BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt
With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions become increasingly critical for water management and sustainability. However, estimating ET from satellites for precise water resource manageme...
Uloženo v:
| Vydáno v: | Hydrology and earth system sciences Ročník 24; číslo 3; s. 1251 - 1273 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
20.03.2020
Copernicus Publications |
| Témata: | |
| ISSN: | 1607-7938, 1027-5606, 1607-7938 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | With increasing crop water demands and drought threats, mapping and
monitoring of cropland evapotranspiration (ET) at high spatial and temporal
resolutions become increasingly critical for water management and
sustainability. However, estimating ET from satellites for precise water
resource management is still challenging due to the limitations in both
existing ET models and satellite input data. Specifically, the process of ET
is complex and difficult to model, and existing satellite remote-sensing data
could not fulfill high resolutions in both space and time. To address the
above two issues, this study presents a new high spatiotemporal resolution ET
mapping framework, i.e., BESS-STAIR, which integrates a satellite-driven
water–carbon–energy coupled biophysical model, BESS (Breathing Earth System
Simulator), with a generic and fully automated fusion algorithm, STAIR
(SaTallite dAta IntegRation). In this framework, STAIR provides daily 30 m
multispectral surface reflectance by fusing Landsat and MODIS satellite data
to derive a fine-resolution leaf area index and visible/near-infrared albedo,
all of which, along with coarse-resolution meteorological and CO2
data, are used to drive BESS to estimate gap-free 30 m resolution daily ET.
We applied BESS-STAIR from 2000 through 2017 in six areas across the US Corn
Belt and validated BESS-STAIR ET estimations using flux-tower measurements
over 12 sites (85 site years). Results showed that BESS-STAIR daily ET
achieved an overall R2=0.75, with root mean square error RMSE =0.93 mm d−1 and relative error RE =27.9 % when benchmarked
with the flux measurements. In addition, BESS-STAIR ET estimations captured
the spatial patterns, seasonal cycles, and interannual dynamics well in
different sub-regions. The high performance of the BESS-STAIR framework
primarily resulted from (1) the implementation of coupled constraints on
water, carbon, and energy in BESS, (2) high-quality daily 30 m data from the
STAIR fusion algorithm, and (3) BESS's applicability under all-sky
conditions. BESS-STAIR is calibration-free and has great potentials to be a
reliable tool for water resource management and precision agriculture
applications for the US Corn Belt and even worldwide given the global
coverage of its input data. |
|---|---|
| AbstractList | With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions become increasingly critical for water management and sustainability. However, estimating ET from satellites for precise water resource management is still challenging due to the limitations in both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and existing satellite remote-sensing data could not fulfill high resolutions in both space and time. To address the above two issues, this study presents a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which integrates a satellite-driven water-carbon-energy coupled biophysical model, BESS (Breathing Earth System Simulator), with a generic and fully automated fusion algorithm, STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides daily 30 m multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive a fine-resolution leaf area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO.sub.2 data, are used to drive BESS to estimate gap-free 30 m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas across the US Corn Belt and validated BESS-STAIR ET estimations using flux-tower measurements over 12 sites (85 site years). Results showed that BESS-STAIR daily ET achieved an overall R.sup.2 =0.75, with root mean square error RMSE =0.93 mm d.sup.-1 and relative error RE =27.9 % when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations captured the spatial patterns, seasonal cycles, and interannual dynamics well in different sub-regions. The high performance of the BESS-STAIR framework primarily resulted from (1) the implementation of coupled constraints on water, carbon, and energy in BESS, (2) high-quality daily 30 m data from the STAIR fusion algorithm, and (3) BESS's applicability under all-sky conditions. BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resource management and precision agriculture applications for the US Corn Belt and even worldwide given the global coverage of its input data. With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions become increasingly critical for water management and sustainability. However, estimating ET from satellites for precise water resource management is still challenging due to the limitations in both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and existing satellite remote-sensing data could not fulfill high resolutions in both space and time. To address the above two issues, this study presents a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which integrates a satellite-driven water–carbon–energy coupled biophysical model, BESS (Breathing Earth System Simulator), with a generic and fully automated fusion algorithm, STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides daily 30 m multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive a fine-resolution leaf area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO2 data, are used to drive BESS to estimate gap-free 30 m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas across the US Corn Belt and validated BESS-STAIR ET estimations using flux-tower measurements over 12 sites (85 site years). Results showed that BESS-STAIR daily ET achieved an overall R2=0.75 , with root mean square error RMSE =0.93 mm d −1 and relative error RE =27.9 % when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations captured the spatial patterns, seasonal cycles, and interannual dynamics well in different sub-regions. The high performance of the BESS-STAIR framework primarily resulted from (1) the implementation of coupled constraints on water, carbon, and energy in BESS, (2) high-quality daily 30 m data from the STAIR fusion algorithm, and (3) BESS's applicability under all-sky conditions. BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resource management and precision agriculture applications for the US Corn Belt and even worldwide given the global coverage of its input data. With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions become increasingly critical for water management and sustainability. However, estimating ET from satellites for precise water resource management is still challenging due to the limitations in both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and existing satellite remote-sensing data could not fulfill high resolutions in both space and time. To address the above two issues, this study presents a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which integrates a satellite-driven water–carbon–energy coupled biophysical model, BESS (Breathing Earth System Simulator), with a generic and fully automated fusion algorithm, STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides daily 30 m multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive a fine-resolution leaf area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO2 data, are used to drive BESS to estimate gap-free 30 m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas across the US Corn Belt and validated BESS-STAIR ET estimations using flux-tower measurements over 12 sites (85 site years). Results showed that BESS-STAIR daily ET achieved an overall R2=0.75, with root mean square error RMSE =0.93 mm d−1 and relative error RE =27.9 % when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations captured the spatial patterns, seasonal cycles, and interannual dynamics well in different sub-regions. The high performance of the BESS-STAIR framework primarily resulted from (1) the implementation of coupled constraints on water, carbon, and energy in BESS, (2) high-quality daily 30 m data from the STAIR fusion algorithm, and (3) BESS's applicability under all-sky conditions. BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resource management and precision agriculture applications for the US Corn Belt and even worldwide given the global coverage of its input data. With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions become increasingly critical for water management and sustainability. However, estimating ET from satellites for precise water resource management is still challenging due to the limitations in both existing ET models and satellite input data. Specifically, the process of ET is complex and difficult to model, and existing satellite remote-sensing data could not fulfill high resolutions in both space and time. To address the above two issues, this study presents a new high spatiotemporal resolution ET mapping framework, i.e., BESS-STAIR, which integrates a satellite-driven water–carbon–energy coupled biophysical model, BESS (Breathing Earth System Simulator), with a generic and fully automated fusion algorithm, STAIR (SaTallite dAta IntegRation). In this framework, STAIR provides daily 30 m multispectral surface reflectance by fusing Landsat and MODIS satellite data to derive a fine-resolution leaf area index and visible/near-infrared albedo, all of which, along with coarse-resolution meteorological and CO2 data, are used to drive BESS to estimate gap-free 30 m resolution daily ET. We applied BESS-STAIR from 2000 through 2017 in six areas across the US Corn Belt and validated BESS-STAIR ET estimations using flux-tower measurements over 12 sites (85 site years). Results showed that BESS-STAIR daily ET achieved an overall R2=0.75, with root mean square error RMSE =0.93 mm d-1 and relative error RE =27.9 % when benchmarked with the flux measurements. In addition, BESS-STAIR ET estimations captured the spatial patterns, seasonal cycles, and interannual dynamics well in different sub-regions. The high performance of the BESS-STAIR framework primarily resulted from (1) the implementation of coupled constraints on water, carbon, and energy in BESS, (2) high-quality daily 30 m data from the STAIR fusion algorithm, and (3) BESS's applicability under all-sky conditions. BESS-STAIR is calibration-free and has great potentials to be a reliable tool for water resource management and precision agriculture applications for the US Corn Belt and even worldwide given the global coverage of its input data. |
| Audience | Academic |
| Author | Jiang, Chongya Peng, Bin Pan, Ming Guan, Kaiyu Wang, Sibo Ryu, Youngryel |
| Author_xml | – sequence: 1 givenname: Chongya orcidid: 0000-0002-1660-7320 surname: Jiang fullname: Jiang, Chongya – sequence: 2 givenname: Kaiyu surname: Guan fullname: Guan, Kaiyu – sequence: 3 givenname: Ming surname: Pan fullname: Pan, Ming – sequence: 4 givenname: Youngryel orcidid: 0000-0001-6238-2479 surname: Ryu fullname: Ryu, Youngryel – sequence: 5 givenname: Bin surname: Peng fullname: Peng, Bin – sequence: 6 givenname: Sibo orcidid: 0000-0002-7601-8886 surname: Wang fullname: Wang, Sibo |
| BookMark | eNp9Ustu1DAUjVCRaAsfwM4SK6Sm-BUnYTcdlTJSJaSmXVu3fkw9JPFgeyjdse2SX-RLcGYQMAghL2xdnXN87r3nqDgY_WiK4iXBpxVp-Zs7E2NJeUloRUqKKX5SHBKB67JuWXPwx_tZcRTjCmPaNIIeFt_Ozruu7K5ni6u3CJANMJh7Hz6i5JGJyQ2QDNLg-ocTxPD3r4_DCYJRI-j78t5AujMBqeDXyHyGtU8Bxrh2AZLzI9pENy7RsOmTK6PfBGVQzHJ977aaKX_nA8oS6KZDcx9GdGb69Lx4aqGP5sXP-7i4eXd-PX9fXn64WMxnl6XihKXSMsqxoloRJbC9ta3SthGaEl5jpivCLcHC2rZuFW9rIRhrcEMYkFbX7FYZdlwsdrraw0quQ241PEgPTm4LPiwlhORUbyTFUIGoqGai5cBxwzUWYBsrhAXD66z1aqe1Dv7TJs9NrnK_Y7YvKZ8c0Zrx36glZFE32mleanBRyZkgDa4butU6_QcqH20Gp_LWrcv1PcLrPULGJPMlLWETo1x0V_tYssPmncUYjP3VOMFyCpKcgpRNyylIcgpS5tR_cZRL2w1nY67_D_MH39vONg |
| CitedBy_id | crossref_primary_10_3390_rs12142337 crossref_primary_10_1016_j_jhydrol_2020_125398 crossref_primary_10_1016_j_rse_2021_112519 crossref_primary_10_1016_j_jhydrol_2024_132201 crossref_primary_10_3389_fclim_2020_583509 crossref_primary_10_1029_2022WR032800 crossref_primary_10_1029_2022WR032967 crossref_primary_10_1016_j_jhydrol_2025_133476 crossref_primary_10_1029_2021WR030211 crossref_primary_10_1038_s41598_021_91646_w crossref_primary_10_1016_j_rse_2023_113880 crossref_primary_10_1016_j_rse_2022_113365 crossref_primary_10_1080_02626667_2025_2541749 crossref_primary_10_1016_j_jag_2024_104206 crossref_primary_10_1007_s00521_025_11197_3 crossref_primary_10_1038_s41467_021_25254_7 crossref_primary_10_5194_essd_16_1811_2024 crossref_primary_10_1016_j_agrformet_2020_108255 crossref_primary_10_1016_j_jhydrol_2023_129880 crossref_primary_10_1016_j_jhydrol_2024_132558 crossref_primary_10_1016_j_jhydrol_2024_131525 crossref_primary_10_1088_1748_9326_abe436 crossref_primary_10_1016_j_jhydrol_2025_133785 crossref_primary_10_5194_essd_13_281_2021 crossref_primary_10_1016_j_earscirev_2020_103295 crossref_primary_10_1016_j_rse_2022_113011 crossref_primary_10_1007_s00271_024_00963_1 crossref_primary_10_1016_j_agwat_2021_107249 |
| Cites_doi | 10.3390/rs8030225 10.1111/gcb.12664 10.1016/j.rse.2017.09.020 10.1016/j.agrformet.2007.04.001 10.1109/IGARSS.2017.8128248 10.1016/S0034-4257(02)00091-3 10.1126/science.275.5299.502 10.1016/S0034-4257(96)00215-5 10.1016/j.agrformet.2011.09.010 10.5194/hess-6-85-2002 10.1016/B978-0-12-417104-6.00002-9 10.1016/j.agrformet.2006.08.008 10.1016/j.agrformet.2012.10.011 10.1007/978-94-017-0519-6_48 10.1007/s10712-008-9037-z 10.3390/rs10060889 10.1073/pnas.1304551110 10.1016/j.rse.2018.02.045 10.5194/hess-21-3879-2017 10.1111/pce.12871 10.1080/01431161.2019.1587208 10.1016/0034-4257(84)90057-9 10.5194/bg-14-4711-2017 10.1029/2011RG000366 10.3390/s17092142 10.1016/j.rse.2018.03.031 10.1016/S0034-4257(01)00240-1 10.1111/nph.14623 10.1016/j.jhydrol.2011.12.006 10.1016/0034-4257(95)00238-3 10.3390/s90503801 10.1007/s10712-018-9478-y 10.1016/j.agsy.2014.01.004 10.1175/BAMS-D-17-0149.1 10.1016/j.rse.2016.11.004 10.1111/nph.14332 10.1016/j.rse.2016.08.030 10.1016/j.rse.2015.08.030 10.1016/j.agrformet.2018.03.014 10.1016/j.rse.2010.05.032 10.1016/j.rse.2007.06.025 10.5194/bg-13-3245-2016 10.1111/j.1365-3040.1997.00094.x 10.1016/j.rse.2012.11.004 10.1016/j.rse.2011.02.019 10.1002/2014JD022453 10.1175/JCLI-D-11-00300.1 10.1016/j.scitotenv.2017.09.325 10.3390/rs11060650 10.1029/2011JD017015 10.1071/PP9920519 10.5194/hess-15-453-2011 10.1073/pnas.1215404110 10.1016/j.rse.2014.01.023 10.1016/j.isprsjprs.2016.05.014 10.1038/nature09396 10.1175/JAMC-D-11-0203.1 10.1016/S0034-4257(02)00074-3 10.1016/j.rse.2018.04.042 10.1175/JCLI-D-16-0758.1 10.1016/j.rse.2008.01.026 10.2134/jeq2016.01.0036 10.1111/j.1365-3040.1995.tb00628.x 10.1029/2010JG001593 10.1080/10106049.2011.562309 10.1016/j.rse.2018.02.067 10.1175/BAMS-D-15-00230.1 10.1029/2011RG000373 10.1111/j.1365-2486.2005.01050.x 10.1029/2007GL031620 10.1111/j.1365-2486.2008.01744.x 10.1016/j.rse.2014.09.013 10.2134/agronj2012.0065 10.1029/2011GB004053 10.1016/j.isprsjprs.2016.03.008 10.1016/j.rse.2018.07.019 10.1109/LGRS.2005.857030 10.5194/bg-11-5021-2014 10.1126/science.1251423 10.1016/j.rse.2007.02.018 10.1016/j.rse.2019.01.039 10.1029/2009GB003768 10.1016/j.agrformet.2004.01.011 10.1061/(ASCE)0733-9437(2008)134:3(273) 10.1016/j.rse.2007.04.010 10.1029/1999GL006049 10.1051/agro:2000105 10.1016/0168-1923(88)90087-1 10.1126/science.1253884 10.1890/07-1609.1 10.1002/2015WR017311 10.1016/S0168-1923(97)00072-5 10.1175/BAMS-D-11-00175.1 10.1016/j.rse.2015.05.024 10.1109/TGRS.2006.872081 10.1016/j.jag.2013.05.007 10.1016/0034-4257(85)90072-0 10.1016/0168-1923(91)90002-8 10.1029/2018WR023884 10.1016/j.rse.2010.04.001 10.1002/wrcr.20349 10.1016/j.rse.2006.07.006 10.1109/LGRS.2007.907537 10.5194/amt-7-1723-2014 10.1016/0034-4257(90)90100-Z 10.1016/S0034-4257(00)00205-4 10.1016/j.rse.2015.12.043 10.1016/j.foreco.2009.10.009 10.1016/j.rse.2007.12.003 10.1016/j.agrformet.2004.03.001 10.5194/gmd-9-2499-2016 10.1016/j.rse.2017.09.021 10.1016/j.agrformet.2017.05.023 10.1002/wat2.1168 10.1016/j.rse.2008.02.012 10.1016/j.rse.2018.02.020 10.1016/j.rse.2013.10.029 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 Copernicus GmbH 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2020 Copernicus GmbH – notice: 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
| DOI | 10.5194/hess-24-1251-2020 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Agriculture |
| EISSN | 1607-7938 |
| EndPage | 1273 |
| ExternalDocumentID | oai_doaj_org_article_20a5a652d3694a4084d06af8f66fae47 A618078247 10_5194_hess_24_1251_2020 |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQUKI PRINS |
| ID | FETCH-LOGICAL-c413t-f3240c2dc1c60fbf9cdf86d214703d514f106ff979c497663380813a19d73bce3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000521595100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1607-7938 1027-5606 |
| IngestDate | Fri Oct 03 12:52:00 EDT 2025 Fri Jul 25 12:20:16 EDT 2025 Sat Nov 29 13:08:40 EST 2025 Sat Nov 29 09:59:09 EST 2025 Wed Nov 26 10:02:25 EST 2025 Tue Nov 18 21:16:56 EST 2025 Sat Nov 29 04:01:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-f3240c2dc1c60fbf9cdf86d214703d514f106ff979c497663380813a19d73bce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7601-8886 0000-0001-6238-2479 0000-0002-1660-7320 |
| OpenAccessLink | https://www.proquest.com/docview/2414702734?pq-origsite=%requestingapplication% |
| PQID | 2414702734 |
| PQPubID | 105724 |
| PageCount | 23 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_20a5a652d3694a4084d06af8f66fae47 proquest_journals_2414702734 gale_infotracmisc_A618078247 gale_infotracacademiconefile_A618078247 gale_incontextgauss_ISR_A618078247 crossref_primary_10_5194_hess_24_1251_2020 crossref_citationtrail_10_5194_hess_24_1251_2020 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-20 |
| PublicationDateYYYYMMDD | 2020-03-20 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Hydrology and earth system sciences |
| PublicationYear | 2020 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121 |
| References_xml | – ident: ref123 doi: 10.3390/rs8030225 – ident: ref1 – ident: ref124 doi: 10.1111/gcb.12664 – ident: ref62 doi: 10.1016/j.rse.2017.09.020 – ident: ref91 – ident: ref115 doi: 10.1016/j.agrformet.2007.04.001 – ident: ref43 doi: 10.1109/IGARSS.2017.8128248 – ident: ref89 doi: 10.1016/S0034-4257(02)00091-3 – ident: ref92 doi: 10.1126/science.275.5299.502 – ident: ref3 doi: 10.1016/S0034-4257(96)00215-5 – ident: ref86 doi: 10.1016/j.agrformet.2011.09.010 – ident: ref97 doi: 10.5194/hess-6-85-2002 – ident: ref35 doi: 10.1016/B978-0-12-417104-6.00002-9 – ident: ref51 doi: 10.1016/j.agrformet.2006.08.008 – ident: ref83 doi: 10.1016/j.agrformet.2012.10.011 – ident: ref9 doi: 10.1007/978-94-017-0519-6_48 – ident: ref53 doi: 10.1007/s10712-008-9037-z – ident: ref2 doi: 10.3390/rs10060889 – ident: ref44 – ident: ref103 doi: 10.1073/pnas.1304551110 – ident: ref16 doi: 10.1016/j.rse.2018.02.045 – ident: ref71 doi: 10.5194/hess-21-3879-2017 – ident: ref102 – ident: ref73 doi: 10.1111/pce.12871 – ident: ref111 doi: 10.1080/01431161.2019.1587208 – ident: ref104 doi: 10.1016/0034-4257(84)90057-9 – ident: ref114 doi: 10.5194/bg-14-4711-2017 – ident: ref55 doi: 10.1029/2011RG000366 – ident: ref118 doi: 10.3390/s17092142 – ident: ref125 doi: 10.1016/j.rse.2018.03.031 – ident: ref5 doi: 10.1016/S0034-4257(01)00240-1 – ident: ref107 doi: 10.1111/nph.14623 – ident: ref45 doi: 10.1016/j.jhydrol.2011.12.006 – ident: ref47 doi: 10.1016/0034-4257(95)00238-3 – ident: ref60 doi: 10.3390/s90503801 – ident: ref106 doi: 10.1007/s10712-018-9478-y – ident: ref15 doi: 10.1016/j.agsy.2014.01.004 – ident: ref80 doi: 10.1175/BAMS-D-17-0149.1 – ident: ref30 doi: 10.1016/j.rse.2016.11.004 – ident: ref109 doi: 10.1111/nph.14332 – ident: ref49 doi: 10.1016/j.rse.2016.08.030 – ident: ref18 doi: 10.1016/j.rse.2015.08.030 – ident: ref42 doi: 10.1016/j.agrformet.2018.03.014 – ident: ref128 doi: 10.1016/j.rse.2010.05.032 – ident: ref26 doi: 10.1016/j.rse.2007.06.025 – ident: ref113 doi: 10.5194/bg-13-3245-2016 – ident: ref22 doi: 10.1111/j.1365-3040.1997.00094.x – ident: ref121 doi: 10.1016/j.rse.2012.11.004 – ident: ref76 doi: 10.1016/j.rse.2011.02.019 – ident: ref88 doi: 10.1002/2014JD022453 – ident: ref81 doi: 10.1175/JCLI-D-11-00300.1 – ident: ref36 doi: 10.1016/j.scitotenv.2017.09.325 – ident: ref126 doi: 10.3390/rs11060650 – ident: ref39 doi: 10.1029/2011JD017015 – ident: ref19 doi: 10.1071/PP9920519 – ident: ref74 doi: 10.5194/hess-15-453-2011 – ident: ref116 doi: 10.1073/pnas.1215404110 – ident: ref75 doi: 10.1016/j.rse.2014.01.023 – ident: ref127 doi: 10.1016/j.isprsjprs.2016.05.014 – ident: ref52 doi: 10.1038/nature09396 – ident: ref8 – ident: ref11 doi: 10.1175/JAMC-D-11-0203.1 – ident: ref77 doi: 10.1016/S0034-4257(02)00074-3 – ident: ref66 doi: 10.1016/j.rse.2018.04.042 – ident: ref31 doi: 10.1175/JCLI-D-16-0758.1 – ident: ref48 doi: 10.1016/j.rse.2008.01.026 – ident: ref100 doi: 10.2134/jeq2016.01.0036 – ident: ref58 doi: 10.1111/j.1365-3040.1995.tb00628.x – ident: ref13 doi: 10.1029/2010JG001593 – ident: ref14 doi: 10.1080/10106049.2011.562309 – ident: ref41 doi: 10.1016/j.rse.2018.02.067 – ident: ref90 doi: 10.1175/BAMS-D-15-00230.1 – ident: ref110 doi: 10.1029/2011RG000373 – ident: ref12 doi: 10.1111/j.1365-2486.2005.01050.x – ident: ref32 doi: 10.1029/2007GL031620 – ident: ref57 – ident: ref54 doi: 10.1111/j.1365-2486.2008.01744.x – ident: ref117 doi: 10.1016/j.rse.2014.09.013 – ident: ref78 doi: 10.2134/agronj2012.0065 – ident: ref85 doi: 10.1029/2011GB004053 – ident: ref33 doi: 10.1016/j.isprsjprs.2016.03.008 – ident: ref67 doi: 10.1016/j.rse.2018.07.019 – ident: ref68 doi: 10.1109/LGRS.2005.857030 – ident: ref38 doi: 10.5194/bg-11-5021-2014 – ident: ref63 doi: 10.1126/science.1251423 – ident: ref10 doi: 10.1016/j.rse.2007.02.018 – ident: ref119 doi: 10.1016/j.rse.2019.01.039 – ident: ref37 doi: 10.1029/2009GB003768 – ident: ref40 – ident: ref98 doi: 10.1016/j.agrformet.2004.01.011 – ident: ref96 doi: 10.1061/(ASCE)0733-9437(2008)134:3(273) – ident: ref56 doi: 10.1016/j.rse.2007.04.010 – ident: ref50 doi: 10.1029/1999GL006049 – ident: ref112 doi: 10.1051/agro:2000105 – ident: ref82 doi: 10.1016/0168-1923(88)90087-1 – ident: ref79 doi: 10.1126/science.1253884 – ident: ref69 doi: 10.1890/07-1609.1 – ident: ref108 doi: 10.1002/2015WR017311 – ident: ref6 doi: 10.1016/S0168-1923(97)00072-5 – ident: ref34 doi: 10.1175/BAMS-D-11-00175.1 – ident: ref95 doi: 10.1016/j.rse.2015.05.024 – ident: ref29 doi: 10.1109/TGRS.2006.872081 – ident: ref101 – ident: ref24 doi: 10.1016/j.jag.2013.05.007 – ident: ref93 doi: 10.1126/science.275.5299.502 – ident: ref105 doi: 10.1016/0034-4257(85)90072-0 – ident: ref20 doi: 10.1016/0168-1923(91)90002-8 – ident: ref7 doi: 10.1029/2018WR023884 – ident: ref84 – ident: ref65 doi: 10.1016/j.rse.2010.04.001 – ident: ref17 doi: 10.1002/wrcr.20349 – ident: ref70 doi: 10.1016/j.rse.2006.07.006 – ident: ref4 doi: 10.1109/LGRS.2007.907537 – ident: ref23 doi: 10.5194/amt-7-1723-2014 – ident: ref46 doi: 10.1016/0034-4257(90)90100-Z – ident: ref28 – ident: ref61 doi: 10.1016/S0034-4257(00)00205-4 – ident: ref94 doi: 10.1016/j.rse.2015.12.043 – ident: ref99 doi: 10.1016/j.foreco.2009.10.009 – ident: ref21 doi: 10.1016/j.rse.2007.12.003 – ident: ref72 doi: 10.1016/j.agrformet.2004.03.001 – ident: ref64 doi: 10.5194/gmd-9-2499-2016 – ident: ref87 doi: 10.1016/j.rse.2017.09.021 – ident: ref59 doi: 10.1016/j.agrformet.2017.05.023 – ident: ref122 doi: 10.1002/wat2.1168 – ident: ref25 doi: 10.1016/j.rse.2008.02.012 – ident: ref120 doi: 10.1016/j.rse.2018.02.020 – ident: ref27 doi: 10.1016/j.rse.2013.10.029 |
| SSID | ssj0028862 |
| Score | 2.4344866 |
| Snippet | With increasing crop water demands and drought threats, mapping and
monitoring of cropland evapotranspiration (ET) at high spatial and temporal
resolutions... With increasing crop water demands and drought threats, mapping and monitoring of cropland evapotranspiration (ET) at high spatial and temporal resolutions... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 1251 |
| SubjectTerms | Agricultural land Agricultural management Agriculture Albedo Albedo (solar) Algorithms Analysis Belts Carbon Carbon dioxide Computer simulation Corn Corn belt Crop evapotranspiration Crop water Daily Data Data integration Decision making Drought Droughts Energy Evapotranspiration Evapotranspiration estimates Evapotranspiration models Frameworks Generic drugs Humidity Hydrologic cycle Landsat Landsat satellites Leaf area Leaf area index Mapping Precision agriculture Reflectance Remote sensing Resolution Resource management Root-mean-square errors Satellite data Satellites Seasonal variation Simulators Sustainability Sustainable development Time Tower measurements Vegetation Water management Water resource management Water resources Water resources management Water shortages Weather |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQhQQX3oiFgkYICQnVInG8TsJtt6KiEqrQbot6sxw_2pVCUm3TVr31ypG_yC9hJs5W3QNwgGsyduL5xvaMPP6GsTfO5xXxfvMqVBmXyiteFGPFjSPioVAE05PpfP2c7-0Vh4fllxulvignLNIDR8VhcG7GRo2Fy1QpjUwK6RJlsBOlgvGS7pGjGdKUnFENtyHUKgoVzzlFznFPV_E8E70V-f4YVxAuiKxvnKKNUKHvGztST9z_u-W533N27v_D3z5g9wZHEyaxyUN2yzeP2J2h5vnx5WP2Y4q65_P9ye7sAxgIqywt6Fog6g10ZT04s6gvtyBLfl59_7YFpnFg6ppfRMcRqP4X-HNz0nY9Sfoi2hNQNv0R9MmKPB4PwKnpuT_7Pjv8XLsE7AIO5rDdLhuY-rp7wg52Pu5vf-JDgQZuce_reCA2PyucTa1KQhVK60KhHJU-SjKHrljAgDOEMi-tRLdHYTiMHkhm0tLlWWV99pRtNG3jnzHwIghvhM-8SGQqRaXQgGSwmcwxgBdyxJIVSNoO7OVURKPWGMUQrppw1UJqwlUTriP27rrJSaTu-JPwlMC8FiTW7f4BoqsHdPXf0B2x12Q3mng1GkrcOTJn-J3d-UxPVErM_oKE3g5CgbCxZrgHgXogKq41yc01SZz4dv31yjz1sPDQmEj5xFn0_H-M6AW7S9qhpDuRbLKNbnnmX7Lb9rxbnC5f9XPuF0g5Kto priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Na9VAEMAXKQW9iJ_4tMoggiBdTDb7Nom394rFghTpa6W3ZbMf7YOYlNe0pbdePfZf7F_SmU1e6TuoF6_JZJPMTHZnkslvGPvgfF4R95tXocq4VF7xohgrbhyBh0IRTITp_Pye7-4Wh4flj3utvqgmrMcD94rD5NyMjRoLl6lSGpkU0iXK4CBKBeNl_I88yctlMjWkWkWh-u-cIue4pqv-eyZGK_LzMc4gXBCsb5yij1Cj73srUgT3_2l6jmvO9hP2eAgWYdJf5FP2wDfP2MOhb_nx5XN2PUX98dn-ZGfvCxgIy0or6FogfAaGox6cmdeXm5AlN1e_f22CaRyYuuYXffAH1MML_Lk5absIOp_3PgFUEX8EseCQ96_44dREfmccs8PTtQvAIeBgBlvtooGpr7sX7GD76_7WNz40WeAW16-OByLyWeFsalUSqlBaFwrlqH1RkjkMpwImjSGUeWklhi4KU1qMIjKTli7PKuuzl2ytaRv_ioEXQXgjfOZFIlMpKoVOIIPNZI5JuJAjliwVre1AIKdGGLXGTIRso8k2WkhNttFkmxH7dHfISY_f-JvwlKx3J0jk7LgB_UkP_qT_5U8j9p5sr4mN0VDxzZE5w_PszPb0RKVE5xck9HEQCmQba4Z_GVAPhNNakdxYkcSH167uXrqYHiYPuidSPnGHXv-PO3rDHpF2qHBOJBtsrVuc-bds3Z5389PFu_jc3AKftxjU priority: 102 providerName: Directory of Open Access Journals |
| Title | BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US Corn Belt |
| URI | https://www.proquest.com/docview/2414702734 https://doaj.org/article/20a5a652d3694a4084d06af8f66fae47 |
| Volume | 24 |
| WOSCitedRecordID | wos000521595100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: RKB dateStart: 19970101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BFMQW dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PCBAR dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: M7S dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PATMY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BENPR dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PIMPY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RFgk48ChFBEq0QkhIqKs6683a5oKSqhURNIqSFJWTtd5HGinYwXGL-iv4y8zYm4gc6IWTJXv8WM_neeyOvyHknbFRhrzfLHNZyIS0ksVxVzJlkHjIxU7VZDrfvkbDYXx5mYz8hNvKl1WubWJtqE2hcY78GDyNiGoylk_Lnwy7RuHqqm-hsUP2kKkMcL7XPx2OxpuUK45ls97JIwa-XTbrmhC1iOMrsCSMI2lftwNYwYbff3mmmsD_X2a69j1nT_73qZ-Sxz7qpL0GJs_IPZvvk0e9WemZN-w-eeDboV_dPie_-6AWNpn2BuOPVFG3LuCiVUGRlQOiXEuNmi9uj2gY0B9HVOWGqsWC_WoiSoqNwai9UcuiqtnT5w3QKJbZz2hdxciadQO6UjUpaH3FCm5WlBQuQS8m9KQoc9q3i-qAXJydTk8-M9-5gWlwihVzSPOnudEdLQOXuUQbF0uDPZGC0ECM5iATdS6JEi0gHpKQJ0NoEqpOYqIw0zZ8QXbzIrcvCbXccau4DS0P4GXyTAKyhNOhiCCz56JFgrXWUu1pzbG7xiKF9AYVnaKiUy5SVHSKim6RD5tTlg2nx13CfYTCRhDpuOsdRTlL_dcNgqqrZJebUCZCiSAWJpAKkC6lU1ZELfIWgZQi4UaOFT0zdQ33GUzGaU92kPKfo9B7L-RQN1r5HyTgPSBH15bk4ZYkWAS9fXgNxtRbJBzTGomv7j78mjzEcWOdHQ8OyW5VXts35L6-qearsu0_sHY9d9HGStkJ7Bv1puffcTs4H8F2Z_yl_wdRnzGG |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhzR44DJAFAZYCISEZi11XCdBQqgdTKvWVdXaofEUHMfuKpWkpNmm_gr-Cb-Rc3Kp6AN72wOvzamj2t-51fb3EfImNl6EvN8sspHLhDSS-X5bMhUj8ZD1rSrIdL72vcHAPzsLhhvkd30XBo9V1jGxCNRxqvE_8j3INMIryFg-zX8yVI3C3dVaQqOExZFZXkHLtvjY-wzr-5bzgy_j_UNWqQowDQE7ZxYp6DSPdUtLx0Y20LH1ZYx6PY4bQ_1goUuyNvACLSBXS-jhIG26qhXEnhtp48K4t8imALA7DbI57B0Pv61aPN-X5f4q9xjUErLcR4UqSeydQ-RiHEkC2y3AJgqM_5UJC8GAf6WFItcd3P_fZukBuVdV1bRTusFDsmGSbXK3M8kqZhGzTbYquffz5SPyqwuwY6Nxp3fygSpq6wNqNE8pso5AFW9orKaz5S51Hfpjl6okpmo2Y1dlxUxR-IyaSzVP84Idflo6EsVrBBNanNJk5b4IXaiC9LQYMYeXpRmFIejpiO6nWUK7ZpY_Jqc3MjtPSCNJE_OUUMMtN4ob13AHFo9HEjxHWO0KT0hojpvEqVES6oq2HdVDZiG0bwisEIEVchEisEIEVpO8X31lXnKWXGfcReitDJFuvPggzSZhFb3AULWVbPPYlYFQwvFF7EgFniylVUZ4TfIagRsioUiCJ5Ym6gLe0xudhB3ZQkkDjkbvKiOLa6NVdQEE5gE5yNYsd9YsIeLp9cc1-MMq4uJvqpH_7PrHr8jW4fi4H_Z7g6Pn5A7OAZ4p5M4OaeTZhXlBbuvLfLrIXlbOTcn3m_aUP_gphuo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGh7g8cBkgCgMsBEJCs5o6qZMgIdRuq6g2VVW7ob0Fx5euUklKmm3qr-D_8Os4J5eKPrC3PfDanDqq_Z1bbX8fIe-08WPk_WaxjV3mCSNYEHQEkxqJh2xgZUGm8-3YHw6Ds7NwtEV-13dh8FhlHROLQK1Thf-RtyDTeH5BxtKy1bGI0UH_y-InQwUp3Gmt5TRKiByZ1RW0b8vPgwNY6_ec9w9P9r-ySmGAKQjeObNIR6e4Vm0lHBvbUGkbCI3aPY6roZaw0DFZG_qh8iBvC-jnIIW6sh1q342VcWHcW2Tbd6HpaZDt3uFwNF63e0Egyr1W7jOoK0S5pwoVk9c6hyjGOBIGdtqAUxQb_ysrFuIB_0oRRd7rP_yfZ-wReVBV27RbusdjsmWSHXK_O80qxhGzQ-5WMvDnqyfkVw_gyCYn3cH4E5XU1gfXaJ5SZCOB6t5QLWfz1R51Hfpjj8pEUzmfs6uykqYoiEbNpVykecEaPysdjOL1giktTm-ycr-ELmVBhlqMmMPL0ozCEPR0QvfTLKE9M8-fktMbmZ1npJGkiXlOqOGWG8mNa7gDC8ljAR7lWeV6viegaW4Sp0ZMpCo6d1QVmUfQ1iHIIgRZxL0IQRYhyJrk4_ori5LL5DrjHsJwbYg05MUHaTaNqqgGhrIjRYdrV4Se9JzA046Q4OFCWGk8v0neIogjJBpJEIBTeQHvGUzGUVe0UeqAo9GHysji2ihZXQyBeUBusg3L3Q1LiIRq83HtCFEVifE31V7w4vrHb8gdcI_oeDA8eknu4RTgUUPu7JJGnl2YV-S2usxny-x15eeUfL9pR_kDkLePhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BESS-STAIR%3A+a+framework+to+estimate+daily%2C+30+m%2C+and+all-weather+crop+evapotranspiration+using+multi-source+satellite+data+for+the+US+Corn+Belt&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Jiang%2C+Chongya&rft.au=Guan%2C+Kaiyu&rft.au=Pan%2C+Ming&rft.au=Ryu%2C+Youngryel&rft.date=2020-03-20&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.volume=24&rft.issue=3&rft.spage=1251&rft_id=info:doi/10.5194%2Fhess-24-1251-2020&rft.externalDocID=A618078247 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |