Tensor Completion via Complementary Global, Local, and Nonlocal Priors

Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on image processing Ročník 31; s. 984 - 999
Hlavní autori: Zhao, Xi-Le, Yang, Jing-Hua, Ma, Tian-Hui, Jiang, Tai-Xiang, Ng, Michael K., Huang, Ting-Zhu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.
AbstractList Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.
Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the underlying data. Commonly used priors can be roughly categorized into three classes: global tensor low-rankness, local properties, and nonlocal self-similarity (NSS); most existing works utilize one or two of them to implement completion. Naturally, there arises an interesting question: can one concurrently make use of multiple priors in a unified way, such that they can collaborate with each other to achieve better performance? This work gives a positive answer by formulating a novel tensor completion framework which can simultaneously take advantage of the global-local-nonlocal priors. In the proposed framework, the tensor train (TT) rank is adopted to characterize the global correlation; meanwhile, two Plug-and-Play (PnP) denoisers, including a convolutional neural network (CNN) denoiser and the color block-matching and 3 D filtering (CBM3D) denoiser, are incorporated to preserve local details and exploit NSS, respectively. Then, we design a proximal alternating minimization algorithm to efficiently solve this model under the PnP framework. Under mild conditions, we establish the convergence guarantee of the proposed algorithm. Extensive experiments show that these priors organically benefit from each other to achieve state-of-the-art performance both quantitatively and qualitatively.
Author Jiang, Tai-Xiang
Ng, Michael K.
Zhao, Xi-Le
Yang, Jing-Hua
Ma, Tian-Hui
Huang, Ting-Zhu
Author_xml – sequence: 1
  givenname: Xi-Le
  orcidid: 0000-0002-6540-946X
  surname: Zhao
  fullname: Zhao, Xi-Le
  email: xlzhao122003@163.com
  organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
– sequence: 2
  givenname: Jing-Hua
  orcidid: 0000-0001-8207-094X
  surname: Yang
  fullname: Yang, Jing-Hua
  email: yangjinghua110@126.com
  organization: Faculty of Information Technology, Macau University of Science and Technology, Macau, China
– sequence: 3
  givenname: Tian-Hui
  orcidid: 0000-0003-2631-9485
  surname: Ma
  fullname: Ma, Tian-Hui
  email: nkmth0307@126.com
  organization: School of Science, Civil Aviation University of China, Tianjin, China
– sequence: 4
  givenname: Tai-Xiang
  orcidid: 0000-0002-9099-4154
  surname: Jiang
  fullname: Jiang, Tai-Xiang
  email: taixiangjiang@gmail.com
  organization: School of Economic Information Engineering, Southwestern University of Finance and Economics, Chengdu, Sichuan, China
– sequence: 5
  givenname: Michael K.
  orcidid: 0000-0001-6833-5227
  surname: Ng
  fullname: Ng, Michael K.
  email: mng@maths.hku.hk
  organization: Department of Mathematics, The University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Ting-Zhu
  orcidid: 0000-0001-7766-230X
  surname: Huang
  fullname: Huang, Ting-Zhu
  email: tingzhuhuang@126.com
  organization: School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34971534$$D View this record in MEDLINE/PubMed
BookMark eNp9kctLxDAQxoMovu-CIAUvHuyaSZqkOcriCxb1sJ5D2k6h0iZr0hX8703Z1YMHTzMDv29e3xHZdd4hIWdAZwBU3yyfXmeMMphx4CVnYoccgi4gp7RguymnQuUKCn1AjmJ8pxQKAXKfHPBCKxC8OCT3S3TRh2zuh1WPY-dd9tnZbTmgG234yh56X9n-Olv4egrWNdmzd_1UZa-h8yGekL3W9hFPt_GYvN3fLeeP-eLl4Wl-u8jrAviYN1XLtGZSSqxaWqoSqlYzizUvLUAtoLKiBUk5KKqRFSCkaixvNccWoKn4Mbna9F0F_7HGOJqhizX2vXXo19EwCUKzNEAk9PIP-u7XwaXtJkpTUKWGRF1sqXU1YGNWoRvSyebnQwmQG6AOPsaAram70U6PGoPtegPUTFaYZIWZrDBbK5KQ_hH-9P5Hcr6RdIj4i2spFVMl_wa6U5EG
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103322
crossref_primary_10_1007_s10915_022_01841_8
crossref_primary_10_1016_j_knosys_2023_110812
crossref_primary_10_1016_j_amc_2024_128980
crossref_primary_10_1109_TPAMI_2024_3429498
crossref_primary_10_1109_TCSVT_2024_3401134
crossref_primary_10_3390_rs15153862
crossref_primary_10_1016_j_sigpro_2024_109718
crossref_primary_10_1016_j_patcog_2023_109545
crossref_primary_10_1109_TCYB_2022_3198932
crossref_primary_10_1109_TETCI_2023_3300522
crossref_primary_10_1016_j_optlastec_2025_113254
crossref_primary_10_1109_TIP_2024_3385284
crossref_primary_10_1088_1361_6560_ad8c98
crossref_primary_10_1049_itr2_12383
crossref_primary_10_1007_s10044_024_01291_y
crossref_primary_10_1109_TGRS_2023_3237865
crossref_primary_10_1109_TGRS_2023_3318521
crossref_primary_10_1109_TCSVT_2024_3413992
crossref_primary_10_1109_TGRS_2023_3233945
crossref_primary_10_1109_TGRS_2024_3493164
crossref_primary_10_1109_TGRS_2022_3152630
crossref_primary_10_3390_rs17020288
crossref_primary_10_1016_j_patcog_2023_109624
crossref_primary_10_1109_LSP_2022_3169044
crossref_primary_10_1016_j_ijleo_2023_171374
crossref_primary_10_1016_j_apm_2023_06_031
crossref_primary_10_1109_TCI_2024_3485467
crossref_primary_10_1109_TGRS_2022_3202359
crossref_primary_10_1109_TSP_2024_3454115
crossref_primary_10_1016_j_ins_2023_120002
crossref_primary_10_1109_TGRS_2022_3228927
crossref_primary_10_1007_s10915_022_02009_0
crossref_primary_10_3390_electronics11193250
crossref_primary_10_1109_LSP_2023_3236585
crossref_primary_10_1109_TGRS_2022_3214542
crossref_primary_10_1109_TGRS_2024_3358493
crossref_primary_10_1016_j_ins_2022_10_061
crossref_primary_10_1109_TGRS_2025_3598118
crossref_primary_10_1007_s10044_024_01342_4
crossref_primary_10_1109_TIP_2022_3176220
crossref_primary_10_1016_j_apm_2025_116064
crossref_primary_10_1016_j_eswa_2025_129522
crossref_primary_10_1109_LGRS_2023_3255413
crossref_primary_10_1016_j_infrared_2022_104362
crossref_primary_10_1016_j_apm_2025_116368
crossref_primary_10_1109_TGRS_2023_3276414
crossref_primary_10_3390_e25020260
crossref_primary_10_1109_TBDATA_2023_3254156
crossref_primary_10_1109_LSP_2022_3231469
crossref_primary_10_1016_j_neunet_2025_107808
crossref_primary_10_1109_LGRS_2023_3329936
crossref_primary_10_1109_TIP_2022_3176133
crossref_primary_10_1016_j_knosys_2022_108590
crossref_primary_10_1109_TGRS_2024_3382402
crossref_primary_10_1109_TNNLS_2022_3215983
crossref_primary_10_1016_j_ins_2022_08_081
crossref_primary_10_1016_j_isprsjprs_2023_04_006
crossref_primary_10_1016_j_neucom_2023_02_052
crossref_primary_10_1109_TNNLS_2022_3217198
crossref_primary_10_1145_3701235
crossref_primary_10_1109_TGRS_2023_3341030
crossref_primary_10_1109_TSP_2024_3524568
crossref_primary_10_1016_j_dsp_2025_105169
crossref_primary_10_1109_TCSVT_2022_3233589
crossref_primary_10_1016_j_knosys_2022_110094
crossref_primary_10_1109_TAI_2024_3373388
crossref_primary_10_1109_TGRS_2025_3556733
crossref_primary_10_1007_s10915_022_01937_1
crossref_primary_10_1016_j_cag_2025_104366
crossref_primary_10_1088_1361_6420_adb8c6
crossref_primary_10_1109_TBDATA_2023_3342611
Cites_doi 10.1109/TIP.2012.2199324
10.1109/TNNLS.2021.3104837
10.1137/110837711
10.1109/TIP.2016.2593343
10.1109/TSP.2016.2639466
10.1016/j.rse.2021.112632
10.1007/s11263-016-0930-5
10.1109/TIP.2015.2404782
10.1109/TCSVT.2019.2901311
10.1109/ICDM.2005.77
10.1109/ICCV.2017.125
10.1109/TIP.2018.2836307
10.1109/TGRS.2020.3045169
10.1109/TCYB.2020.2983102
10.1109/JSTARS.2014.2368173
10.1109/ICIP.2007.4378954
10.1109/TCYB.2018.2825598
10.1016/0167-2789(92)90242-F
10.1109/CVPR.2017.300
10.1016/j.sigpro.2018.09.039
10.1109/INFOCOM.2016.7524463
10.1109/34.120331
10.1109/TIP.2018.2877937
10.1609/aaai.v31i1.10776
10.1109/LGRS.2018.2874084
10.1109/TIP.2018.2811546
10.1109/CVPR.2017.60
10.1109/TIP.2015.2478396
10.1109/CVPR.2014.366
10.1109/TSP.2017.2690524
10.1016/j.sbspro.2013.08.272
10.1137/07070111X
10.1137/110837486
10.1109/TIP.2017.2672439
10.1109/TCSVT.2019.2946723
10.1109/ICCV.2017.607
10.1109/CVPR.2019.00703
10.1109/TIP.2011.2168410
10.1137/030600862
10.1016/j.apm.2019.02.001
10.1016/j.amc.2019.124783
10.1109/TNNLS.2020.3015897
10.1109/TIP.2018.2839891
10.1016/j.neucom.2020.03.018
10.1016/j.acha.2007.10.002
10.1109/TIP.2013.2281420
10.1109/LGRS.2021.3054765
10.1109/CVPR42600.2020.00152
10.1007/s10915-017-0521-9
10.1109/TIP.2007.901238
10.1016/j.ins.2015.07.049
10.1109/TIP.2020.3000349
10.1007/s10107-013-0701-9
10.1109/TIP.2019.2893068
10.1109/TIP.2012.2235847
10.1109/TIP.2012.2210725
10.1016/j.ins.2018.01.035
10.1016/j.image.2018.11.012
10.1561/2200000016
10.1007/s10107-011-0484-9
10.1109/TIP.2019.2916734
10.1109/TPAMI.2012.39
10.1109/TIT.2019.2959980
10.1109/TPAMI.2017.2734888
10.1145/3132847.3132945
10.1109/TNNLS.2018.2872583
10.1145/3065386
10.1109/TGRS.2021.3102136
10.1016/j.neucom.2019.07.092
10.1007/s11045-013-0269-9
10.1016/j.cam.2019.06.004
10.1016/j.trc.2017.09.011
10.1109/TSP.2016.2602800
10.1109/TIP.2014.2305840
10.1109/CVPR.2005.38
10.1007/s10915-019-01044-8
10.1109/CVPR.2012.6247952
10.1109/TNNLS.2020.2980398
10.1093/nsr/nwx069
10.1190/geo2011-0399.1
10.1145/2959100.2959195
10.1109/TGRS.2008.918089
10.1190/geo2014-0467.1
10.1109/CVPR.2016.567
10.1016/1047-3203(92)90035-R
10.1137/090752286
10.1109/TIP.2011.2176954
10.1109/TGRS.2012.2227764
10.3934/ipi.2015.9.601
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2021.3138325
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Technology Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 999
ExternalDocumentID 34971534
10_1109_TIP_2021_3138325
9667278
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Hong Kong Research Grant Council (HKRGC) through the General Research Fund (GRF)
  grantid: 12300218; 12300519; 17201020; 17300021
– fundername: Key Project of Applied Basic Research in Sichuan Province
  grantid: 2020YJ0216
  funderid: 10.13039/100012551
– fundername: Macao Science and Technology Development Fund through Macao Funding Scheme for Key Research and Development Projects
  grantid: 0025/2019/AKP
– fundername: Applied Basic Research Project of Sichuan Province
  grantid: 2021YJ0107
  funderid: 10.13039/100012551
– fundername: National Key Research and Development Program of China
  grantid: 2020YFA0714001
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61876203; 61772003; 11901450; 12001446; 12171072
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-dbf2992666ebf08781bf92aec38a11c51ba5f16031709e241567da3f93ef11db3
IEDL.DBID RIE
ISICitedReferencesCount 78
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000742179600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 04:02:22 EDT 2025
Mon Jun 30 10:12:48 EDT 2025
Wed Feb 19 02:26:16 EST 2025
Sat Nov 29 03:21:15 EST 2025
Tue Nov 18 22:25:23 EST 2025
Wed Aug 27 03:03:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-dbf2992666ebf08781bf92aec38a11c51ba5f16031709e241567da3f93ef11db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8207-094X
0000-0002-9099-4154
0000-0003-2631-9485
0000-0002-6540-946X
0000-0001-6833-5227
0000-0001-7766-230X
PMID 34971534
PQID 2619017891
PQPubID 85429
PageCount 16
ParticipantIDs proquest_miscellaneous_2615922665
pubmed_primary_34971534
crossref_primary_10_1109_TIP_2021_3138325
ieee_primary_9667278
proquest_journals_2619017891
crossref_citationtrail_10_1109_TIP_2021_3138325
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref93
ref92
ref51
ref50
ref91
ref90
ref46
ref45
ref89
ref48
ref47
ref42
ref41
ref85
ref44
ref88
ref43
Ryu (ref87)
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
ref83
ref80
ref35
ref79
ref34
ref78
ref37
ref36
ref31
ref30
ref74
ref33
ref77
ref32
ref76
ref2
ref1
ref39
ref38
Xu (ref75)
ref71
ref70
ref73
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
Chen (ref86) 2017; 65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref50
  doi: 10.1109/TIP.2012.2199324
– ident: ref64
  doi: 10.1109/TNNLS.2021.3104837
– start-page: 5546
  volume-title: Proc. PMLR
  ident: ref87
  article-title: Plug-and-play methods provably converge with properly trained denoisers
– ident: ref29
  doi: 10.1137/110837711
– ident: ref11
  doi: 10.1109/TIP.2016.2593343
– ident: ref32
  doi: 10.1109/TSP.2016.2639466
– ident: ref22
  doi: 10.1016/j.rse.2021.112632
– ident: ref71
  doi: 10.1007/s11263-016-0930-5
– ident: ref8
  doi: 10.1109/TIP.2015.2404782
– ident: ref31
  doi: 10.1109/TCSVT.2019.2901311
– ident: ref24
  doi: 10.1109/ICDM.2005.77
– ident: ref46
  doi: 10.1109/ICCV.2017.125
– ident: ref10
  doi: 10.1109/TIP.2018.2836307
– ident: ref12
  doi: 10.1109/TGRS.2020.3045169
– ident: ref52
  doi: 10.1109/TCYB.2020.2983102
– ident: ref2
  doi: 10.1109/JSTARS.2014.2368173
– ident: ref45
  doi: 10.1109/ICIP.2007.4378954
– ident: ref53
  doi: 10.1109/TCYB.2018.2825598
– ident: ref84
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref69
  doi: 10.1109/CVPR.2017.300
– ident: ref3
  doi: 10.1016/j.sigpro.2018.09.039
– ident: ref14
  doi: 10.1109/INFOCOM.2016.7524463
– ident: ref36
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref79
  doi: 10.1109/34.120331
– ident: ref92
  doi: 10.1109/TIP.2018.2877937
– ident: ref37
  doi: 10.1609/aaai.v31i1.10776
– ident: ref21
  doi: 10.1109/LGRS.2018.2874084
– ident: ref47
  doi: 10.1109/TIP.2018.2811546
– ident: ref48
  doi: 10.1109/CVPR.2017.60
– ident: ref35
  doi: 10.1109/TIP.2015.2478396
– ident: ref73
  doi: 10.1109/CVPR.2014.366
– ident: ref59
  doi: 10.1109/TSP.2017.2690524
– ident: ref15
  doi: 10.1016/j.sbspro.2013.08.272
– ident: ref27
  doi: 10.1137/07070111X
– ident: ref9
  doi: 10.1137/110837486
– ident: ref54
  doi: 10.1109/TIP.2017.2672439
– ident: ref1
  doi: 10.1109/TCSVT.2019.2946723
– ident: ref20
  doi: 10.1109/ICCV.2017.607
– ident: ref57
  doi: 10.1109/CVPR.2019.00703
– ident: ref77
  doi: 10.1109/TIP.2011.2168410
– ident: ref80
  doi: 10.1137/030600862
– ident: ref40
  doi: 10.1016/j.apm.2019.02.001
– ident: ref67
  doi: 10.1016/j.amc.2019.124783
– ident: ref7
  doi: 10.1109/TNNLS.2020.3015897
– ident: ref41
  doi: 10.1109/TIP.2018.2839891
– ident: ref4
  doi: 10.1016/j.neucom.2020.03.018
– ident: ref39
  doi: 10.1016/j.acha.2007.10.002
– ident: ref93
  doi: 10.1109/TIP.2013.2281420
– ident: ref18
  doi: 10.1109/LGRS.2021.3054765
– ident: ref76
  doi: 10.1109/CVPR42600.2020.00152
– ident: ref5
  doi: 10.1007/s10915-017-0521-9
– ident: ref43
  doi: 10.1109/TIP.2007.901238
– ident: ref38
  doi: 10.1016/j.ins.2015.07.049
– ident: ref63
  doi: 10.1109/TIP.2020.3000349
– ident: ref83
  doi: 10.1007/s10107-013-0701-9
– ident: ref90
  doi: 10.1109/TIP.2019.2893068
– ident: ref70
  doi: 10.1109/TIP.2012.2235847
– ident: ref49
  doi: 10.1109/TIP.2012.2210725
– ident: ref55
  doi: 10.1016/j.ins.2018.01.035
– ident: ref72
  doi: 10.1016/j.image.2018.11.012
– volume: 65
  start-page: 1
  year: 2017
  ident: ref86
  article-title: Efficient rank minimization via solving non-convexPenalties by iterative shrinkage-thresholding algorithm
  publication-title: Proc. Mach. Learn. Res.
– ident: ref82
  doi: 10.1561/2200000016
– ident: ref81
  doi: 10.1007/s10107-011-0484-9
– ident: ref91
  doi: 10.1109/TIP.2019.2916734
– ident: ref33
  doi: 10.1109/TPAMI.2012.39
– ident: ref66
  doi: 10.1109/TIT.2019.2959980
– ident: ref51
  doi: 10.1109/TPAMI.2017.2734888
– ident: ref34
  doi: 10.1145/3132847.3132945
– ident: ref6
  doi: 10.1109/TNNLS.2018.2872583
– ident: ref42
  doi: 10.1145/3065386
– ident: ref13
  doi: 10.1109/TGRS.2021.3102136
– ident: ref56
  doi: 10.1016/j.neucom.2019.07.092
– ident: ref28
  doi: 10.1007/s11045-013-0269-9
– ident: ref68
  doi: 10.1016/j.cam.2019.06.004
– ident: ref16
  doi: 10.1016/j.trc.2017.09.011
– ident: ref88
  doi: 10.1109/TSP.2016.2602800
– ident: ref62
  doi: 10.1109/TIP.2014.2305840
– ident: ref44
  doi: 10.1109/CVPR.2005.38
– ident: ref58
  doi: 10.1007/s10915-019-01044-8
– ident: ref74
  doi: 10.1109/CVPR.2012.6247952
– ident: ref78
  doi: 10.1109/TNNLS.2020.2980398
– ident: ref60
  doi: 10.1093/nsr/nwx069
– ident: ref25
  doi: 10.1190/geo2011-0399.1
– ident: ref19
  doi: 10.1145/2959100.2959195
– ident: ref26
  doi: 10.1109/TGRS.2008.918089
– ident: ref17
  doi: 10.1190/geo2014-0467.1
– ident: ref65
  doi: 10.1109/CVPR.2016.567
– ident: ref23
  doi: 10.1016/1047-3203(92)90035-R
– ident: ref30
  doi: 10.1137/090752286
– start-page: 1790
  volume-title: Proc. NIPS
  ident: ref75
  article-title: Deep convolutional neural network for image deconvolution
– ident: ref85
  doi: 10.1109/TIP.2011.2176954
– ident: ref89
  doi: 10.1109/TGRS.2012.2227764
– ident: ref61
  doi: 10.3934/ipi.2015.9.601
SSID ssj0014516
Score 2.6243565
Snippet Completing missing entries in multidimensional visual data is a typical ill-posed problem that requires appropriate exploitation of prior information of the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 984
SubjectTerms Algorithms
alternating direction method of multipliers
Artificial neural networks
color block-matching and 3 D filtering
Color matching
convolutional neural network
Convolutional neural networks
Correlation
Hyperspectral imaging
Ill posed problems
Mathematical analysis
Matrix decomposition
Minimization
plug-and-play
proximal alternating minimization
Self-similarity
Tensor train rank
Tensors
Visualization
Title Tensor Completion via Complementary Global, Local, and Nonlocal Priors
URI https://ieeexplore.ieee.org/document/9667278
https://www.ncbi.nlm.nih.gov/pubmed/34971534
https://www.proquest.com/docview/2619017891
https://www.proquest.com/docview/2615922665
Volume 31
WOSCitedRecordID wos000742179600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c8EEf_P6YTongi7C6ph9L8yjiUJCxhyl7K2mawEBa6T7A_95LmhUFFXxradKW3F3u98sldwDXAwTFAudGD2WrvSiSwhM0TjyhtEoQgWhpl7Jfn9lolEynfLwBveYsjFLKbj5Tt-bSxvLzUi7NUlkfoTm626QFLcYG9VmtJmJgCs7ayGbMPIawfx2S9Hl_8jRGIhhQ5KfIxwJTrCaMOENbj755I1te5XekaT3OcPd__7oHOw5ZkrtaFfZhQxUHsOtQJnE2PD-A7S8pCA9hOEEeW1bEzAsmD3dZkNVMuFu7sbz6IHVhgB55No6vR0SRk1FZWDdIxtWsrOZH8DJ8mNw_eq62gifRbS28PNPoiNA7D1Sm_YQhetU8EEqGiaBUxjQTsbYlqJnPlaV5LBeh5qHSlOZZeAztoizUKRBlkn5pGlpukiPAyYWiQsRCZr7EXh3or8c4lS7xuKl_8ZZaAuLzFAWUGgGlTkAduGl6vNdJN_5oe2gGv2nnxr0D3bUYU2eV89SwRZyBEk47cNU8RnsyQRJRqHJp28QcMekA33xSi79591przn7-5jlsBeZwhF2g6UJ7US3VBWzK1WI2ry5RaafJpVXaTzMj5A0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHp_NrOjWCL8LqmnVdm0cRx4Zz7GHK3kqaJjCQVroP8L_3kmVFQQXfWpq05S6X-_1yyR3ATQdBMce50UHdKqfdFtzh1A8dLpUMEYEoYZayXwfBcBhOJmxUgkZxFkZKaTafyTt9aWL5SSYWeqmsidAc3W24AZu6cpY9rVXEDHTJWRPb9AMnQOC_Dkq6rDnuj5AKtigyVGRkLV2uxmuzAK29_c0fmQIrv2NN43O6lf_97T7sWWxJ7leD4QBKMq1CxeJMYq14VoXdL0kID6E7Riab5UTPDDoTd5aS5ZTbW7O1PP8gq9IADTLQrq9BeJqQYZYaR0hG-TTLZ0fw0n0cP_QcW13BESi7uZPECl0R-ueOjJUbBohfFWtxKbyQUyp8GnNfmSLUgcukIXpBwj3FPKkoTWLvGMpplspTIFKn_VLUM-wkQYiTcEk597mIXYG9atBcyzgSNvW4roDxFhkK4rIIFRRpBUVWQTW4LXq8r9Ju_NH2UAu_aGflXoP6Wo2RtctZpPkizkEhozW4Lh6jRekwCU9ltjBtfIaotINvPlmpv3j3etSc_fzNK9jujZ8H0aA_fDqHnZY-KmGWa-pQnucLeQFbYjmfzvJLM3Q_Ad3S5m4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tensor+Completion+via+Complementary+Global%2C+Local%2C+and+Nonlocal+Priors&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Zhao%2C+Xi-Le&rft.au=Yang%2C+Jing-Hua&rft.au=Ma%2C+Tian-Hui&rft.au=Jiang%2C+Tai-Xiang&rft.date=2022&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=31&rft.spage=984&rft.epage=999&rft_id=info:doi/10.1109%2FTIP.2021.3138325&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2021_3138325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon