002-7906-3009 |
| OpenAccessLink | https://doaj.org/article/aa36b33883d64a60a8e123c424c054be |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aa36b33883d64a60a8e123c424c054be crossref_primary_10_1049_ipr2_12823 crossref_citationtrail_10_1049_ipr2_12823 wiley_primary_10_1049_ipr2_12823_IPR212823 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IET image processing |
| PublicationYear | 2023 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2010; 33 2018; 28 2023; 35 2012 2018; 149 2020; 34 2020; 102 2021; 30 2018; 42 2015; 24 2002; 48 2015; 115 2022 2022; 60 2021 2020 2019 2018 1977; 30 2017 2016 2022; 31 2014 2016; 25 2022; 16 2022; 18 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 Qin X. (e_1_2_9_19_1) 2020; 34 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Xu X. (e_1_2_9_27_1) 2019 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 He K. (e_1_2_9_6_1) 2010; 33 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1 |
| References_xml | – start-page: 3276 year: 2019 end-page: 3285 article-title: LAP‐Net: Level‐aware progressive network for image dehazing – start-page: 105 year: 2022 end-page: 109 article-title: MARG‐UNet: A Single Image Dehazing Network Based on Multimodal Attention Residual Group – volume: 24 start-page: 3522 issue: 11 year: 2015 end-page: 3533 article-title: A fast single image haze removal algorithm using color attenuation prior publication-title: IEEE Trans. Image Process. – start-page: 11976 year: 2022 end-page: 11986 article-title: A convnet for the 2020s – volume: 149 start-page: 135 year: 2018 end-page: 147 article-title: Image dehazing by artificial multiple‐exposure image fusion publication-title: Signal Process – volume: 60 start-page: 1 year: 2022 end-page: 13 article-title: Dehaze‐AGGAN: Unpaired Remote Sensing Image Dehazing Using Enhanced Attention‐Guide Generative Adversarial Networks publication-title: IEEE Trans. Geosci. Remote Sensing – start-page: 154 year: 2016 end-page: 169 article-title: Single image dehazing via multi‐scale convolutional neural networks – start-page: 490 year: 2020 end-page: 491 article-title: Ntire 2020 challenge on nonhomogeneous dehazing – volume: 34 start-page: 11908 issue: 07 year: 2020 end-page: 11915 article-title: FFA‐Net: Feature fusion attention network for single image dehazing publication-title: Proc. AAAI Conf. Artif. Intell. – start-page: 2117 year: 2017 end-page: 2125 article-title: Feature pyramid networks for object detection – volume: 42 start-page: 720 issue: 3 year: 2018 end-page: 734 article-title: Single image dehazing using haze‐lines publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 31 start-page: 6635 year: 2022 end-page: 6648 article-title: BiN‐Flow: Bidirectional Normalizing Flow for Robust Image Dehazing publication-title: IEEE Trans. Image Process. – year: 2022 article-title: MSAFF‐Net: Multiscale Attention Feature Fusion Networks for Single Image Dehazing and Beyond publication-title: IEEE Trans. Multim. – volume: 25 start-page: 5187 issue: 11 year: 2016 end-page: 5198 article-title: Dehazenet: An end‐to‐end system for single image haze removal publication-title: IEEE Trans. Image Process. – start-page: 10551 year: 2021 end-page: 10560 article-title: Contrastive learning for compact single image dehazing – start-page: 7132 year: 2018 end-page: 7141 article-title: Squeeze‐and‐excitation networks – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – start-page: 2995 year: 2014 end-page: 3000 article-title: Investigating haze‐relevant features in a learning framework for image dehazing – year: 2014 – start-page: 1375 year: 2019 end-page: 1383 article-title: Gated context aggregation network for image dehazing and deraining – volume: 30 start-page: 3391 year: 2021 end-page: 3404 article-title: RefineDNet: A weakly supervised refinement framework for single image dehazing publication-title: IEEE Trans. Image Process. – start-page: 444 year: 2020 end-page: 445 article-title: NH‐HAZE: An image dehazing benchmark with non‐homogeneous hazy and haze‐free images – volume: 16 start-page: 2049 issue: 8 year: 2022 end-page: 2062 article-title: Multi‐scale single image dehazing based on the fusion of global and local features publication-title: IET Image Process. – start-page: 746 year: 2012 end-page: 760 article-title: Indoor segmentation and support inference from rgbd images – volume: 18 issue: 2 year: 2022 article-title: SADnet: Semi‐supervised Single Image Dehazing Method Based on an Attention Mechanism publication-title: ACM Trans. Multimedia Comput. Commun. Appl. – volume: 115 start-page: 211 issue: 3 year: 2015 end-page: 252 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – start-page: 764 year: 2017 end-page: 773 article-title: Deformable convolutional networks – start-page: 4770 year: 2017 end-page: 4778 article-title: Aod‐net: All‐in‐one dehazing network – volume: 33 start-page: 2341 issue: 12 year: 2010 end-page: 2353 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – year: 2019 article-title: Learning deformable kernels for image and video denoising publication-title: ArXiv Prepr – volume: 35 start-page: 3737 issue: 5 year: 2023 end-page: 3751 article-title: Scale‐free heterogeneous cycleGAN for defogging from a single image for autonomous driving in fog publication-title: Neural Comp. Appl. – start-page: 2453 year: 2019 end-page: 2462 article-title: Deep multi‐model fusion for single‐image dehazing – volume: 48 start-page: 233 issue: 3 year: 2002 end-page: 254 article-title: Vision and the atmosphere publication-title: Int. J. Comput. Vis. – volume: 16 start-page: 1897 issue: 7 year: 2022 end-page: 1907 article-title: Single image dehazing using generative adversarial networks based on an attention mechanism publication-title: IET Image Process. – volume: 102 year: 2020 article-title: A novel image‐dehazing network with a parallel attention block publication-title: Pattern Recognit – volume: 28 start-page: 492 issue: 1 year: 2018 end-page: 505 article-title: Benchmarking single‐image dehazing and beyond publication-title: IEEE Trans. Image Process. – year: 2019 – start-page: 694 year: 2016 end-page: 711 article-title: Perceptual losses for real‐time style transfer and super‐resolution – volume: 30 start-page: 76 issue: 5 year: 1977 end-page: 77 article-title: Optics of the atmosphere: Scattering by molecules and particles publication-title: Phys. Today – ident: e_1_2_9_29_1 doi: 10.1007/978-3-642-33715-4_54 – ident: e_1_2_9_30_1 doi: 10.1109/CVPRW50498.2020.00230 – ident: e_1_2_9_21_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_9_9_1 doi: 10.1109/ICCV.2019.00254 – ident: e_1_2_9_31_1 – ident: e_1_2_9_25_1 – ident: e_1_2_9_13_1 doi: 10.1109/CVPR.2017.106 – ident: e_1_2_9_15_1 doi: 10.1016/j.patcog.2020.107255 – ident: e_1_2_9_32_1 doi: 10.1109/ICCV.2017.511 – ident: e_1_2_9_4_1 doi: 10.1023/A:1016328200723 – ident: e_1_2_9_26_1 doi: 10.1007/s11263-015-0816-y – ident: e_1_2_9_36_1 doi: 10.1145/3478457 – ident: e_1_2_9_38_1 doi: 10.1109/ICICSE55337.2022.9828891 – ident: e_1_2_9_37_1 doi: 10.1109/TMM.2022.3155937 – ident: e_1_2_9_5_1 doi: 10.1109/TPAMI.2018.2882478 – ident: e_1_2_9_28_1 doi: 10.1109/TIP.2018.2867951 – ident: e_1_2_9_3_1 doi: 10.1063/1.3037551 – ident: e_1_2_9_8_1 doi: 10.1109/ICCV.2019.00337 – ident: e_1_2_9_20_1 doi: 10.1109/CVPR46437.2021.01041 – ident: e_1_2_9_39_1 doi: 10.1109/TGRS.2022.3204890 – ident: e_1_2_9_12_1 doi: 10.1007/978-3-319-46475-6_10 – volume: 34 start-page: 11908 issue: 07 year: 2020 ident: e_1_2_9_19_1 article-title: FFA‐Net: Feature fusion attention network for single image dehazing publication-title: Proc. AAAI Conf. Artif. Intell. – ident: e_1_2_9_16_1 doi: 10.1049/ipr2.12455 – ident: e_1_2_9_18_1 doi: 10.1109/WACV.2019.00151 – ident: e_1_2_9_33_1 doi: 10.1016/j.sigpro.2018.03.008 – ident: e_1_2_9_35_1 doi: 10.1109/TIP.2022.3214093 – ident: e_1_2_9_17_1 doi: 10.1049/ipr2.12467 – ident: e_1_2_9_34_1 doi: 10.1109/TIP.2021.3060873 – year: 2019 ident: e_1_2_9_27_1 article-title: Learning deformable kernels for image and video denoising publication-title: ArXiv Prepr – ident: e_1_2_9_7_1 doi: 10.1109/TIP.2015.2446191 – volume: 33 start-page: 2341 issue: 12 year: 2010 ident: e_1_2_9_6_1 article-title: Single image haze removal using dark channel prior publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: e_1_2_9_24_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_9_10_1 doi: 10.1109/CVPR.2014.383 – ident: e_1_2_9_11_1 doi: 10.1109/TIP.2016.2598681 – ident: e_1_2_9_23_1 – ident: e_1_2_9_2_1 doi: 10.1109/CVPR.2018.00745 – ident: e_1_2_9_40_1 doi: 10.1007/s00521‐021‐06296‐w – ident: e_1_2_9_14_1 doi: 10.1109/CVPR52688.2022.01167 – ident: e_1_2_9_22_1 doi: 10.1109/ICCV.2017.89 |
| SSID | ssj0059085 |
| Score | 2.3174055 |
| Snippet | Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the shallow... Abstract Texture and color distortion are common in existing learning‐based dehazing algorithms, and it is argued that one of the major reasons is that the... |
| SourceID | doaj crossref wiley |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 2726 |
| SubjectTerms | attention mechanism feature fusion image dehazing pyramid autoencoder |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS91AEB2s9aEvta1Kr_1gob4oRJPdzSaBvrSl0r7IRSr4FvZjVi_U6yVXC33rT_A39pd0ZpN7RRBB-hbChISdnZmzm51zAHZKHbju0rIkxirjVs2sUS7PClTeedUUWMckNlEdHdWnp814BT4uemF6fojlhhtHRsrXHODW9SokBGrJiZNZJ_cpu0r1BJ4Whap4Tks9XuRhFvMuUzskC8mbslmQk-rm4PbZO-UosfbfRampzByu_98HvoDnA7wUn_r58BJWcPoK1geoKYZAnm_AODXe_v1zMycfoYiY-D1FvObNMzH73dmLSRDMvZlOQ4ppf1pcEMQVvLtAz0wuKBWJgOdMUH22CSeHX398-ZYN4gqZ14SRMuNlQFViEfIcSxPKIpLfUEZCAJVrItalw9zUlXbGBRMKib4pg3OWgjjPndqC1enlFF-DiJZAm7aWmWY0ARZyMC1iUCmb6yB1GMHuYoxbPzCPswDGzzb9AddNy0PVpqEawYel7azn27jX6jO7amnBHNnpxmV31g4h11qrjKMVeK2C0dbktkYq015L7QmnOhzBXnLfA-9pv4-PZbrafozxG3jGqvT9qd63sHrVXeM7WPO_ribz7n2apf8AqX3p2Q priority: 102 providerName: Wiley-Blackwell |
| Title | Multi‐scale feature fusion pyramid attention network for single image dehazing |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fipr2.12823 https://doaj.org/article/aa36b33883d64a60a8e123c424c054be |
| Volume | 17 |
| WOSCitedRecordID | wos000985022400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1751-9667 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-9667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0059085 issn: 1751-9659 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUAcegFWqBioSBL5QJSuo7tOPERqq7KZbVCILhF_hjDSuyy2g-k3vgJ_EZ-ScdOFhWpKpdeoihylGgmnnnjjN8j5KiQPuZdLEtCKLO4VTPTwrIsB-GsEzqHKiSxibLfr25u9OAPqa_YE9bQAzeG6xojlMU6qhJeSaOYqQCDrZNcOkQbFmL0ZaVeFlNNDI5C3kXaChlF5FWhl8SkUneHkyn_hlGZizepKDH2v0WoKcX0PpKNFhvS0-adPpEVGG-RzRYn0nYWzrbJIO2afXl6nqGBgQZI5Jw0LOLKF538mprR0NNInJlaGem4afWmiE9pXBrAe4YjjCPUw11kl77dIVe9H5fff2atMkLmJAKcTDnuQRSQe8agUL7IAxodeMD0XVodoCosMFWV0irrlc85OF14aw3OQMas-EzWxg9j2CU0GERc0phIEyMRbaB3sAIBIQyTnkvfIcdLI9WupQ2P6hX3dfp9LXUdDVong3bI19exk4Ys46-jzqKtX0dEgut0Ad1et26v33N7h5wkT_3jOfX54IKns73_8cR98iFKzTetul_I2ny6gAOy7h7nw9n0kKxyOThMHyEer8_7vwGTbN8B |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9RAEB9qK-iLrf_wbK0L-qIQm-xu9pLHViwt1uOQCn0L-2e2HtjrkWsF3_wI_Yx-ks5scicFEUrfQpglYScz85vNzG8A3pY6cNyltCTGYcatmlmtXJ4VqLzzqi6wimnYxHA0qk5O6nFfm8O9MB0_xPLAjS0j-Ws2cD6Q7hJOzSSZk1krP5B7leoerGkKMzzAQOrxwhHzNO8y9UPyJHlT1gt2Ul3v_F17Ix4l2v6bMDXFmf31O77hBjzqAabY7b6Ix7CC0yew3oNN0Zvy_CmMU-vtn99Xc9ISioiJ4VPESz4-E7NfrT2bBMHsm6keUky7enFBIFfw-QKtmZyRMxIBvzNF9ekz-Lb_6fjjQdaPV8i8JpSUGS8DqhKLkOdYmlAWkTSHMhIGGLo6YlU6zE011M64YEIh0ddlcM6SGee5U89hdXo-xRcgoiXYpq1lrhlNkIVUTGkMKmVzHaQOA3i32OTG99zjPALjR5P-geu64a1q0lYN4M1SdtYxbvxTao91tZRglux047w9bXqja6xVxlEOXqlgtDW5rZACtddSe0KqDgfwPunvP89pDsdfZbp6eRvh1_Dg4PjLUXN0OPq8CQ95Rn1X47sFqxftJb6C-_7nxWTebqdP9hqLSe27 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RQEB5qK-KLrTdcL_WAvihEk5zLJo9eurQoSxCFvoVzmVMX7HbJtoW--RP8jf0lzpxkVwoiSN9CmEPCmczMNycz3wC81Cpw3KW0JMZxxq2aWS1dnhUovfOyLrCKadjEeDqtDg_rZqjN4V6Ynh9ifeDGlpH8NRs4LkLsE07FJJmzRVe-IfdayhuwpTQ5WSZ2Vs3KEfM0b536IXmSvNH1ip1U1W__rL0SjxJt_1WYmuLMZPuab7gDdwaAKd71X8Rd2MD5PdgewKYYTHl5H5rUenv589eStIQiYmL4FPGMj8_E4qKzx7MgmH0z1UOKeV8vLgjkCj5foDWzY3JGIuB3pqg-egDfJntfP-xnw3iFzCtCSZnxZUCpsQh5jtoEXUTSHJaRMMDY1REr7TA31Vg544IJRYm-1sE5S2ac504-hM35yRwfgYiWYJuylrlmFEEWUjGlMSilzVUoVRjBq9Umt37gHucRGD_a9A9c1S1vVZu2agQv1rKLnnHjr1LvWVdrCWbJTjdOuqN2MLrWWmkc5eCVDEZZk9sKKVB7VSpPSNXhCF4n_f3jOe1B86VMV4__R_g53Go-TtrPB9NPT-A2j6jvS3yfwuZpd4bP4KY_P50tu930xf4GSPjtPw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90scale+feature+fusion+pyramid+attention+network+for+single+image+dehazing&rft.jtitle=IET+image+processing&rft.au=Liu%2C+Jianlei&rft.au=Liu%2C+Peng&rft.au=Zhang%2C+Yuanke&rft.date=2023-07-01&rft.issn=1751-9659&rft.eissn=1751-9667&rft.volume=17&rft.issue=9&rft.spage=2726&rft.epage=2735&rft_id=info:doi/10.1049%2Fipr2.12823&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_ipr2_12823 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-9659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-9659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-9659&client=summon |