Tough and stretchable ionogels by in situ phase separation

Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough an...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature materials Ročník 21; číslo 3; s. 359 - 365
Hlavní autoři: Wang, Meixiang, Zhang, Pengyao, Shamsi, Mohammad, Thelen, Jacob L., Qian, Wen, Truong, Vi Khanh, Ma, Jinwoo, Hu, Jian, Dickey, Michael D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.03.2022
Témata:
ISSN:1476-1122, 1476-4660, 1476-4660
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m −2 ) and Young’s modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization. Two monomers with distinct solubility of their corresponding polymers in an ionic liquid enable tuning of the microstructure of the copolymers during their polymerization. Thus, energy dissipative and elastic molecular domains are created, resulting in highly tough and stretchable ionogels.
AbstractList Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m −2 ) and Young’s modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization. Two monomers with distinct solubility of their corresponding polymers in an ionic liquid enable tuning of the microstructure of the copolymers during their polymerization. Thus, energy dissipative and elastic molecular domains are created, resulting in highly tough and stretchable ionogels.
Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m ) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.
Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.
Author Shamsi, Mohammad
Ma, Jinwoo
Truong, Vi Khanh
Hu, Jian
Thelen, Jacob L.
Qian, Wen
Wang, Meixiang
Dickey, Michael D.
Zhang, Pengyao
Author_xml – sequence: 1
  givenname: Meixiang
  orcidid: 0000-0001-8441-2288
  surname: Wang
  fullname: Wang, Meixiang
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Department of Chemical and Biomolecular Engineering, North Carolina State University
– sequence: 2
  givenname: Pengyao
  surname: Zhang
  fullname: Zhang, Pengyao
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University
– sequence: 3
  givenname: Mohammad
  surname: Shamsi
  fullname: Shamsi, Mohammad
  organization: Department of Chemical and Biomolecular Engineering, North Carolina State University
– sequence: 4
  givenname: Jacob L.
  surname: Thelen
  fullname: Thelen, Jacob L.
  organization: Department of Chemical and Biomolecular Engineering, North Carolina State University
– sequence: 5
  givenname: Wen
  orcidid: 0000-0001-5813-7817
  surname: Qian
  fullname: Qian, Wen
  organization: Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln
– sequence: 6
  givenname: Vi Khanh
  surname: Truong
  fullname: Truong, Vi Khanh
  organization: Department of Chemical and Biomolecular Engineering, North Carolina State University, School of Science, STEM College, RMIT University
– sequence: 7
  givenname: Jinwoo
  surname: Ma
  fullname: Ma, Jinwoo
  organization: Department of Chemical and Biomolecular Engineering, North Carolina State University
– sequence: 8
  givenname: Jian
  orcidid: 0000-0003-4739-0520
  surname: Hu
  fullname: Hu, Jian
  email: hujian@mail.xjtu.edu.cn
  organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University
– sequence: 9
  givenname: Michael D.
  orcidid: 0000-0003-1251-1871
  surname: Dickey
  fullname: Dickey, Michael D.
  email: mddickey@ncsu.edu
  organization: Department of Chemical and Biomolecular Engineering, North Carolina State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35190655$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC1UREvhDzAgjywBn-04Lhuq-JIqsZTZchynTZXaxU6G_ntM0y4Mne6G9066d41GzjuL0B2QRyBMPkUOuWAZoTQjALM84xdoArwQGReCjI47AKVjdB3jhhAKeS6u0JjlMCMizyfoeen71RprV-HYBduZtS5bixvv_Mq2EZd73Dgcm67Hu7WOFke700F3CbhBl7Vuo709zin6fntdzj-yxdf75_xlkRkOrMuqUnLGqOQcgGtdFkYWWlZ1zamVFdEzomVtJKVcCzAVUCtKSJsmBbASajZFD8PdXfA_vY2d2jbR2LbVzvo-KioYSMEZ0ITeH9G-3NpK7UKz1WGvTv8mQA6ACT7GYGtlmu7wTRd00yog6i-tGtKqlFYd0iqeVPpPPV0_K7FBigl2KxvUxvfBpVznrF-Vv4oI
CitedBy_id crossref_primary_10_1016_j_nanoen_2024_110630
crossref_primary_10_1002_adfm_202400203
crossref_primary_10_1002_adma_202303355
crossref_primary_10_1002_advs_202206099
crossref_primary_10_1002_adfm_202512398
crossref_primary_10_1016_j_cej_2023_145704
crossref_primary_10_1016_j_jcis_2024_10_076
crossref_primary_10_1016_j_coco_2025_102387
crossref_primary_10_1016_j_cej_2025_160787
crossref_primary_10_1002_adfm_202204467
crossref_primary_10_1002_adfm_202301921
crossref_primary_10_1002_smll_202307019
crossref_primary_10_1002_adfm_202300947
crossref_primary_10_1016_j_coco_2024_101900
crossref_primary_10_1002_ange_202506349
crossref_primary_10_1002_smll_202308570
crossref_primary_10_1016_j_nanoen_2023_109130
crossref_primary_10_1016_j_cej_2024_150105
crossref_primary_10_1038_s41467_024_44949_1
crossref_primary_10_1002_adfm_202402613
crossref_primary_10_1002_adma_202406480
crossref_primary_10_1039_D4MH00970C
crossref_primary_10_1002_adfm_202408160
crossref_primary_10_1002_slct_202502258
crossref_primary_10_1002_marc_202300457
crossref_primary_10_1039_D4LP00372A
crossref_primary_10_1002_adfm_202412412
crossref_primary_10_1016_j_cej_2025_161524
crossref_primary_10_1016_j_cej_2025_168273
crossref_primary_10_1002_adma_202510115
crossref_primary_10_1016_j_sna_2024_115325
crossref_primary_10_1016_j_mtchem_2024_102365
crossref_primary_10_1016_j_esci_2024_100324
crossref_primary_10_1002_adfm_202307332
crossref_primary_10_1039_D4MH00750F
crossref_primary_10_1016_j_pmatsci_2023_101086
crossref_primary_10_1021_acs_chemrev_4c00972
crossref_primary_10_1093_nsr_nwae422
crossref_primary_10_1007_s00289_022_04326_8
crossref_primary_10_1002_adfm_202206305
crossref_primary_10_1002_adma_202406459
crossref_primary_10_1002_ange_202505034
crossref_primary_10_1002_smm2_1253
crossref_primary_10_1002_app_55570
crossref_primary_10_1002_smll_202503698
crossref_primary_10_1007_s40820_024_01387_4
crossref_primary_10_1016_j_cej_2025_168016
crossref_primary_10_1021_acs_biomac_5c00480
crossref_primary_10_1016_j_ensm_2025_104536
crossref_primary_10_1039_D4MH01645A
crossref_primary_10_1002_adfm_202502583
crossref_primary_10_1002_smll_202503699
crossref_primary_10_1016_j_mtcomm_2025_112992
crossref_primary_10_1016_j_enchem_2025_100154
crossref_primary_10_1016_j_molliq_2024_124354
crossref_primary_10_1038_s41467_024_46472_9
crossref_primary_10_1002_pol_20241038
crossref_primary_10_1038_s41467_023_35810_y
crossref_primary_10_1093_nsr_nwae412
crossref_primary_10_1557_s43578_024_01397_3
crossref_primary_10_1002_marc_202300116
crossref_primary_10_1016_j_aca_2025_344552
crossref_primary_10_1002_advs_202305702
crossref_primary_10_1002_anie_202505034
crossref_primary_10_1021_acsapm_5c02515
crossref_primary_10_1002_adfm_202310963
crossref_primary_10_1038_s41427_023_00514_8
crossref_primary_10_1002_smm2_1269
crossref_primary_10_1002_anie_202212512
crossref_primary_10_1038_s41467_024_49091_6
crossref_primary_10_1002_admt_202301904
crossref_primary_10_1002_smll_202309231
crossref_primary_10_1016_j_coco_2023_101658
crossref_primary_10_1002_marc_202200419
crossref_primary_10_1016_j_cej_2025_161716
crossref_primary_10_1021_acs_chemrev_5c00245
crossref_primary_10_1016_j_cej_2025_159636
crossref_primary_10_1016_j_addma_2022_103343
crossref_primary_10_1039_D3MH01560B
crossref_primary_10_1016_j_nanoen_2024_109449
crossref_primary_10_1002_adma_202307990
crossref_primary_10_1038_s41467_025_62449_8
crossref_primary_10_1016_j_mattod_2023_07_020
crossref_primary_10_1021_acsapm_5c02421
crossref_primary_10_1016_j_ijbiomac_2024_136115
crossref_primary_10_1016_j_pmatsci_2025_101476
crossref_primary_10_1016_j_dental_2024_03_002
crossref_primary_10_1039_D5TA05373K
crossref_primary_10_1002_adma_202309821
crossref_primary_10_1007_s40843_022_2286_5
crossref_primary_10_1038_s41467_025_62742_6
crossref_primary_10_1016_j_cej_2025_160750
crossref_primary_10_3390_polym17081093
crossref_primary_10_1016_j_matt_2024_09_009
crossref_primary_10_1039_D3MH01587D
crossref_primary_10_1002_adfm_202307402
crossref_primary_10_1038_s41467_023_38493_7
crossref_primary_10_1038_s41467_025_58062_4
crossref_primary_10_1002_marc_202200752
crossref_primary_10_1002_adfm_202410588
crossref_primary_10_1002_ange_202301762
crossref_primary_10_1016_j_cej_2025_164085
crossref_primary_10_1002_marc_202200512
crossref_primary_10_1016_j_diamond_2024_111724
crossref_primary_10_1016_j_jil_2023_100066
crossref_primary_10_1016_j_matt_2023_08_011
crossref_primary_10_1002_smll_202502449
crossref_primary_10_1016_j_cej_2024_151850
crossref_primary_10_1016_j_cej_2023_143937
crossref_primary_10_1016_j_cej_2025_160728
crossref_primary_10_1016_j_polymer_2025_129058
crossref_primary_10_1016_j_cej_2022_137633
crossref_primary_10_1016_j_ijbiomac_2024_135493
crossref_primary_10_1016_j_cej_2025_159502
crossref_primary_10_1039_D2MH01034H
crossref_primary_10_1016_j_matt_2025_102214
crossref_primary_10_1002_anie_202301762
crossref_primary_10_1515_epoly_2024_0016
crossref_primary_10_1002_adma_202304157
crossref_primary_10_1039_D5TA04186D
crossref_primary_10_1002_adfm_202507821
crossref_primary_10_1002_smm2_1189
crossref_primary_10_1002_adfm_202414936
crossref_primary_10_1016_j_colsurfa_2023_131633
crossref_primary_10_1002_adfm_202316346
crossref_primary_10_1016_j_cej_2023_144212
crossref_primary_10_1073_pnas_2412684121
crossref_primary_10_1002_smll_202500477
crossref_primary_10_1002_adfm_202301404
crossref_primary_10_1002_adma_202400099
crossref_primary_10_1016_j_cej_2025_164625
crossref_primary_10_1016_j_est_2025_116488
crossref_primary_10_1007_s40820_024_01432_2
crossref_primary_10_1002_adma_202508549
crossref_primary_10_1016_j_chempr_2023_08_012
crossref_primary_10_1038_s41563_022_01214_4
crossref_primary_10_1039_D3MH01386C
crossref_primary_10_1002_sus2_70026
crossref_primary_10_1016_j_cej_2024_156608
crossref_primary_10_1002_adma_202308520
crossref_primary_10_1016_j_orgel_2023_106895
crossref_primary_10_1002_adma_202309508
crossref_primary_10_1038_s41467_024_45079_4
crossref_primary_10_1002_admt_202401325
crossref_primary_10_1002_smll_202401164
crossref_primary_10_1016_j_jcis_2024_12_187
crossref_primary_10_1002_anie_202210078
crossref_primary_10_1016_j_recm_2024_12_001
crossref_primary_10_3390_gels11080673
crossref_primary_10_1093_nsr_nwae351
crossref_primary_10_1002_adma_202408826
crossref_primary_10_1002_marc_202300736
crossref_primary_10_1038_s41467_024_55472_8
crossref_primary_10_1002_adhm_202201730
crossref_primary_10_1002_adma_202306350
crossref_primary_10_1002_adma_202412083
crossref_primary_10_1360_TB_2024_0455
crossref_primary_10_1039_D4MH01129E
crossref_primary_10_1002_adfm_202417982
crossref_primary_10_1016_j_cej_2023_147947
crossref_primary_10_1016_j_cclet_2023_108861
crossref_primary_10_1002_marc_202300650
crossref_primary_10_1038_s41928_025_01389_z
crossref_primary_10_1016_j_addma_2025_104699
crossref_primary_10_1002_adhm_202301313
crossref_primary_10_1021_acs_chemmater_5c01046
crossref_primary_10_1016_j_cej_2025_160244
crossref_primary_10_1002_adma_202312816
crossref_primary_10_1002_adfm_202402115
crossref_primary_10_1002_advs_202207233
crossref_primary_10_1016_j_sna_2025_116736
crossref_primary_10_1016_j_cej_2023_146840
crossref_primary_10_1002_adma_202402386
crossref_primary_10_1021_acsmaterialslett_5c00042
crossref_primary_10_1002_advs_202510481
crossref_primary_10_1016_j_polymer_2025_128284
crossref_primary_10_1002_adma_202400084
crossref_primary_10_1002_adfm_202210188
crossref_primary_10_1002_sus2_196
crossref_primary_10_1016_j_xcrp_2024_102073
crossref_primary_10_1002_adma_202506563
crossref_primary_10_1002_adma_202405776
crossref_primary_10_1016_j_cemconres_2023_107407
crossref_primary_10_1039_D4RA05968A
crossref_primary_10_1680_jensu_22_10000
crossref_primary_10_1016_j_nanoen_2023_109166
crossref_primary_10_1002_cjoc_202200631
crossref_primary_10_1021_acsami_5c09081
crossref_primary_10_1039_D4LP00381K
crossref_primary_10_1002_anie_202506349
crossref_primary_10_1016_j_mattod_2023_11_014
crossref_primary_10_1038_s41467_025_57800_y
crossref_primary_10_1002_ange_202408673
crossref_primary_10_1002_adfm_202416701
crossref_primary_10_1002_smll_202403252
crossref_primary_10_1021_acsapm_5c00868
crossref_primary_10_1088_1674_4926_24080036
crossref_primary_10_1038_s41586_024_07564_0
crossref_primary_10_1002_ange_202212512
crossref_primary_10_1002_adma_202407931
crossref_primary_10_1002_cplu_202300694
crossref_primary_10_1002_advs_202302891
crossref_primary_10_1039_D4MH00497C
crossref_primary_10_1002_adma_202510713
crossref_primary_10_1021_acssuschemeng_5c01420
crossref_primary_10_1002_smm2_1325
crossref_primary_10_1016_j_mtbio_2025_101966
crossref_primary_10_1016_j_progpolymsci_2024_101847
crossref_primary_10_1002_adfm_202409050
crossref_primary_10_1002_anie_202411270
crossref_primary_10_1016_j_scib_2025_01_013
crossref_primary_10_1021_acsami_5c03411
crossref_primary_10_1038_s41563_023_01764_1
crossref_primary_10_1016_j_nanoen_2025_110658
crossref_primary_10_1016_j_compositesb_2022_109895
crossref_primary_10_1016_j_ijbiomac_2023_125417
crossref_primary_10_1016_j_ijbiomac_2023_127958
crossref_primary_10_1002_smll_202410806
crossref_primary_10_1021_acsapm_5c01985
crossref_primary_10_1016_j_jcis_2024_06_192
crossref_primary_10_1038_s44160_023_00315_5
crossref_primary_10_1038_s41467_025_59396_9
crossref_primary_10_1002_anie_202315076
crossref_primary_10_1016_j_actbio_2025_04_053
crossref_primary_10_1016_j_actbio_2025_02_003
crossref_primary_10_1002_adfm_202307367
crossref_primary_10_1016_j_cej_2024_153510
crossref_primary_10_1016_j_cej_2024_153752
crossref_primary_10_1021_acs_macromol_5c00072
crossref_primary_10_1021_acs_biomac_5c00788
crossref_primary_10_1039_D2EE01326F
crossref_primary_10_1002_adfm_202413334
crossref_primary_10_1016_j_nanoen_2022_107962
crossref_primary_10_1016_j_cej_2024_154605
crossref_primary_10_1360_SSC_2025_0127
crossref_primary_10_1007_s10704_024_00810_6
crossref_primary_10_1016_j_polymer_2022_125328
crossref_primary_10_1002_flm2_31
crossref_primary_10_1002_smll_202301204
crossref_primary_10_1002_adfm_202415744
crossref_primary_10_1002_flm2_36
crossref_primary_10_1002_anie_202401331
crossref_primary_10_1021_acs_macromol_5c01293
crossref_primary_10_1021_acs_macromol_5c01294
crossref_primary_10_1016_j_matt_2024_101956
crossref_primary_10_1021_acsapm_5c02172
crossref_primary_10_1038_s41428_023_00814_4
crossref_primary_10_3390_molecules28135192
crossref_primary_10_1016_j_ijbiomac_2023_127736
crossref_primary_10_1002_advs_202504778
crossref_primary_10_1002_marc_202400518
crossref_primary_10_1002_adma_202205376
crossref_primary_10_1515_revce_2023_0052
crossref_primary_10_1021_acs_chemmater_5c01421
crossref_primary_10_1002_marc_202500359
crossref_primary_10_1038_s41467_023_42209_2
crossref_primary_10_1002_adma_202406915
crossref_primary_10_1021_acs_langmuir_5c02377
crossref_primary_10_1016_j_cej_2025_167623
crossref_primary_10_1016_j_compscitech_2024_110684
crossref_primary_10_1002_smll_202502700
crossref_primary_10_1039_D2MH00880G
crossref_primary_10_1002_adfm_202509794
crossref_primary_10_1021_acsnano_5c02399
crossref_primary_10_1021_jacs_4c01758
crossref_primary_10_1016_j_compositesa_2024_108652
crossref_primary_10_1002_ange_202511493
crossref_primary_10_1016_j_matt_2025_102193
crossref_primary_10_1002_adma_202502140
crossref_primary_10_1002_adma_202211802
crossref_primary_10_1002_adma_202411273
crossref_primary_10_1002_admt_202401174
crossref_primary_10_1016_j_trac_2024_117662
crossref_primary_10_1002_ange_202423847
crossref_primary_10_1016_j_cej_2023_147544
crossref_primary_10_1039_D5TC01998B
crossref_primary_10_1016_j_eurpolymj_2023_112325
crossref_primary_10_1038_s41467_024_55245_3
crossref_primary_10_1002_marc_202400973
crossref_primary_10_1002_advs_202207527
crossref_primary_10_1016_j_ijbiomac_2024_134520
crossref_primary_10_1039_D2MH01339H
crossref_primary_10_1002_ange_202210078
crossref_primary_10_1002_agt2_249
crossref_primary_10_1002_ange_202502440
crossref_primary_10_1002_adfm_202405345
crossref_primary_10_1002_marc_202500270
crossref_primary_10_1038_s41467_025_57785_8
crossref_primary_10_1039_D2PY00646D
crossref_primary_10_1002_adfm_202314408
crossref_primary_10_1016_j_cej_2022_140328
crossref_primary_10_1021_acs_biomac_4c01212
crossref_primary_10_1016_j_ijbiomac_2022_11_284
crossref_primary_10_1002_adfm_202416599
crossref_primary_10_1002_anie_202502440
crossref_primary_10_1002_adma_202416916
crossref_primary_10_1002_adma_202412317
crossref_primary_10_1002_marc_202400832
crossref_primary_10_1021_acs_chemmater_5c00418
crossref_primary_10_1016_j_cej_2025_165518
crossref_primary_10_1002_adfm_202210395
crossref_primary_10_1002_anie_202411418
crossref_primary_10_1016_j_cej_2024_153136
crossref_primary_10_1002_adfm_202204823
crossref_primary_10_1002_adfm_202314635
crossref_primary_10_1016_j_seppur_2024_127019
crossref_primary_10_1002_adfm_202500640
crossref_primary_10_1002_adfm_202313781
crossref_primary_10_1016_j_jcis_2025_137993
crossref_primary_10_1021_acs_macromol_4c02420
crossref_primary_10_1021_acs_chemmater_5c00423
crossref_primary_10_1039_D3SC06717C
crossref_primary_10_1016_j_cej_2024_156871
crossref_primary_10_1002_smll_202409754
crossref_primary_10_1038_s41467_025_63148_0
crossref_primary_10_1016_j_cej_2024_157726
crossref_primary_10_1016_j_cej_2025_163344
crossref_primary_10_1016_j_progpolymsci_2023_101743
crossref_primary_10_1002_advs_202300857
crossref_primary_10_1002_adfm_202301421
crossref_primary_10_1002_admt_202400008
crossref_primary_10_1016_j_cej_2024_151163
crossref_primary_10_1016_j_memsci_2024_123200
crossref_primary_10_1002_ange_202411418
crossref_primary_10_1002_smll_202208156
crossref_primary_10_1088_2752_5724_ad5c84
crossref_primary_10_1002_adfm_202407848
crossref_primary_10_1002_adfm_202511996
crossref_primary_10_1002_adma_202409137
crossref_primary_10_1016_j_polymer_2022_125600
crossref_primary_10_1002_adma_202300114
crossref_primary_10_1002_adfm_202208083
crossref_primary_10_1007_s12274_023_6365_8
crossref_primary_10_1007_s10971_024_06639_8
crossref_primary_10_1002_adma_202310020
crossref_primary_10_1039_D4NR04636F
crossref_primary_10_1016_j_clay_2025_107815
crossref_primary_10_1016_j_cej_2024_154672
crossref_primary_10_1002_adfm_202203988
crossref_primary_10_1002_adma_202402501
crossref_primary_10_1002_mame_202400137
crossref_primary_10_1002_adma_202410572
crossref_primary_10_1002_adfm_202512794
crossref_primary_10_1002_smll_202407143
crossref_primary_10_1002_smll_202409565
crossref_primary_10_1016_j_ensm_2025_104383
crossref_primary_10_1002_smll_202407026
crossref_primary_10_1002_advs_202305697
crossref_primary_10_1016_j_cis_2025_103633
crossref_primary_10_1002_zaac_202400202
crossref_primary_10_1016_j_cclet_2024_110554
crossref_primary_10_1021_jacs_4c09062
crossref_primary_10_1016_j_ijbiomac_2023_126132
crossref_primary_10_1002_anie_202423847
crossref_primary_10_1021_acs_chemmater_5c00987
crossref_primary_10_1002_mame_202300454
crossref_primary_10_1016_j_carbpol_2023_120953
crossref_primary_10_1016_j_mser_2024_100863
crossref_primary_10_1002_anie_202408673
crossref_primary_10_1039_D5PY00346F
crossref_primary_10_1016_j_cej_2025_159608
crossref_primary_10_1002_adfm_202305314
crossref_primary_10_1002_smll_202306557
crossref_primary_10_1016_j_cattod_2024_114595
crossref_primary_10_1016_j_compscitech_2024_110613
crossref_primary_10_1016_j_cej_2025_163070
crossref_primary_10_1039_D3MH01975F
crossref_primary_10_1002_adfm_202507061
crossref_primary_10_1039_D3RA07433A
crossref_primary_10_1002_adfm_202503935
crossref_primary_10_1016_j_cej_2024_155059
crossref_primary_10_1016_j_matt_2024_02_015
crossref_primary_10_1016_j_tifs_2025_105242
crossref_primary_10_1002_adsu_202300079
crossref_primary_10_1038_s41467_025_59875_z
crossref_primary_10_1038_s41428_024_00969_8
crossref_primary_10_1002_adma_202300398
crossref_primary_10_1002_adma_202407398
crossref_primary_10_3389_fphy_2022_890845
crossref_primary_10_1002_adfm_202511554
crossref_primary_10_1016_j_nanoen_2025_111158
crossref_primary_10_1002_adfm_202420561
crossref_primary_10_1038_s41467_025_59743_w
crossref_primary_10_1016_j_cej_2022_138521
crossref_primary_10_1016_j_cclet_2022_108028
crossref_primary_10_1002_adma_202207006
crossref_primary_10_1002_adsu_202400340
crossref_primary_10_1002_adfm_202207348
crossref_primary_10_1016_j_cej_2025_168502
crossref_primary_10_1021_acssensors_4c02535
crossref_primary_10_1007_s12274_023_5914_5
crossref_primary_10_1002_adfm_202416398
crossref_primary_10_1039_D4SC02089H
crossref_primary_10_1002_adma_202503324
crossref_primary_10_1016_j_cej_2022_138417
crossref_primary_10_1002_smll_202412657
crossref_primary_10_1002_adfm_202426081
crossref_primary_10_1039_D5PY00217F
crossref_primary_10_1002_admt_202402052
crossref_primary_10_1016_j_ijbiomac_2024_131748
crossref_primary_10_1016_j_cej_2024_149836
crossref_primary_10_2478_aiht_2023_74_3766
crossref_primary_10_3390_gels11050369
crossref_primary_10_1002_anie_202511493
crossref_primary_10_1002_adfm_202211771
crossref_primary_10_1002_adfm_202409726
crossref_primary_10_1016_j_cej_2025_160913
crossref_primary_10_1016_j_cej_2024_156113
crossref_primary_10_1002_ange_202315076
crossref_primary_10_1002_pol_20210933
crossref_primary_10_1002_adfm_202305879
crossref_primary_10_1002_adfm_202314101
crossref_primary_10_1002_adfm_202503647
crossref_primary_10_1016_j_ijmecsci_2025_110818
crossref_primary_10_1039_D4TC05252H
crossref_primary_10_1002_adma_202301383
crossref_primary_10_1002_adfm_202209787
crossref_primary_10_1002_marc_202200480
crossref_primary_10_1016_j_colsurfa_2023_132349
crossref_primary_10_1016_j_mtchem_2025_102683
crossref_primary_10_1002_agt2_319
crossref_primary_10_1016_j_cej_2023_148318
crossref_primary_10_1016_j_giant_2025_100371
crossref_primary_10_1016_j_sna_2023_114680
crossref_primary_10_1039_D4SM01430H
crossref_primary_10_1038_s41563_025_02146_5
crossref_primary_10_1007_s10118_025_3388_5
crossref_primary_10_1002_ange_202401331
crossref_primary_10_1016_j_ces_2025_121965
crossref_primary_10_1016_j_ijbiomac_2025_142903
crossref_primary_10_1002_adma_202211679
crossref_primary_10_1016_j_mtnano_2023_100440
crossref_primary_10_1039_D4RA05446F
crossref_primary_10_1002_smll_202412798
crossref_primary_10_1117_1_JATIS_10_4_044010
crossref_primary_10_1016_j_cej_2024_148605
crossref_primary_10_1002_ange_202411270
crossref_primary_10_1016_j_sna_2023_114794
crossref_primary_10_1016_j_eurpolymj_2022_111488
crossref_primary_10_1002_adma_202209581
crossref_primary_10_1002_adfm_202417011
crossref_primary_10_1002_adfm_202423915
crossref_primary_10_1016_j_eml_2025_102367
crossref_primary_10_1016_j_polymer_2023_126151
crossref_primary_10_1088_1361_665X_ad9717
crossref_primary_10_1002_adfm_202418336
crossref_primary_10_1002_adfm_202312383
crossref_primary_10_1016_j_cej_2025_167762
Cites_doi 10.1002/adma.201902062
10.1016/j.jpowsour.2015.01.066
10.1038/s41563-019-0340-5
10.1002/adma.200304907
10.1039/b924290b
10.1002/adma.201704937
10.1016/S0014-3057(98)00115-3
10.1002/aenm.201900257
10.1002/adma.201704253
10.1002/aenm.202002135
10.1002/adma.201801934
10.1002/smll.201804651
10.1038/s41467-019-09003-5
10.1039/C9MH01699F
10.1039/C0CS00059K
10.1038/nature11409
10.1002/adma.201600466
10.1243/PIME_PROC_1990_204_249_02
10.1002/adma.201503724
10.1021/acs.accounts.6b00308
10.1038/s41427-018-0077-7
10.1126/sciadv.aax0648
10.1039/C7EE00988G
10.1039/C3SM52272E
10.1016/j.euromechsol.2018.12.001
10.1246/bcsj.20110225
10.1038/s41467-018-05165-w
10.1021/acsami.0c18832
10.1038/s41551-018-0335-6
10.1126/science.aay8467
10.1002/adma.202002706
10.1038/nmat3713
10.1002/adfm.201907290
10.1002/adfm.201909736
10.1021/acs.chemrev.7b00291
10.34133/2020/2505619
10.1038/s41467-019-11364-w
10.1021/ma802443b
10.1002/aenm.201702675
10.1021/acsmacrolett.9b01024
10.1002/adma.201802792
10.1002/adma.201502967
10.1002/anie.201504971
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1038/s41563-022-01195-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 365
ExternalDocumentID 35190655
10_1038_s41563_022_01195_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: EEC-1160483
  funderid: https://doi.org/10.13039/100000001
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c413t-db84332844114aab7c87a8dff42e8d0a90a8fc8224a61cd12e6b161ca0713b1f3
ISICitedReferencesCount 594
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758972100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-1122
1476-4660
IngestDate Sun Nov 09 11:26:22 EST 2025
Wed Feb 19 02:25:47 EST 2025
Sat Nov 29 03:30:34 EST 2025
Tue Nov 18 22:15:46 EST 2025
Fri Feb 21 02:40:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c413t-db84332844114aab7c87a8dff42e8d0a90a8fc8224a61cd12e6b161ca0713b1f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1251-1871
0000-0001-5813-7817
0000-0001-8441-2288
0000-0003-4739-0520
PMID 35190655
PQID 2631864312
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2631864312
pubmed_primary_35190655
crossref_citationtrail_10_1038_s41563_022_01195_4
crossref_primary_10_1038_s41563_022_01195_4
springer_journals_10_1038_s41563_022_01195_4
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2022
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Zhou (CR3) 2020; 9
Lu (CR8) 2019; 10
Chen, Zhang, Li, Chen, Guo (CR14) 2018; 8
Lei, Wu (CR20) 2019; 10
Gong (CR32) 2010; 6
Liu, He, Chen, Leow, Chen (CR18) 2017; 117
Le Bideau, Viau, Vioux (CR25) 2011; 40
Corkhill, Trevett, Tighe (CR33) 1990; 204
Ueki, Watanabe (CR35) 2012; 85
Osada, de Vries, Scrosati, Passerini (CR13) 2016; 55
Lodge, Ueki (CR1) 2016; 49
Shi (CR17) 2018; 10
Yu (CR26) 2019; 9
Tamate (CR5) 2018; 30
Ma (CR11) 2020; 32
Shi (CR19) 2018; 9
Correia (CR24) 2020; 30
Sato (CR31) 2015; 27
Bai, Yang, Suo (CR43) 2019; 74
Shi (CR4) 2020; 2020
Kong (CR40) 2018; 30
Hu, Vatankhah‐Varnoosfaderani, Zhou, Li, Sheiko (CR39) 2015; 27
Xu (CR9) 2019; 18
Chen (CR15) 2017; 10
Zhao (CR27) 2014; 10
Liu (CR10) 2019; 3
Gong, Katsuyama, Kurokawa, Osada (CR28) 2003; 15
Hyun, Thomas, Hersam (CR16) 2020; 10
Mredha (CR41) 2018; 30
Ding (CR2) 2017; 29
Ueki, Watanabe, Lodge (CR36) 2009; 42
Asaletha, Kumaran, Thomas (CR42) 1999; 35
Weng (CR37) 2020; 12
Li, Wang, Li, Liu, Sun (CR23) 2020; 32
Sun (CR29) 2012; 489
Ren (CR7) 2019; 5
Kim, Moon (CR6) 2020; 30
Cao, Liu, Jiang (CR21) 2020; 7
Kim, Chen, Suo, Hayward (CR12) 2020; 367
Zhang (CR30) 2016; 28
Zhang (CR34) 2015; 279
Zhang (CR22) 2019; 15
Sun (CR38) 2013; 12
J Le Bideau (1195_CR25) 2011; 40
Z Cao (1195_CR21) 2020; 7
Y Ren (1195_CR7) 2019; 5
YM Kim (1195_CR6) 2020; 30
J-Y Sun (1195_CR29) 2012; 489
TP Lodge (1195_CR1) 2016; 49
K Sato (1195_CR31) 2015; 27
MTI Mredha (1195_CR41) 2018; 30
D Weng (1195_CR37) 2020; 12
WJ Hyun (1195_CR16) 2020; 10
L Yu (1195_CR26) 2019; 9
R Tamate (1195_CR5) 2018; 30
L Shi (1195_CR17) 2018; 10
T Ueki (1195_CR36) 2009; 42
TL Sun (1195_CR38) 2013; 12
X Zhao (1195_CR27) 2014; 10
JP Gong (1195_CR28) 2003; 15
R Asaletha (1195_CR42) 1999; 35
B Zhou (1195_CR3) 2020; 9
B Lu (1195_CR8) 2019; 10
H Zhang (1195_CR34) 2015; 279
Y Ding (1195_CR2) 2017; 29
T Ueki (1195_CR35) 2012; 85
R Bai (1195_CR43) 2019; 74
JP Gong (1195_CR32) 2010; 6
Z Lei (1195_CR20) 2019; 10
L Shi (1195_CR19) 2018; 9
Y Liu (1195_CR10) 2019; 3
LM Zhang (1195_CR22) 2019; 15
HJ Zhang (1195_CR30) 2016; 28
I Osada (1195_CR13) 2016; 55
Y Ma (1195_CR11) 2020; 32
L Shi (1195_CR4) 2020; 2020
N Chen (1195_CR15) 2017; 10
X Hu (1195_CR39) 2015; 27
Y Liu (1195_CR18) 2017; 117
W Kong (1195_CR40) 2018; 30
T Li (1195_CR23) 2020; 32
P Corkhill (1195_CR33) 1990; 204
DM Correia (1195_CR24) 2020; 30
HJ Kim (1195_CR12) 2020; 367
N Chen (1195_CR14) 2018; 8
J Xu (1195_CR9) 2019; 18
35190657 - Nat Mater. 2022 Mar;21(3):266-268
References_xml – volume: 32
  start-page: 1902062
  year: 2020
  ident: CR11
  article-title: Flexible hybrid electronics for digital healthcare
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902062
– volume: 279
  start-page: 667
  year: 2015
  end-page: 677
  ident: CR34
  article-title: Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.066
– volume: 18
  start-page: 594
  year: 2019
  end-page: 601
  ident: CR9
  article-title: Multi-scale ordering in highly stretchable polymer semiconducting films
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0340-5
– volume: 15
  start-page: 1155
  year: 2003
  end-page: 1158
  ident: CR28
  article-title: Double‐network hydrogels with extremely high mechanical strength
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304907
– volume: 6
  start-page: 2583
  year: 2010
  end-page: 2590
  ident: CR32
  article-title: Why are double network hydrogels so tough?
  publication-title: Soft Matter
  doi: 10.1039/b924290b
– volume: 30
  start-page: 1704937
  year: 2018
  ident: CR41
  article-title: A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704937
– volume: 35
  start-page: 253
  year: 1999
  end-page: 271
  ident: CR42
  article-title: Thermoplastic elastomers from blends of polystyrene and natural rubber: morphology and mechanical properties
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(98)00115-3
– volume: 9
  start-page: 1900257
  year: 2019
  ident: CR26
  article-title: Highly tough, Li‐metal compatible organic–inorganic double‐network solvate ionogel
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900257
– volume: 29
  start-page: 1704253
  year: 2017
  ident: CR2
  article-title: Preparation of high‐performance ionogels with excellent transparency, good mechanical strength, and high conductivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704253
– volume: 10
  start-page: 2002135
  year: 2020
  ident: CR16
  article-title: Nanocomposite ionogel electrolytes for solid‐state rechargeable batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002135
– volume: 30
  start-page: 1801934
  year: 2018
  ident: CR40
  article-title: Muscle‐inspired highly anisotropic, strong, ion‐conductive hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801934
– volume: 15
  start-page: 1804651
  year: 2019
  ident: CR22
  article-title: Self‐healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation
  publication-title: Small
  doi: 10.1002/smll.201804651
– volume: 10
  start-page: 1043
  year: 2019
  ident: CR8
  article-title: Pure PEDOT: PSS hydrogels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09003-5
– volume: 7
  start-page: 912
  year: 2020
  end-page: 918
  ident: CR21
  article-title: Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01699F
– volume: 40
  start-page: 907
  year: 2011
  end-page: 925
  ident: CR25
  article-title: Ionogels, ionic liquid based hybrid materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00059K
– volume: 489
  start-page: 133
  year: 2012
  end-page: 136
  ident: CR29
  article-title: Highly stretchable and tough hydrogels
  publication-title: Nature
  doi: 10.1038/nature11409
– volume: 28
  start-page: 4884
  year: 2016
  end-page: 4890
  ident: CR30
  article-title: Tough physical double‐network hydrogels based on amphiphilic triblock copolymers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600466
– volume: 204
  start-page: 147
  year: 1990
  end-page: 155
  ident: CR33
  article-title: The potential of hydrogels as synthetic articular cartilage
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1243/PIME_PROC_1990_204_249_02
– volume: 27
  start-page: 6899
  year: 2015
  end-page: 6905
  ident: CR39
  article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503724
– volume: 49
  start-page: 2107
  year: 2016
  end-page: 2114
  ident: CR1
  article-title: Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00308
– volume: 10
  start-page: 821
  year: 2018
  end-page: 826
  ident: CR17
  article-title: Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0077-7
– volume: 5
  start-page: eaax0648
  year: 2019
  ident: CR7
  article-title: Ionic liquid–based click-ionogels
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0648
– volume: 10
  start-page: 1660
  year: 2017
  end-page: 1667
  ident: CR15
  article-title: Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00988G
– volume: 10
  start-page: 672
  year: 2014
  end-page: 687
  ident: CR27
  article-title: Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks
  publication-title: Soft Matter
  doi: 10.1039/C3SM52272E
– volume: 74
  start-page: 337
  year: 2019
  end-page: 370
  ident: CR43
  article-title: Fatigue of hydrogels
  publication-title: Eur. J. Mech. A
  doi: 10.1016/j.euromechsol.2018.12.001
– volume: 85
  start-page: 33
  year: 2012
  end-page: 50
  ident: CR35
  article-title: Polymers in ionic liquids: dawn of neoteric solvents and innovative materials
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.20110225
– volume: 9
  start-page: 2630
  year: 2018
  ident: CR19
  article-title: Highly stretchable and transparent ionic conducting elastomers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05165-w
– volume: 12
  start-page: 57477
  year: 2020
  end-page: 57485
  ident: CR37
  article-title: Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18832
– volume: 3
  start-page: 58
  year: 2019
  end-page: 68
  ident: CR10
  article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0335-6
– volume: 367
  start-page: 773
  year: 2020
  end-page: 776
  ident: CR12
  article-title: Ionoelastomer junctions between polymer networks of fixed anions and cations
  publication-title: Science
  doi: 10.1126/science.aay8467
– volume: 32
  start-page: 2002706
  year: 2020
  ident: CR23
  article-title: Mechanically robust, elastic, and healable ionogels for highly sensitive ultra‐durable ionic skins
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002706
– volume: 12
  start-page: 932
  year: 2013
  end-page: 937
  ident: CR38
  article-title: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3713
– volume: 30
  start-page: 1907290
  year: 2020
  ident: CR6
  article-title: Ionoskins: nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907290
– volume: 30
  start-page: 1909736
  year: 2020
  ident: CR24
  article-title: Ionic liquid–polymer composites: a new platform for multifunctional applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909736
– volume: 117
  start-page: 12893
  year: 2017
  end-page: 12941
  ident: CR18
  article-title: Nature-inspired structural materials for flexible electronic devices
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00291
– volume: 2020
  start-page: 2505619
  year: 2020
  ident: CR4
  article-title: Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance
  publication-title: Research
  doi: 10.34133/2020/2505619
– volume: 10
  start-page: 3429
  year: 2019
  ident: CR20
  article-title: A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11364-w
– volume: 42
  start-page: 1315
  year: 2009
  end-page: 1320
  ident: CR36
  article-title: Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids
  publication-title: Macromolecules
  doi: 10.1021/ma802443b
– volume: 8
  start-page: 1702675
  year: 2018
  ident: CR14
  article-title: Ionogel electrolytes for high‐performance lithium batteries: a review
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702675
– volume: 9
  start-page: 525
  year: 2020
  end-page: 532
  ident: CR3
  article-title: Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b01024
– volume: 30
  start-page: 1802792
  year: 2018
  ident: CR5
  article-title: Self‐healing micellar ion gels based on multiple hydrogen bonding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802792
– volume: 27
  start-page: 6990
  year: 2015
  end-page: 6998
  ident: CR31
  article-title: Phase‐separation‐induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502967
– volume: 55
  start-page: 500
  year: 2016
  end-page: 513
  ident: CR13
  article-title: Ionic‐liquid‐based polymer electrolytes for battery applications
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201504971
– volume: 367
  start-page: 773
  year: 2020
  ident: 1195_CR12
  publication-title: Science
  doi: 10.1126/science.aay8467
– volume: 10
  start-page: 821
  year: 2018
  ident: 1195_CR17
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-018-0077-7
– volume: 10
  start-page: 3429
  year: 2019
  ident: 1195_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11364-w
– volume: 32
  start-page: 2002706
  year: 2020
  ident: 1195_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002706
– volume: 55
  start-page: 500
  year: 2016
  ident: 1195_CR13
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201504971
– volume: 10
  start-page: 672
  year: 2014
  ident: 1195_CR27
  publication-title: Soft Matter
  doi: 10.1039/C3SM52272E
– volume: 42
  start-page: 1315
  year: 2009
  ident: 1195_CR36
  publication-title: Macromolecules
  doi: 10.1021/ma802443b
– volume: 6
  start-page: 2583
  year: 2010
  ident: 1195_CR32
  publication-title: Soft Matter
  doi: 10.1039/b924290b
– volume: 15
  start-page: 1804651
  year: 2019
  ident: 1195_CR22
  publication-title: Small
  doi: 10.1002/smll.201804651
– volume: 204
  start-page: 147
  year: 1990
  ident: 1195_CR33
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1243/PIME_PROC_1990_204_249_02
– volume: 489
  start-page: 133
  year: 2012
  ident: 1195_CR29
  publication-title: Nature
  doi: 10.1038/nature11409
– volume: 30
  start-page: 1909736
  year: 2020
  ident: 1195_CR24
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909736
– volume: 74
  start-page: 337
  year: 2019
  ident: 1195_CR43
  publication-title: Eur. J. Mech. A
  doi: 10.1016/j.euromechsol.2018.12.001
– volume: 5
  start-page: eaax0648
  year: 2019
  ident: 1195_CR7
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0648
– volume: 7
  start-page: 912
  year: 2020
  ident: 1195_CR21
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01699F
– volume: 27
  start-page: 6899
  year: 2015
  ident: 1195_CR39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503724
– volume: 9
  start-page: 525
  year: 2020
  ident: 1195_CR3
  publication-title: ACS Macro Lett.
  doi: 10.1021/acsmacrolett.9b01024
– volume: 40
  start-page: 907
  year: 2011
  ident: 1195_CR25
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C0CS00059K
– volume: 12
  start-page: 932
  year: 2013
  ident: 1195_CR38
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3713
– volume: 35
  start-page: 253
  year: 1999
  ident: 1195_CR42
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(98)00115-3
– volume: 30
  start-page: 1907290
  year: 2020
  ident: 1195_CR6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201907290
– volume: 9
  start-page: 1900257
  year: 2019
  ident: 1195_CR26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900257
– volume: 10
  start-page: 1043
  year: 2019
  ident: 1195_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09003-5
– volume: 15
  start-page: 1155
  year: 2003
  ident: 1195_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200304907
– volume: 279
  start-page: 667
  year: 2015
  ident: 1195_CR34
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.01.066
– volume: 12
  start-page: 57477
  year: 2020
  ident: 1195_CR37
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c18832
– volume: 30
  start-page: 1704937
  year: 2018
  ident: 1195_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704937
– volume: 30
  start-page: 1801934
  year: 2018
  ident: 1195_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801934
– volume: 32
  start-page: 1902062
  year: 2020
  ident: 1195_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201902062
– volume: 8
  start-page: 1702675
  year: 2018
  ident: 1195_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702675
– volume: 10
  start-page: 2002135
  year: 2020
  ident: 1195_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002135
– volume: 85
  start-page: 33
  year: 2012
  ident: 1195_CR35
  publication-title: Bull. Chem. Soc. Jpn
  doi: 10.1246/bcsj.20110225
– volume: 29
  start-page: 1704253
  year: 2017
  ident: 1195_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704253
– volume: 9
  start-page: 2630
  year: 2018
  ident: 1195_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05165-w
– volume: 49
  start-page: 2107
  year: 2016
  ident: 1195_CR1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00308
– volume: 27
  start-page: 6990
  year: 2015
  ident: 1195_CR31
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502967
– volume: 117
  start-page: 12893
  year: 2017
  ident: 1195_CR18
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00291
– volume: 28
  start-page: 4884
  year: 2016
  ident: 1195_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600466
– volume: 3
  start-page: 58
  year: 2019
  ident: 1195_CR10
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0335-6
– volume: 30
  start-page: 1802792
  year: 2018
  ident: 1195_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802792
– volume: 2020
  start-page: 2505619
  year: 2020
  ident: 1195_CR4
  publication-title: Research
  doi: 10.34133/2020/2505619
– volume: 10
  start-page: 1660
  year: 2017
  ident: 1195_CR15
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE00988G
– volume: 18
  start-page: 594
  year: 2019
  ident: 1195_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0340-5
– reference: 35190657 - Nat Mater. 2022 Mar;21(3):266-268
SSID ssj0021556
Score 2.7403197
Snippet Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms 639/301/1023
639/301/923
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Electric Conductivity
Gels - chemistry
Hydrogen Bonding
Ionic Liquids - chemistry
Materials Science
Nanotechnology
Optical and Electronic Materials
Polymers
Title Tough and stretchable ionogels by in situ phase separation
URI https://link.springer.com/article/10.1038/s41563-022-01195-4
https://www.ncbi.nlm.nih.gov/pubmed/35190655
https://www.proquest.com/docview/2631864312
Volume 21
WOSCitedRecordID wos000758972100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M7S
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: KB.
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (via ProQuest SciTech Premium Collection)
  customDbUrl:
  eissn: 1476-4660
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0021556
  issn: 1476-1122
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQc4IN6kQGQkxCW4xI4fa24UpUKiMRGkUk6sdtfr1FJrp7FTpf-e2YftIKOqHLisnFXstXbGM9_MzgOhd37EuOdFqc0dHtigr7kNShDbXuDzIML-KOVYNZsI4xgvFtGs1_tV58JcX4R5jrfbaPVfSQ1zQGyZOvsP5G4eChNwDUSHEcgO490Ir_ruKH94tZZEUclRMnlhCXpQws0sH5ZZtRmuzkGFDUuhy38b-higGquCn0PAs_qdW8e7Fg5TkW2Bs5Ydx_NM5MsbWjSem3N6WaqIgWkBl5c0aUNRpMbTkbq8YCb9wTggwHZtIrCMzPRCoHKg2wIcib_MGUHrOjsMNd6RmmNdFLwjzXXt9lLamPKwWcaQyNaSXqu76vP6-Ds5OTs9JfPJYv5-dWXLrmLy9N20WNlDB27oR1LqTd1ZY5ADltLZZ-ZlTVIVLPuxu-ifwKVjjXRO0hVAmT9CD41lYX3WHPEY9UT-BD3YqTf5FH1SvGEBb1g7vGHVvGGxGyvLLckbluINq-WNZ-jsZDL_8tU2zTNsDrikshOGZWk6DHDX8ShlIcchxUmaeq7AyYhGI4rhOwQERwOHJ44rAgbon1PptmBOOn6O9vMiFy-RJZyEeiETNHUpWKsJFg7zGCBPFsnK0l4fOfXOEG4qy8sGJxdERTiMMdG7SWA3idpNAvcMm3tWuq7Krf9-W284AfEnz7RoLopNSdwAlBKgasftoxeaEs3zZO9JQNh-H32oSUPMh1restjhHRZ7he63n8JrtF-tN-INusevq6xcD9BeuAjViAfo4HgSz37Ar2_HRwPFf3IMf_4G3MaS1Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tough+and+stretchable+ionogels+by+in+situ+phase+separation&rft.jtitle=Nature+materials&rft.au=Wang%2C+Meixiang&rft.au=Zhang%2C+Pengyao&rft.au=Shamsi%2C+Mohammad&rft.au=Thelen%2C+Jacob+L&rft.date=2022-03-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=21&rft.issue=3&rft.spage=359&rft_id=info:doi/10.1038%2Fs41563-022-01195-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon