Fast and Efficient Second-Order Method for Training Radial Basis Function Networks

This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 23; H. 4; S. 609 - 619
Hauptverfasser: Tiantian Xie, Hao Yu, Hewlett, J., Rozycki, P., Wilamowski, B.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY IEEE 01.04.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.
AbstractList This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.
This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including centers, widths and output weights, the input weights on the connections between input layer and hidden layer are also adjusted during the training process. More accurate results can be obtained by increasing variable dimensions. Initial centers are chosen from training patterns and other parameters are generated randomly in limited range. Taking the advantages of fast convergence and powerful search ability of second order algorithms, the proposed ISO algorithm can normally reach smaller training/testing error with much less number of RBF units. During the computation process, quasi Hessian matrix and gradient vector are accumulated as the sum of related sub matrices and vectors, respectively. Only one Jacobian row is stored and used for multiplication, instead of the entire Jacobian matrix storage and multiplication. Memory reduction benefits the computation speed and allows the training of problems with basically unlimited number of patterns. Several practical discrete and continuous classification problems are applied to test the properties of the proposed ISO training algorithm.
Author Hao Yu
Wilamowski, B.
Hewlett, J.
Tiantian Xie
Rozycki, P.
Author_xml – sequence: 1
  surname: Tiantian Xie
  fullname: Tiantian Xie
  email: tzx0004@tigermail.auburn.edu
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 2
  surname: Hao Yu
  fullname: Hao Yu
  email: hzy0004@tigermail.auburn.edu
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 3
  givenname: J.
  surname: Hewlett
  fullname: Hewlett, J.
  email: jhewlett@uidaho.edu
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
– sequence: 4
  givenname: P.
  surname: Rozycki
  fullname: Rozycki, P.
  email: prozycki@wsiz.rzeszow.pl
  organization: Univ. of Inf. Technol. & Manage., Rzeszow, Poland
– sequence: 5
  givenname: B.
  surname: Wilamowski
  fullname: Wilamowski, B.
  email: wilam@ieee.org
  organization: Dept. of Electr. & Comput. Eng., Auburn Univ., Auburn, AL, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25789418$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24805044$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rFDEUhoNU7If9AwoShII3u-Z7kstauiqsW2hX8C5kMmc0dTapyQzivzfrbiv0QnORHMjzHs5532N0EFMEhF5QMqeUmLfr1Wp5M2eEsjmjWhJpnqAjRhWbMa71wUPdfDlEp6XcknoUkUqYZ-iQCU0kEeIIXS9cGbGLHb7s--ADxBHfgE-xm13lDjL-BOO31OE-ZbzOLsQQv-Jr1wU34HeuhIIXU_RjSBGvYPyZ8vfyHD3t3VDgdP-eoM-Ly_XFh9ny6v3Hi_PlzAvKxxkY5TjhjDZUaJB9bySFOp5RjHWkFV73lINUvG2Z7OoPmKYlpnUcuDKN4yfoza7vXU4_Jiij3YTiYRhchDQVS1VDWaOVkf9HJeOCSMGair5-hN6mKce6iDWsjtfUu0Kv9tDUbqCzdzlsXP5l732twNkecMW7oc8u-lD-crLRRlBdOb3jfE6lZOitD6Pb2jlWswdLid2mbf-kbbdp233aVcoeSe-7_1P0cicKAPAgUFRSqjT_DRwhsbc
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s10489_021_03106_7
crossref_primary_10_1016_j_asoc_2014_09_011
crossref_primary_10_1016_j_neucom_2019_02_047
crossref_primary_10_3390_pr10010140
crossref_primary_10_1109_TNNLS_2015_2411615
crossref_primary_10_1016_j_engappai_2016_10_016
crossref_primary_10_3390_en14185844
crossref_primary_10_1109_TNNLS_2017_2650865
crossref_primary_10_1109_TII_2017_2734686
crossref_primary_10_1109_TNNLS_2014_2334596
crossref_primary_10_4018_IJARB_2020010101
crossref_primary_10_1109_TNNLS_2013_2249086
crossref_primary_10_1007_s00779_019_01277_2
crossref_primary_10_1186_s13634_016_0357_8
crossref_primary_10_1109_TPS_2024_3519032
crossref_primary_10_1109_ACCESS_2018_2810190
crossref_primary_10_1371_journal_pone_0164719
crossref_primary_10_1016_j_isatra_2019_11_015
crossref_primary_10_1016_j_neucom_2021_10_065
crossref_primary_10_1109_TIE_2015_2424399
crossref_primary_10_1109_TNNLS_2013_2295813
crossref_primary_10_1109_TNNLS_2016_2616413
crossref_primary_10_1016_j_neucom_2018_01_001
crossref_primary_10_1016_j_eswa_2022_118219
crossref_primary_10_1016_j_amc_2023_128009
crossref_primary_10_3233_JCM_226145
crossref_primary_10_1016_j_neucom_2024_128150
crossref_primary_10_3390_app10124239
crossref_primary_10_1260_1748_3018_8_4_389
crossref_primary_10_1016_j_applthermaleng_2022_119543
crossref_primary_10_1109_ACCESS_2019_2950628
crossref_primary_10_1109_TCYB_2017_2764744
crossref_primary_10_1016_j_solener_2019_02_064
crossref_primary_10_3390_atmos8010010
crossref_primary_10_1016_j_neucom_2024_127626
crossref_primary_10_3233_IDT_160257
crossref_primary_10_1109_TII_2013_2255061
crossref_primary_10_1007_s41870_022_00991_0
crossref_primary_10_3390_machines11030344
crossref_primary_10_1016_j_neucom_2021_02_009
crossref_primary_10_1016_j_neunet_2024_106633
crossref_primary_10_1109_ACCESS_2018_2803084
crossref_primary_10_1134_S0005117918090072
crossref_primary_10_1007_s42979_021_00757_8
crossref_primary_10_1109_TCYB_2014_2379621
crossref_primary_10_1109_TSMC_2021_3076747
crossref_primary_10_1016_j_eswa_2022_117589
crossref_primary_10_1007_s10846_014_0152_4
crossref_primary_10_1109_TII_2015_2499122
crossref_primary_10_1016_j_neucom_2021_04_040
crossref_primary_10_1109_TNNLS_2012_2226748
crossref_primary_10_1007_s00521_018_3763_z
crossref_primary_10_1007_s00521_024_10274_3
crossref_primary_10_1109_TNNLS_2015_2497286
crossref_primary_10_1109_TSMC_2019_2963089
crossref_primary_10_1088_1757_899X_450_4_042010
crossref_primary_10_1109_ACCESS_2023_3260251
crossref_primary_10_1109_TNNLS_2012_2227794
crossref_primary_10_3233_JCM_200033
crossref_primary_10_1007_s11071_013_1154_7
crossref_primary_10_1016_j_neunet_2015_12_011
Cites_doi 10.1109/TNN.2010.2073482
10.1109/72.478403
10.1109/72.329697
10.1109/INES.2007.4283685
10.1109/TNN.2009.2015078
10.1109/72.508930
10.1109/TNN.2009.2019270
10.1162/neco.1991.3.2.213
10.1109/TIP.2010.2050108
10.1109/TPWRS.2010.2040491
10.1109/TNN.2009.2036438
10.1016/S0925-2312(01)00611-7
10.1162/neco.1989.1.2.281
10.1109/TIE.2009.2039452
10.1109/TNN.2010.2045657
10.1109/TIE.2003.821897
10.1109/72.80341
10.1109/TSMCB.2004.834428
10.1109/HSI.2009.5090963
10.1109/TIE.2009.2029571
10.1162/neco.1995.7.3.606
10.1109/TII.2011.2124466
10.1109/72.761725
10.1162/neco.1993.5.6.954
10.1162/neco.1991.3.2.246
10.1109/ISIE.2010.5637934
10.1142/4024
10.1109/TIE.2011.2164773
10.1016/0031-3203(91)90063-B
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2012.2185059
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 2162-2388
EndPage 619
ExternalDocumentID 2603339941
24805044
25789418
10_1109_TNNLS_2012_2185059
6151168
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c413t-e96a303217148e5ff951e6499622d0b4c8f13e563bb25de64e97b09ba3e3697a3
IEDL.DBID RIE
ISICitedReferencesCount 88
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000302705600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
IngestDate Wed Oct 01 12:58:10 EDT 2025
Sun Sep 28 04:52:22 EDT 2025
Mon Jun 30 03:50:55 EDT 2025
Thu Apr 03 07:04:29 EDT 2025
Mon Jul 21 09:15:13 EDT 2025
Sat Nov 29 01:39:45 EST 2025
Tue Nov 18 19:58:24 EST 2025
Tue Aug 26 17:19:06 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Input output
Matrix product
Neural network
Jacobi matrix
Radial basis function
Levenberg Marquardt algorithm
Classification
Matrix calculus
radial basis function networks
second order algorithm
ISO standard
Hessian matrices
Levenberg-Marquardt algorithm
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-e96a303217148e5ff951e6499622d0b4c8f13e563bb25de64e97b09ba3e3697a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24805044
PQID 926497926
PQPubID 85436
PageCount 11
ParticipantIDs proquest_miscellaneous_1523405427
proquest_miscellaneous_1671278695
crossref_primary_10_1109_TNNLS_2012_2185059
ieee_primary_6151168
proquest_journals_926497926
pascalfrancis_primary_25789418
crossref_citationtrail_10_1109_TNNLS_2012_2185059
pubmed_primary_24805044
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
blake (ref31) 1998
ref30
ref11
powell (ref2) 1985
ref32
ref10
ref1
ref17
ref16
ref19
ref18
lee (ref7) 2010; 19
ref24
ref23
ref26
cai (ref9) 2010; 57
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref4
ref3
ref6
ref5
References_xml – ident: ref24
  doi: 10.1109/TNN.2010.2073482
– ident: ref14
  doi: 10.1109/72.478403
– ident: ref25
  doi: 10.1109/72.329697
– ident: ref12
  doi: 10.1109/INES.2007.4283685
– ident: ref6
  doi: 10.1109/TNN.2009.2015078
– ident: ref17
  doi: 10.1109/72.508930
– ident: ref30
  doi: 10.1109/TNN.2009.2019270
– ident: ref29
  doi: 10.1162/neco.1991.3.2.213
– volume: 19
  start-page: 2682
  year: 2010
  ident: ref7
  article-title: Nonlinear image upsampling method based on radial basis function interpolation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2010.2050108
– ident: ref5
  doi: 10.1109/TPWRS.2010.2040491
– ident: ref8
  doi: 10.1109/TNN.2009.2036438
– ident: ref16
  doi: 10.1016/S0925-2312(01)00611-7
– ident: ref1
  doi: 10.1162/neco.1989.1.2.281
– ident: ref10
  doi: 10.1109/TIE.2009.2039452
– ident: ref23
  doi: 10.1109/TNN.2010.2045657
– ident: ref21
  doi: 10.1109/TIE.2003.821897
– ident: ref19
  doi: 10.1109/72.80341
– ident: ref20
  doi: 10.1109/TSMCB.2004.834428
– ident: ref32
  doi: 10.1109/HSI.2009.5090963
– volume: 57
  start-page: 1487
  year: 2010
  ident: ref9
  article-title: An intelligent longitudinal controller for application in semiautonomous vehicles
  publication-title: IEEE Trans Indust Electron
  doi: 10.1109/TIE.2009.2029571
– ident: ref18
  doi: 10.1162/neco.1995.7.3.606
– ident: ref22
  doi: 10.1109/TII.2011.2124466
– ident: ref15
  doi: 10.1109/72.761725
– ident: ref4
  doi: 10.1109/TPWRS.2010.2040491
– ident: ref28
  doi: 10.1162/neco.1993.5.6.954
– ident: ref3
  doi: 10.1162/neco.1991.3.2.246
– ident: ref26
  doi: 10.1109/ISIE.2010.5637934
– ident: ref27
  doi: 10.1142/4024
– ident: ref11
  doi: 10.1109/TIE.2011.2164773
– start-page: 143
  year: 1985
  ident: ref2
  article-title: Radial basis functions for multivariable interpolation: A review
  publication-title: Proc IMA Conf Algorithms Applicat Funct Data
– ident: ref13
  doi: 10.1016/0031-3203(91)90063-B
– year: 1998
  ident: ref31
  publication-title: UCI repository of machine learning databases
SSID ssj0000605649
Score 2.404782
Snippet This paper proposes an improved second order (ISO) algorithm for training radial basis function (RBF) networks. Besides the traditional parameters, including...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Algorithm design and analysis
Algorithms
Applied sciences
Artificial intelligence
Computation
Computer science; control theory; systems
Connectionism. Neural networks
Exact sciences and technology
ISO
Jacobian matrices
Levenberg-Marquardt algorithm
Mathematical analysis
Multiplication
Networks
Neural networks
Radial basis function
Radial basis function networks
second order algorithm
Software algorithms
Studies
Training
Vectors
Vectors (mathematics)
Title Fast and Efficient Second-Order Method for Training Radial Basis Function Networks
URI https://ieeexplore.ieee.org/document/6151168
https://www.ncbi.nlm.nih.gov/pubmed/24805044
https://www.proquest.com/docview/926497926
https://www.proquest.com/docview/1523405427
https://www.proquest.com/docview/1671278695
Volume 23
WOSCitedRecordID wos000302705600007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2iQdeGGzAytgpSLxBtzRJk-YRpp32MAraDnRvVZKm0qSph9Y7_n6cNFc0CSbxUlWK-xE7jn9OHBvgvXCOqU7yvLAWHRRe0dygG5GXKuIPXfK4XfDjStV1tVzqbzvwcToL472PwWf-NNzGvfx25TZhqewsWN9CVruwq5Qcz2pN6ykUcbmMaJcVkuWMq-X2jAzVZ4u6vroJgVzsFG0aWv2QLZSJipZUiAcmKdZYCRGSZkAmdWN1i3_Dz2iG5vv_14Hn8CzBTfJpHB8vYMf3B7C_LeVAkmYfwvXcDGti-pZcxJwS-BpyE3zlNv8aknOSL7HSNEGISxapqgS5DnkN7shnM9wOZI4GMgiZ1GNg-fASvs8vFueXeSq3kDu0ZOvca2nQoLFQEr3yZdch-PLIUi0Za6kVruoK7kvJrWVliy1eK0u1NdxzqZXhr2CvX_X-CAjOmV45agvhpFDUamOQ9R1vA77onMqg2HK8cSkXeSiJcddEn4TqJgqsCQJrksAy-DA983PMxPEo9WFg_0SZOJ_B7IFgp_Ywc2lRIMHxVtJN0uah0YgatcJrBu-mVlTDsLdier_aDA3CII7YVzD1CI1UBVOV1GUGr8dB9Of7aSy--ft_H8PT0LsxZOgt7K3vN_4Enrhf69vhfob6sKxmUR9-A71yAUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGhsRe2GBsK4MRJN6gW5qkSfMIaKchbgVtB7q3KklTadLUm9Y7_n6ctFc0CSbxUlWK-xE7jn9OHBvgnXCOqUbyNLMWHRRe0NSgG5HmKuIPnfO4XfBzqsqymM_19w34MJ6F8d7H4DN_Em7jXn69cKuwVHYarG8mi0ewlQvBaH9aa1xRoYjMZcS7LJMsZVzN16dkqD6dleX0KoRysRO0amj3Q75QJgqaUyHuGaVYZSXESJoO2dT09S3-DUCjIZrs_F8XduHpADjJx36EPIMN3z6HnXUxBzLo9h5cTky3JKatyVnMKoGvIVfBW67TbyE9J7mItaYJglwyG-pKkMuQ2eCGfDLddUcmaCKDmEnZh5Z3L-DH5Gz2-TwdCi6kDm3ZMvVaGjRpLBRFL3zeNAi_PLJUS8ZqaoUrmoz7XHJrWV5ji9fKUm0N91xqZfg-bLaL1h8CwVnTK0dtJpwUilptDLK-4XVAGI1TCWRrjlduyEYeimLcVNErobqKAquCwKpBYAm8H5-57XNxPEi9F9g_Ug6cT-D4nmDH9jB3aZEhwdFa0tWgz12lETdqhdcE3o6tqIhhd8W0frHqKgRCHNGvYOoBGqkypgqp8wQO-kH05_vDWHz59_9-A0_OZxfTavql_HoE26GnfQDRK9hc3q38a3jsfi2vu7vjqBW_ATDbA6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+and+Efficient+Second-Order+Method+for+Training+Radial+Basis+Function+Networks&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Xie%2C+Tiantian&rft.au=Yu%2C+Hao&rft.au=Hewlett%2C+Joel&rft.au=Rozycki%2C+Pawel&rft.date=2012-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=23&rft.issue=4&rft.spage=609&rft_id=info:doi/10.1109%2FTNNLS.2012.2185059&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2603339941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon