Fast and Efficient Second-Order Method for Training Radial Basis Function Networks
This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the tra...
Gespeichert in:
| Veröffentlicht in: | IEEE transaction on neural networks and learning systems Jg. 23; H. 4; S. 609 - 619 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.04.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2162-237X, 2162-2388 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm. |
|---|---|
| AbstractList | This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm. This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm. |
| Author | Hao Yu Wilamowski, B. Hewlett, J. Tiantian Xie Rozycki, P. |
| Author_xml | – sequence: 1 surname: Tiantian Xie fullname: Tiantian Xie email: tzx0004@tigermail.auburn.edu organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 2 surname: Hao Yu fullname: Hao Yu email: hzy0004@tigermail.auburn.edu organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 3 givenname: J. surname: Hewlett fullname: Hewlett, J. email: jhewlett@uidaho.edu organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA – sequence: 4 givenname: P. surname: Rozycki fullname: Rozycki, P. email: prozycki@wsiz.rzeszow.pl organization: Univ. of Inf. Technol. & Manage., Rzeszow, Poland – sequence: 5 givenname: B. surname: Wilamowski fullname: Wilamowski, B. email: wilam@ieee.org organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25789418$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24805044$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV1rFDEUhoNU7If9AwoShII3u-Z7kstauiqsW2hX8C5kMmc0dTapyQzivzfrbiv0QnORHMjzHs5532N0EFMEhF5QMqeUmLfr1Wp5M2eEsjmjWhJpnqAjRhWbMa71wUPdfDlEp6XcknoUkUqYZ-iQCU0kEeIIXS9cGbGLHb7s--ADxBHfgE-xm13lDjL-BOO31OE-ZbzOLsQQv-Jr1wU34HeuhIIXU_RjSBGvYPyZ8vfyHD3t3VDgdP-eoM-Ly_XFh9ny6v3Hi_PlzAvKxxkY5TjhjDZUaJB9bySFOp5RjHWkFV73lINUvG2Z7OoPmKYlpnUcuDKN4yfoza7vXU4_Jiij3YTiYRhchDQVS1VDWaOVkf9HJeOCSMGair5-hN6mKce6iDWsjtfUu0Kv9tDUbqCzdzlsXP5l732twNkecMW7oc8u-lD-crLRRlBdOb3jfE6lZOitD6Pb2jlWswdLid2mbf-kbbdp233aVcoeSe-7_1P0cicKAPAgUFRSqjT_DRwhsbc |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s10489_021_03106_7 crossref_primary_10_1016_j_asoc_2014_09_011 crossref_primary_10_1016_j_neucom_2019_02_047 crossref_primary_10_3390_pr10010140 crossref_primary_10_1109_TNNLS_2015_2411615 crossref_primary_10_1016_j_engappai_2016_10_016 crossref_primary_10_3390_en14185844 crossref_primary_10_1109_TNNLS_2017_2650865 crossref_primary_10_1109_TII_2017_2734686 crossref_primary_10_1109_TNNLS_2014_2334596 crossref_primary_10_4018_IJARB_2020010101 crossref_primary_10_1109_TNNLS_2013_2249086 crossref_primary_10_1007_s00779_019_01277_2 crossref_primary_10_1186_s13634_016_0357_8 crossref_primary_10_1109_TPS_2024_3519032 crossref_primary_10_1109_ACCESS_2018_2810190 crossref_primary_10_1371_journal_pone_0164719 crossref_primary_10_1016_j_isatra_2019_11_015 crossref_primary_10_1016_j_neucom_2021_10_065 crossref_primary_10_1109_TIE_2015_2424399 crossref_primary_10_1109_TNNLS_2013_2295813 crossref_primary_10_1109_TNNLS_2016_2616413 crossref_primary_10_1016_j_neucom_2018_01_001 crossref_primary_10_1016_j_eswa_2022_118219 crossref_primary_10_1016_j_amc_2023_128009 crossref_primary_10_3233_JCM_226145 crossref_primary_10_1016_j_neucom_2024_128150 crossref_primary_10_3390_app10124239 crossref_primary_10_1260_1748_3018_8_4_389 crossref_primary_10_1016_j_applthermaleng_2022_119543 crossref_primary_10_1109_ACCESS_2019_2950628 crossref_primary_10_1109_TCYB_2017_2764744 crossref_primary_10_1016_j_solener_2019_02_064 crossref_primary_10_3390_atmos8010010 crossref_primary_10_1016_j_neucom_2024_127626 crossref_primary_10_3233_IDT_160257 crossref_primary_10_1109_TII_2013_2255061 crossref_primary_10_1007_s41870_022_00991_0 crossref_primary_10_3390_machines11030344 crossref_primary_10_1016_j_neucom_2021_02_009 crossref_primary_10_1016_j_neunet_2024_106633 crossref_primary_10_1109_ACCESS_2018_2803084 crossref_primary_10_1134_S0005117918090072 crossref_primary_10_1007_s42979_021_00757_8 crossref_primary_10_1109_TCYB_2014_2379621 crossref_primary_10_1109_TSMC_2021_3076747 crossref_primary_10_1016_j_eswa_2022_117589 crossref_primary_10_1007_s10846_014_0152_4 crossref_primary_10_1109_TII_2015_2499122 crossref_primary_10_1016_j_neucom_2021_04_040 crossref_primary_10_1109_TNNLS_2012_2226748 crossref_primary_10_1007_s00521_018_3763_z crossref_primary_10_1007_s00521_024_10274_3 crossref_primary_10_1109_TNNLS_2015_2497286 crossref_primary_10_1109_TSMC_2019_2963089 crossref_primary_10_1088_1757_899X_450_4_042010 crossref_primary_10_1109_ACCESS_2023_3260251 crossref_primary_10_1109_TNNLS_2012_2227794 crossref_primary_10_3233_JCM_200033 crossref_primary_10_1007_s11071_013_1154_7 crossref_primary_10_1016_j_neunet_2015_12_011 |
| Cites_doi | 10.1109/TNN.2010.2073482 10.1109/72.478403 10.1109/72.329697 10.1109/INES.2007.4283685 10.1109/TNN.2009.2015078 10.1109/72.508930 10.1109/TNN.2009.2019270 10.1162/neco.1991.3.2.213 10.1109/TIP.2010.2050108 10.1109/TPWRS.2010.2040491 10.1109/TNN.2009.2036438 10.1016/S0925-2312(01)00611-7 10.1162/neco.1989.1.2.281 10.1109/TIE.2009.2039452 10.1109/TNN.2010.2045657 10.1109/TIE.2003.821897 10.1109/72.80341 10.1109/TSMCB.2004.834428 10.1109/HSI.2009.5090963 10.1109/TIE.2009.2029571 10.1162/neco.1995.7.3.606 10.1109/TII.2011.2124466 10.1109/72.761725 10.1162/neco.1993.5.6.954 10.1162/neco.1991.3.2.246 10.1109/ISIE.2010.5637934 10.1142/4024 10.1109/TIE.2011.2164773 10.1016/0031-3203(91)90063-B |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2012.2185059 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 2162-2388 |
| EndPage | 619 |
| ExternalDocumentID | 2603339941 24805044 25789418 10_1109_TNNLS_2012_2185059 6151168 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION IQODW RIG NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c413t-e96a303217148e5ff951e6499622d0b4c8f13e563bb25de64e97b09ba3e3697a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 88 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302705600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2162-237X |
| IngestDate | Wed Oct 01 12:58:10 EDT 2025 Sun Sep 28 04:52:22 EDT 2025 Mon Jun 30 03:50:55 EDT 2025 Thu Apr 03 07:04:29 EDT 2025 Mon Jul 21 09:15:13 EDT 2025 Sat Nov 29 01:39:45 EST 2025 Tue Nov 18 19:58:24 EST 2025 Tue Aug 26 17:19:06 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Input output Matrix product Neural network Jacobi matrix Radial basis function Levenberg Marquardt algorithm Classification Matrix calculus radial basis function networks second order algorithm ISO standard Hessian matrices Levenberg-Marquardt algorithm |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-e96a303217148e5ff951e6499622d0b4c8f13e563bb25de64e97b09ba3e3697a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 24805044 |
| PQID | 926497926 |
| PQPubID | 85436 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1523405427 proquest_miscellaneous_1671278695 crossref_primary_10_1109_TNNLS_2012_2185059 ieee_primary_6151168 proquest_journals_926497926 pascalfrancis_primary_25789418 crossref_citationtrail_10_1109_TNNLS_2012_2185059 pubmed_primary_24805044 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-04-01 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 blake (ref31) 1998 ref30 ref11 powell (ref2) 1985 ref32 ref10 ref1 ref17 ref16 ref19 ref18 lee (ref7) 2010; 19 ref24 ref23 ref26 cai (ref9) 2010; 57 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref24 doi: 10.1109/TNN.2010.2073482 – ident: ref14 doi: 10.1109/72.478403 – ident: ref25 doi: 10.1109/72.329697 – ident: ref12 doi: 10.1109/INES.2007.4283685 – ident: ref6 doi: 10.1109/TNN.2009.2015078 – ident: ref17 doi: 10.1109/72.508930 – ident: ref30 doi: 10.1109/TNN.2009.2019270 – ident: ref29 doi: 10.1162/neco.1991.3.2.213 – volume: 19 start-page: 2682 year: 2010 ident: ref7 article-title: Nonlinear image upsampling method based on radial basis function interpolation publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2010.2050108 – ident: ref5 doi: 10.1109/TPWRS.2010.2040491 – ident: ref8 doi: 10.1109/TNN.2009.2036438 – ident: ref16 doi: 10.1016/S0925-2312(01)00611-7 – ident: ref1 doi: 10.1162/neco.1989.1.2.281 – ident: ref10 doi: 10.1109/TIE.2009.2039452 – ident: ref23 doi: 10.1109/TNN.2010.2045657 – ident: ref21 doi: 10.1109/TIE.2003.821897 – ident: ref19 doi: 10.1109/72.80341 – ident: ref20 doi: 10.1109/TSMCB.2004.834428 – ident: ref32 doi: 10.1109/HSI.2009.5090963 – volume: 57 start-page: 1487 year: 2010 ident: ref9 article-title: An intelligent longitudinal controller for application in semiautonomous vehicles publication-title: IEEE Trans Indust Electron doi: 10.1109/TIE.2009.2029571 – ident: ref18 doi: 10.1162/neco.1995.7.3.606 – ident: ref22 doi: 10.1109/TII.2011.2124466 – ident: ref15 doi: 10.1109/72.761725 – ident: ref4 doi: 10.1109/TPWRS.2010.2040491 – ident: ref28 doi: 10.1162/neco.1993.5.6.954 – ident: ref3 doi: 10.1162/neco.1991.3.2.246 – ident: ref26 doi: 10.1109/ISIE.2010.5637934 – ident: ref27 doi: 10.1142/4024 – ident: ref11 doi: 10.1109/TIE.2011.2164773 – start-page: 143 year: 1985 ident: ref2 article-title: Radial basis functions for multivariable interpolation: A review publication-title: Proc IMA Conf Algorithms Applicat Funct Data – ident: ref13 doi: 10.1016/0031-3203(91)90063-B – year: 1998 ident: ref31 publication-title: UCI repository of machine learning databases |
| SSID | ssj0000605649 |
| Score | 2.404782 |
| Snippet | This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 609 |
| SubjectTerms | Algorithm design and analysis Algorithms Applied sciences Artificial intelligence Computation Computer science; control theory; systems Connectionism. Neural networks Exact sciences and technology ISO Jacobian matrices Levenberg-Marquardt algorithm Mathematical analysis Multiplication Networks Neural networks Radial basis function Radial basis function networks second order algorithm Software algorithms Studies Training Vectors Vectors (mathematics) |
| Title | Fast and Efficient Second-Order Method for Training Radial Basis Function Networks |
| URI | https://ieeexplore.ieee.org/document/6151168 https://www.ncbi.nlm.nih.gov/pubmed/24805044 https://www.proquest.com/docview/926497926 https://www.proquest.com/docview/1523405427 https://www.proquest.com/docview/1671278695 |
| Volume | 23 |
| WOSCitedRecordID | wos000302705600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2iQdeGGzAytgpSLxBtzRJk-YRpp32MAraDnRvVZKm0qSph9Y7_n6cNFc0CSbxUlWK-xE7jn9OHBvgvXCOqU7yvLAWHRRe0dygG5GXKuIPXfK4XfDjStV1tVzqbzvwcToL472PwWf-NNzGvfx25TZhqewsWN9CVruwq5Qcz2pN6ykUcbmMaJcVkuWMq-X2jAzVZ4u6vroJgVzsFG0aWv2QLZSJipZUiAcmKdZYCRGSZkAmdWN1i3_Dz2iG5vv_14Hn8CzBTfJpHB8vYMf3B7C_LeVAkmYfwvXcDGti-pZcxJwS-BpyE3zlNv8aknOSL7HSNEGISxapqgS5DnkN7shnM9wOZI4GMgiZ1GNg-fASvs8vFueXeSq3kDu0ZOvca2nQoLFQEr3yZdch-PLIUi0Za6kVruoK7kvJrWVliy1eK0u1NdxzqZXhr2CvX_X-CAjOmV45agvhpFDUamOQ9R1vA77onMqg2HK8cSkXeSiJcddEn4TqJgqsCQJrksAy-DA983PMxPEo9WFg_0SZOJ_B7IFgp_Ywc2lRIMHxVtJN0uah0YgatcJrBu-mVlTDsLdier_aDA3CII7YVzD1CI1UBVOV1GUGr8dB9Of7aSy--ft_H8PT0LsxZOgt7K3vN_4Enrhf69vhfob6sKxmUR9-A71yAUw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGhsRe2GBsK4MRJN6gW5qkSfMIaKchbgVtB7q3KklTadLUm9Y7_n6ctFc0CSbxUlWK-xE7jn9OHBvgnXCOqUbyNLMWHRRe0NSgG5HmKuIPnfO4XfBzqsqymM_19w34MJ6F8d7H4DN_Em7jXn69cKuwVHYarG8mi0ewlQvBaH9aa1xRoYjMZcS7LJMsZVzN16dkqD6dleX0KoRysRO0amj3Q75QJgqaUyHuGaVYZSXESJoO2dT09S3-DUCjIZrs_F8XduHpADjJx36EPIMN3z6HnXUxBzLo9h5cTky3JKatyVnMKoGvIVfBW67TbyE9J7mItaYJglwyG-pKkMuQ2eCGfDLddUcmaCKDmEnZh5Z3L-DH5Gz2-TwdCi6kDm3ZMvVaGjRpLBRFL3zeNAi_PLJUS8ZqaoUrmoz7XHJrWV5ji9fKUm0N91xqZfg-bLaL1h8CwVnTK0dtJpwUilptDLK-4XVAGI1TCWRrjlduyEYeimLcVNErobqKAquCwKpBYAm8H5-57XNxPEi9F9g_Ug6cT-D4nmDH9jB3aZEhwdFa0tWgz12lETdqhdcE3o6tqIhhd8W0frHqKgRCHNGvYOoBGqkypgqp8wQO-kH05_vDWHz59_9-A0_OZxfTavql_HoE26GnfQDRK9hc3q38a3jsfi2vu7vjqBW_ATDbA6s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+Second-Order+Method+for+Training+Radial+Basis+Function+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xie%2C+Tiantian&rft.au=Yu%2C+Hao&rft.au=Hewlett%2C+Joel&rft.au=Rozycki%2C+Pawel&rft.date=2012-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=23&rft.issue=4&rft.spage=609&rft_id=info:doi/10.1109%2FTNNLS.2012.2185059&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2603339941 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |