Tensor Completion via Complementary Global, Local, and Nonlocal Priors
Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal...
Uloženo v:
| Vydáno v: | IEEE transactions on image processing Ročník 31; s. 984 - 999 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively. |
|---|---|
| AbstractList | Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively. Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively. |
| Author | Jiang, Tai-Xiang Ng, Michael K. Zhao, Xi-Le Yang, Jing-Hua Ma, Tian-Hui Huang, Ting-Zhu |
| Author_xml | – sequence: 1 givenname: Xi-Le orcidid: 0000-0002-6540-946X surname: Zhao fullname: Zhao, Xi-Le email: xlzhao122003@163.com organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, China – sequence: 2 givenname: Jing-Hua orcidid: 0000-0001-8207-094X surname: Yang fullname: Yang, Jing-Hua email: yangjinghua110@126.com organization: Faculty of Information Technology, Macau University of Science and Technology, Macau, China – sequence: 3 givenname: Tian-Hui orcidid: 0000-0003-2631-9485 surname: Ma fullname: Ma, Tian-Hui email: nkmth0307@126.com organization: School of Science, Civil Aviation University of China, Tianjin, China – sequence: 4 givenname: Tai-Xiang orcidid: 0000-0002-9099-4154 surname: Jiang fullname: Jiang, Tai-Xiang email: taixiangjiang@gmail.com organization: School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu, Sichuan, China – sequence: 5 givenname: Michael K. orcidid: 0000-0001-6833-5227 surname: Ng fullname: Ng, Michael K. email: mng@maths.hku.hk organization: Department of Mathematics, The University of Hong Kong, Hong Kong – sequence: 6 givenname: Ting-Zhu orcidid: 0000-0001-7766-230X surname: Huang fullname: Huang, Ting-Zhu email: tingzhuhuang@126.com organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34971534$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctLxDAQxoMovu-CIAUvHuyaSZqkOcriCxb1sJ5D2k6h0iZr0hX8703Z1YMHTzMDv29e3xHZdd4hIWdAZwBU3yyfXmeMMphx4CVnYoccgi4gp7RguymnQuUKCn1AjmJ8pxQKAXKfHPBCKxC8OCT3S3TRh2zuh1WPY-dd9tnZbTmgG234yh56X9n-Olv4egrWNdmzd_1UZa-h8yGekL3W9hFPt_GYvN3fLeeP-eLl4Wl-u8jrAviYN1XLtGZSSqxaWqoSqlYzizUvLUAtoLKiBUk5KKqRFSCkaixvNccWoKn4Mbna9F0F_7HGOJqhizX2vXXo19EwCUKzNEAk9PIP-u7XwaXtJkpTUKWGRF1sqXU1YGNWoRvSyebnQwmQG6AOPsaAram70U6PGoPtegPUTFaYZIWZrDBbK5KQ_hH-9P5Hcr6RdIj4i2spFVMl_wa6U5EG |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_103322 crossref_primary_10_1007_s10915_022_01841_8 crossref_primary_10_1016_j_knosys_2023_110812 crossref_primary_10_1016_j_amc_2024_128980 crossref_primary_10_1109_TPAMI_2024_3429498 crossref_primary_10_1109_TCSVT_2024_3401134 crossref_primary_10_3390_rs15153862 crossref_primary_10_1016_j_sigpro_2024_109718 crossref_primary_10_1016_j_patcog_2023_109545 crossref_primary_10_1109_TCYB_2022_3198932 crossref_primary_10_1109_TETCI_2023_3300522 crossref_primary_10_1016_j_optlastec_2025_113254 crossref_primary_10_1109_TIP_2024_3385284 crossref_primary_10_1088_1361_6560_ad8c98 crossref_primary_10_1049_itr2_12383 crossref_primary_10_1007_s10044_024_01291_y crossref_primary_10_1109_TGRS_2023_3237865 crossref_primary_10_1109_TGRS_2023_3318521 crossref_primary_10_1109_TCSVT_2024_3413992 crossref_primary_10_1109_TGRS_2023_3233945 crossref_primary_10_1109_TGRS_2024_3493164 crossref_primary_10_1109_TGRS_2022_3152630 crossref_primary_10_3390_rs17020288 crossref_primary_10_1016_j_patcog_2023_109624 crossref_primary_10_1109_LSP_2022_3169044 crossref_primary_10_1016_j_ijleo_2023_171374 crossref_primary_10_1016_j_apm_2023_06_031 crossref_primary_10_1109_TCI_2024_3485467 crossref_primary_10_1109_TGRS_2022_3202359 crossref_primary_10_1109_TSP_2024_3454115 crossref_primary_10_1016_j_ins_2023_120002 crossref_primary_10_1109_TGRS_2022_3228927 crossref_primary_10_1007_s10915_022_02009_0 crossref_primary_10_3390_electronics11193250 crossref_primary_10_1109_LSP_2023_3236585 crossref_primary_10_1109_TGRS_2022_3214542 crossref_primary_10_1109_TGRS_2024_3358493 crossref_primary_10_1016_j_ins_2022_10_061 crossref_primary_10_1109_TGRS_2025_3598118 crossref_primary_10_1007_s10044_024_01342_4 crossref_primary_10_1109_TIP_2022_3176220 crossref_primary_10_1016_j_apm_2025_116064 crossref_primary_10_1016_j_eswa_2025_129522 crossref_primary_10_1109_LGRS_2023_3255413 crossref_primary_10_1016_j_infrared_2022_104362 crossref_primary_10_1016_j_apm_2025_116368 crossref_primary_10_1109_TGRS_2023_3276414 crossref_primary_10_3390_e25020260 crossref_primary_10_1109_TBDATA_2023_3254156 crossref_primary_10_1109_LSP_2022_3231469 crossref_primary_10_1016_j_neunet_2025_107808 crossref_primary_10_1109_LGRS_2023_3329936 crossref_primary_10_1109_TIP_2022_3176133 crossref_primary_10_1016_j_knosys_2022_108590 crossref_primary_10_1109_TGRS_2024_3382402 crossref_primary_10_1109_TNNLS_2022_3215983 crossref_primary_10_1016_j_ins_2022_08_081 crossref_primary_10_1016_j_isprsjprs_2023_04_006 crossref_primary_10_1016_j_neucom_2023_02_052 crossref_primary_10_1109_TNNLS_2022_3217198 crossref_primary_10_1145_3701235 crossref_primary_10_1109_TGRS_2023_3341030 crossref_primary_10_1109_TSP_2024_3524568 crossref_primary_10_1016_j_dsp_2025_105169 crossref_primary_10_1109_TCSVT_2022_3233589 crossref_primary_10_1016_j_knosys_2022_110094 crossref_primary_10_1109_TAI_2024_3373388 crossref_primary_10_1109_TGRS_2025_3556733 crossref_primary_10_1007_s10915_022_01937_1 crossref_primary_10_1016_j_cag_2025_104366 crossref_primary_10_1088_1361_6420_adb8c6 crossref_primary_10_1109_TBDATA_2023_3342611 |
| Cites_doi | 10.1109/TIP.2012.2199324 10.1109/TNNLS.2021.3104837 10.1137/110837711 10.1109/TIP.2016.2593343 10.1109/TSP.2016.2639466 10.1016/j.rse.2021.112632 10.1007/s11263-016-0930-5 10.1109/TIP.2015.2404782 10.1109/TCSVT.2019.2901311 10.1109/ICDM.2005.77 10.1109/ICCV.2017.125 10.1109/TIP.2018.2836307 10.1109/TGRS.2020.3045169 10.1109/TCYB.2020.2983102 10.1109/JSTARS.2014.2368173 10.1109/ICIP.2007.4378954 10.1109/TCYB.2018.2825598 10.1016/0167-2789(92)90242-F 10.1109/CVPR.2017.300 10.1016/j.sigpro.2018.09.039 10.1109/INFOCOM.2016.7524463 10.1109/34.120331 10.1109/TIP.2018.2877937 10.1609/aaai.v31i1.10776 10.1109/LGRS.2018.2874084 10.1109/TIP.2018.2811546 10.1109/CVPR.2017.60 10.1109/TIP.2015.2478396 10.1109/CVPR.2014.366 10.1109/TSP.2017.2690524 10.1016/j.sbspro.2013.08.272 10.1137/07070111X 10.1137/110837486 10.1109/TIP.2017.2672439 10.1109/TCSVT.2019.2946723 10.1109/ICCV.2017.607 10.1109/CVPR.2019.00703 10.1109/TIP.2011.2168410 10.1137/030600862 10.1016/j.apm.2019.02.001 10.1016/j.amc.2019.124783 10.1109/TNNLS.2020.3015897 10.1109/TIP.2018.2839891 10.1016/j.neucom.2020.03.018 10.1016/j.acha.2007.10.002 10.1109/TIP.2013.2281420 10.1109/LGRS.2021.3054765 10.1109/CVPR42600.2020.00152 10.1007/s10915-017-0521-9 10.1109/TIP.2007.901238 10.1016/j.ins.2015.07.049 10.1109/TIP.2020.3000349 10.1007/s10107-013-0701-9 10.1109/TIP.2019.2893068 10.1109/TIP.2012.2235847 10.1109/TIP.2012.2210725 10.1016/j.ins.2018.01.035 10.1016/j.image.2018.11.012 10.1561/2200000016 10.1007/s10107-011-0484-9 10.1109/TIP.2019.2916734 10.1109/TPAMI.2012.39 10.1109/TIT.2019.2959980 10.1109/TPAMI.2017.2734888 10.1145/3132847.3132945 10.1109/TNNLS.2018.2872583 10.1145/3065386 10.1109/TGRS.2021.3102136 10.1016/j.neucom.2019.07.092 10.1007/s11045-013-0269-9 10.1016/j.cam.2019.06.004 10.1016/j.trc.2017.09.011 10.1109/TSP.2016.2602800 10.1109/TIP.2014.2305840 10.1109/CVPR.2005.38 10.1007/s10915-019-01044-8 10.1109/CVPR.2012.6247952 10.1109/TNNLS.2020.2980398 10.1093/nsr/nwx069 10.1190/geo2011-0399.1 10.1145/2959100.2959195 10.1109/TGRS.2008.918089 10.1190/geo2014-0467.1 10.1109/CVPR.2016.567 10.1016/1047-3203(92)90035-R 10.1137/090752286 10.1109/TIP.2011.2176954 10.1109/TGRS.2012.2227764 10.3934/ipi.2015.9.601 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TIP.2021.3138325 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 999 |
| ExternalDocumentID | 34971534 10_1109_TIP_2021_3138325 9667278 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Hong Kong Research Grant Council (HKRGC) through the General Research Fund (GRF) grantid: 12300218; 12300519; 17201020; 17300021 – fundername: Key Project of Applied Basic Research in Sichuan Province grantid: 2020YJ0216 funderid: 10.13039/100012551 – fundername: Macao Science and Technology Development Fund through Macao Funding Scheme for Key Research and Development Projects grantid: 0025/2019/AKP – fundername: Applied Basic Research Project of Sichuan Province grantid: 2021YJ0107 funderid: 10.13039/100012551 – fundername: National Key Research and Development Program of China grantid: 2020YFA0714001 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61876203; 61772003; 11901450; 12001446; 12171072 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK NPM PKN RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c413t-dbf2992666ebf08781bf92aec38a11c51ba5f16031709e241567da3f93ef11db3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 78 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742179600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Sun Sep 28 04:02:22 EDT 2025 Mon Jun 30 10:12:48 EDT 2025 Wed Feb 19 02:26:16 EST 2025 Sat Nov 29 03:21:15 EST 2025 Tue Nov 18 22:25:23 EST 2025 Wed Aug 27 03:03:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-dbf2992666ebf08781bf92aec38a11c51ba5f16031709e241567da3f93ef11db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8207-094X 0000-0002-9099-4154 0000-0003-2631-9485 0000-0002-6540-946X 0000-0001-6833-5227 0000-0001-7766-230X |
| PMID | 34971534 |
| PQID | 2619017891 |
| PQPubID | 85429 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2615922665 pubmed_primary_34971534 crossref_primary_10_1109_TIP_2021_3138325 ieee_primary_9667278 proquest_journals_2619017891 crossref_citationtrail_10_1109_TIP_2021_3138325 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref93 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref41 ref85 ref44 ref88 ref43 Ryu (ref87) ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 Xu (ref75) ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 Chen (ref86) 2017; 65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref50 doi: 10.1109/TIP.2012.2199324 – ident: ref64 doi: 10.1109/TNNLS.2021.3104837 – start-page: 5546 volume-title: Proc. PMLR ident: ref87 article-title: Plug-and-play methods provably converge with properly trained denoisers – ident: ref29 doi: 10.1137/110837711 – ident: ref11 doi: 10.1109/TIP.2016.2593343 – ident: ref32 doi: 10.1109/TSP.2016.2639466 – ident: ref22 doi: 10.1016/j.rse.2021.112632 – ident: ref71 doi: 10.1007/s11263-016-0930-5 – ident: ref8 doi: 10.1109/TIP.2015.2404782 – ident: ref31 doi: 10.1109/TCSVT.2019.2901311 – ident: ref24 doi: 10.1109/ICDM.2005.77 – ident: ref46 doi: 10.1109/ICCV.2017.125 – ident: ref10 doi: 10.1109/TIP.2018.2836307 – ident: ref12 doi: 10.1109/TGRS.2020.3045169 – ident: ref52 doi: 10.1109/TCYB.2020.2983102 – ident: ref2 doi: 10.1109/JSTARS.2014.2368173 – ident: ref45 doi: 10.1109/ICIP.2007.4378954 – ident: ref53 doi: 10.1109/TCYB.2018.2825598 – ident: ref84 doi: 10.1016/0167-2789(92)90242-F – ident: ref69 doi: 10.1109/CVPR.2017.300 – ident: ref3 doi: 10.1016/j.sigpro.2018.09.039 – ident: ref14 doi: 10.1109/INFOCOM.2016.7524463 – ident: ref36 doi: 10.1016/0167-2789(92)90242-F – ident: ref79 doi: 10.1109/34.120331 – ident: ref92 doi: 10.1109/TIP.2018.2877937 – ident: ref37 doi: 10.1609/aaai.v31i1.10776 – ident: ref21 doi: 10.1109/LGRS.2018.2874084 – ident: ref47 doi: 10.1109/TIP.2018.2811546 – ident: ref48 doi: 10.1109/CVPR.2017.60 – ident: ref35 doi: 10.1109/TIP.2015.2478396 – ident: ref73 doi: 10.1109/CVPR.2014.366 – ident: ref59 doi: 10.1109/TSP.2017.2690524 – ident: ref15 doi: 10.1016/j.sbspro.2013.08.272 – ident: ref27 doi: 10.1137/07070111X – ident: ref9 doi: 10.1137/110837486 – ident: ref54 doi: 10.1109/TIP.2017.2672439 – ident: ref1 doi: 10.1109/TCSVT.2019.2946723 – ident: ref20 doi: 10.1109/ICCV.2017.607 – ident: ref57 doi: 10.1109/CVPR.2019.00703 – ident: ref77 doi: 10.1109/TIP.2011.2168410 – ident: ref80 doi: 10.1137/030600862 – ident: ref40 doi: 10.1016/j.apm.2019.02.001 – ident: ref67 doi: 10.1016/j.amc.2019.124783 – ident: ref7 doi: 10.1109/TNNLS.2020.3015897 – ident: ref41 doi: 10.1109/TIP.2018.2839891 – ident: ref4 doi: 10.1016/j.neucom.2020.03.018 – ident: ref39 doi: 10.1016/j.acha.2007.10.002 – ident: ref93 doi: 10.1109/TIP.2013.2281420 – ident: ref18 doi: 10.1109/LGRS.2021.3054765 – ident: ref76 doi: 10.1109/CVPR42600.2020.00152 – ident: ref5 doi: 10.1007/s10915-017-0521-9 – ident: ref43 doi: 10.1109/TIP.2007.901238 – ident: ref38 doi: 10.1016/j.ins.2015.07.049 – ident: ref63 doi: 10.1109/TIP.2020.3000349 – ident: ref83 doi: 10.1007/s10107-013-0701-9 – ident: ref90 doi: 10.1109/TIP.2019.2893068 – ident: ref70 doi: 10.1109/TIP.2012.2235847 – ident: ref49 doi: 10.1109/TIP.2012.2210725 – ident: ref55 doi: 10.1016/j.ins.2018.01.035 – ident: ref72 doi: 10.1016/j.image.2018.11.012 – volume: 65 start-page: 1 year: 2017 ident: ref86 article-title: Efficient rank minimization via solving non-convexPenalties by iterative shrinkage-thresholding algorithm publication-title: Proc. Mach. Learn. Res. – ident: ref82 doi: 10.1561/2200000016 – ident: ref81 doi: 10.1007/s10107-011-0484-9 – ident: ref91 doi: 10.1109/TIP.2019.2916734 – ident: ref33 doi: 10.1109/TPAMI.2012.39 – ident: ref66 doi: 10.1109/TIT.2019.2959980 – ident: ref51 doi: 10.1109/TPAMI.2017.2734888 – ident: ref34 doi: 10.1145/3132847.3132945 – ident: ref6 doi: 10.1109/TNNLS.2018.2872583 – ident: ref42 doi: 10.1145/3065386 – ident: ref13 doi: 10.1109/TGRS.2021.3102136 – ident: ref56 doi: 10.1016/j.neucom.2019.07.092 – ident: ref28 doi: 10.1007/s11045-013-0269-9 – ident: ref68 doi: 10.1016/j.cam.2019.06.004 – ident: ref16 doi: 10.1016/j.trc.2017.09.011 – ident: ref88 doi: 10.1109/TSP.2016.2602800 – ident: ref62 doi: 10.1109/TIP.2014.2305840 – ident: ref44 doi: 10.1109/CVPR.2005.38 – ident: ref58 doi: 10.1007/s10915-019-01044-8 – ident: ref74 doi: 10.1109/CVPR.2012.6247952 – ident: ref78 doi: 10.1109/TNNLS.2020.2980398 – ident: ref60 doi: 10.1093/nsr/nwx069 – ident: ref25 doi: 10.1190/geo2011-0399.1 – ident: ref19 doi: 10.1145/2959100.2959195 – ident: ref26 doi: 10.1109/TGRS.2008.918089 – ident: ref17 doi: 10.1190/geo2014-0467.1 – ident: ref65 doi: 10.1109/CVPR.2016.567 – ident: ref23 doi: 10.1016/1047-3203(92)90035-R – ident: ref30 doi: 10.1137/090752286 – start-page: 1790 volume-title: Proc. NIPS ident: ref75 article-title: Deep convolutional neural network for image deconvolution – ident: ref85 doi: 10.1109/TIP.2011.2176954 – ident: ref89 doi: 10.1109/TGRS.2012.2227764 – ident: ref61 doi: 10.3934/ipi.2015.9.601 |
| SSID | ssj0014516 |
| Score | 2.6244094 |
| Snippet | Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 984 |
| SubjectTerms | Algorithms alternating direction method of multipliers Artificial neural networks color block-matching and 3 D filtering Color matching convolutional neural network Convolutional neural networks Correlation Hyperspectral imaging Ill posed problems Mathematical analysis Matrix decomposition Minimization plug-and-play proximal alternating minimization Self-similarity Tensor train rank Tensors Visualization |
| Title | Tensor Completion via Complementary Global, Local, and Nonlocal Priors |
| URI | https://ieeexplore.ieee.org/document/9667278 https://www.ncbi.nlm.nih.gov/pubmed/34971534 https://www.proquest.com/docview/2619017891 https://www.proquest.com/docview/2615922665 |
| Volume | 31 |
| WOSCitedRecordID | wos000742179600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_m8EEfnM6v6RwRfBFW1-80jyIOBRl7mLC3kqYJDKSV7gP8772kWVFQwZfS0vSD3F1-v8sldwA3sfQUi5PIyQVDByXEAxM-dXigAqFyhiwhNMUm6GSSzOds2oJhsxdGSmkWn8k7fWpi-Xkp1nqqbITUHOE22YEdSuN6r1YTMdAFZ01kM6IORdq_DUm6bDR7nqIj6Hvon6I_5utiNUHIKNp6-A2NTHmV35mmQZxx53__eggHllmS-1oVjqAliy50LMsk1oaXXdj_koLwGMYz9GPLiuhxQefhLguyWXB7aRaWVx-kLgwwJC8a-IaEFzmZlIWBQTKtFmW1PIHX8ePs4cmxtRUcgbC1cvJMIRAhOscyU25Ckb0q5nMpgoR7noi8jEfKlKCmLpPGzaM5CpAFUnlengWn0C7KQp4DcXnk6rRwioY8FG6QJZwGFIkVo8LPKe_BaNvHqbCJx3X9i7fUOCAuS1FAqRZQagXUg9vmifc66cYfbY915zftbL_3oL8VY2qtcplqbxFHoIR5PbhubqM96SAJL2S5Nm0ihpw0xjef1eJv3r3Vmoufv3kJe77eHGEmaPrQXlVreQW7YrNaLKsBKu08GRil_QQ8W-M9 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90CuqD082P6dQIvgir6-fSPIo4FOfYwwTfSpomMJBWug_wv_eSZUVBBV9KS9MP7nK53-WS-wFc9aSnWC-OnEwwDFBCPDDhU4cHKhAqY4gSQkM2QYfD-PWVjdagU-2FkVKaxWfyRp-aXH5WiLmeKusiNEd3G6_DhmbOsru1qpyBppw1uc2IOhSB_yop6bLu-HGEoaDvYYSKEZmv6WqCkFG09vCbPzIEK79jTeNz-vX__e0e7FpsSW6XnWEf1mTegLrFmcRa8bQBO1-KEDahP8ZItiiJHhl0Je4iJ4sJt5dmaXn5QZbUAB0y0K6vQ3iekWGRG0dIRuWkKKcH8NK_H989OJZdwREou5mTpQpdEfrnnkyVG1PEr4r5XIog5p4nIi_lkTIk1NRl0gR6NEMVskAqz8vS4BBqeZHLYyAuj1xdGE7RkIfCDdKY04AitGJU-BnlLeiuZJwIW3pcM2C8JSYEcVmCCkq0ghKroBZcV0-8L8tu_NG2qYVftbNyb0F7pcbE2uU00fEijkEx81pwWd1Gi9JpEp7LYm7aRAxRaQ_ffLRUf_XuVa85-fmbF7D1MH4eJIPH4dMpbPt6q4SZrmlDbVbO5RlsisVsMi3PTdf9BOIS5Z4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Completion+via+Complementary+Global%2C+Local%2C+and+Nonlocal+Priors&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhao%2C+Xi-Le&rft.au=Yang%2C+Jing-Hua&rft.au=Ma%2C+Tian-Hui&rft.au=Jiang%2C+Tai-Xiang&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=984&rft.epage=999&rft_id=info:doi/10.1109%2FTIP.2021.3138325&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3138325 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |