Tough and stretchable ionogels by in situ phase separation
Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough an...
Uloženo v:
| Vydáno v: | Nature materials Ročník 21; číslo 3; s. 359 - 365 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.03.2022
|
| Témata: | |
| ISSN: | 1476-1122, 1476-4660, 1476-4660 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m
−2
) and Young’s modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.
Two monomers with distinct solubility of their corresponding polymers in an ionic liquid enable tuning of the microstructure of the copolymers during their polymerization. Thus, energy dissipative and elastic molecular domains are created, resulting in highly tough and stretchable ionogels. |
|---|---|
| AbstractList | Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m
−2
) and Young’s modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.
Two monomers with distinct solubility of their corresponding polymers in an ionic liquid enable tuning of the microstructure of the copolymers during their polymerization. Thus, energy dissipative and elastic molecular domains are created, resulting in highly tough and stretchable ionogels. Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m ) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization. Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization.Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and non-volatility. However, most existing ionogels suffer from low strength and toughness. Here, we report a simple one-step method to achieve ultra-tough and stretchable ionogels by randomly copolymerizing two common monomers with distinct solubility of the corresponding polymers in an ionic liquid. Copolymerization of acrylamide and acrylic acid in 1-ethyl-3-methylimidazolium ethyl sulfate results in a macroscopically homogeneous covalent network with in situ phase separation: a polymer-rich phase with hydrogen bonds that dissipate energy and toughen the ionogel; and an elastic solvent-rich phase that enables for large strain. These ionogels have high fracture strength (12.6 MPa), fracture energy (~24 kJ m-2) and Young's modulus (46.5 MPa), while being highly stretchable (~600% strain) and having self-healing and shape-memory properties. This concept can be applied to other monomers and ionic liquids, offering a promising way to tune ionogel microstructure and properties in situ during one-step polymerization. |
| Author | Shamsi, Mohammad Ma, Jinwoo Truong, Vi Khanh Hu, Jian Thelen, Jacob L. Qian, Wen Wang, Meixiang Dickey, Michael D. Zhang, Pengyao |
| Author_xml | – sequence: 1 givenname: Meixiang orcidid: 0000-0001-8441-2288 surname: Wang fullname: Wang, Meixiang organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University, Department of Chemical and Biomolecular Engineering, North Carolina State University – sequence: 2 givenname: Pengyao surname: Zhang fullname: Zhang, Pengyao organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University – sequence: 3 givenname: Mohammad surname: Shamsi fullname: Shamsi, Mohammad organization: Department of Chemical and Biomolecular Engineering, North Carolina State University – sequence: 4 givenname: Jacob L. surname: Thelen fullname: Thelen, Jacob L. organization: Department of Chemical and Biomolecular Engineering, North Carolina State University – sequence: 5 givenname: Wen orcidid: 0000-0001-5813-7817 surname: Qian fullname: Qian, Wen organization: Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln – sequence: 6 givenname: Vi Khanh surname: Truong fullname: Truong, Vi Khanh organization: Department of Chemical and Biomolecular Engineering, North Carolina State University, School of Science, STEM College, RMIT University – sequence: 7 givenname: Jinwoo surname: Ma fullname: Ma, Jinwoo organization: Department of Chemical and Biomolecular Engineering, North Carolina State University – sequence: 8 givenname: Jian orcidid: 0000-0003-4739-0520 surname: Hu fullname: Hu, Jian email: hujian@mail.xjtu.edu.cn organization: State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi’an Jiaotong University – sequence: 9 givenname: Michael D. orcidid: 0000-0003-1251-1871 surname: Dickey fullname: Dickey, Michael D. email: mddickey@ncsu.edu organization: Department of Chemical and Biomolecular Engineering, North Carolina State University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35190655$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQQC1UREvhDzAgjywBn-04Lhuq-JIqsZTZchynTZXaxU6G_ntM0y4Mne6G9066d41GzjuL0B2QRyBMPkUOuWAZoTQjALM84xdoArwQGReCjI47AKVjdB3jhhAKeS6u0JjlMCMizyfoeen71RprV-HYBduZtS5bixvv_Mq2EZd73Dgcm67Hu7WOFke700F3CbhBl7Vuo709zin6fntdzj-yxdf75_xlkRkOrMuqUnLGqOQcgGtdFkYWWlZ1zamVFdEzomVtJKVcCzAVUCtKSJsmBbASajZFD8PdXfA_vY2d2jbR2LbVzvo-KioYSMEZ0ITeH9G-3NpK7UKz1WGvTv8mQA6ACT7GYGtlmu7wTRd00yog6i-tGtKqlFYd0iqeVPpPPV0_K7FBigl2KxvUxvfBpVznrF-Vv4oI |
| CitedBy_id | crossref_primary_10_1016_j_nanoen_2024_110630 crossref_primary_10_1002_adfm_202400203 crossref_primary_10_1002_adma_202303355 crossref_primary_10_1002_advs_202206099 crossref_primary_10_1002_adfm_202512398 crossref_primary_10_1016_j_cej_2023_145704 crossref_primary_10_1016_j_jcis_2024_10_076 crossref_primary_10_1016_j_coco_2025_102387 crossref_primary_10_1016_j_cej_2025_160787 crossref_primary_10_1002_adfm_202204467 crossref_primary_10_1002_adfm_202301921 crossref_primary_10_1002_smll_202307019 crossref_primary_10_1002_adfm_202300947 crossref_primary_10_1016_j_coco_2024_101900 crossref_primary_10_1002_ange_202506349 crossref_primary_10_1002_smll_202308570 crossref_primary_10_1016_j_nanoen_2023_109130 crossref_primary_10_1016_j_cej_2024_150105 crossref_primary_10_1038_s41467_024_44949_1 crossref_primary_10_1002_adfm_202402613 crossref_primary_10_1002_adma_202406480 crossref_primary_10_1039_D4MH00970C crossref_primary_10_1002_adfm_202408160 crossref_primary_10_1002_slct_202502258 crossref_primary_10_1002_marc_202300457 crossref_primary_10_1039_D4LP00372A crossref_primary_10_1002_adfm_202412412 crossref_primary_10_1016_j_cej_2025_161524 crossref_primary_10_1016_j_cej_2025_168273 crossref_primary_10_1002_adma_202510115 crossref_primary_10_1016_j_sna_2024_115325 crossref_primary_10_1016_j_mtchem_2024_102365 crossref_primary_10_1016_j_esci_2024_100324 crossref_primary_10_1002_adfm_202307332 crossref_primary_10_1039_D4MH00750F crossref_primary_10_1016_j_pmatsci_2023_101086 crossref_primary_10_1021_acs_chemrev_4c00972 crossref_primary_10_1093_nsr_nwae422 crossref_primary_10_1007_s00289_022_04326_8 crossref_primary_10_1002_adfm_202206305 crossref_primary_10_1002_adma_202406459 crossref_primary_10_1002_ange_202505034 crossref_primary_10_1002_smm2_1253 crossref_primary_10_1002_app_55570 crossref_primary_10_1002_smll_202503698 crossref_primary_10_1007_s40820_024_01387_4 crossref_primary_10_1016_j_cej_2025_168016 crossref_primary_10_1021_acs_biomac_5c00480 crossref_primary_10_1016_j_ensm_2025_104536 crossref_primary_10_1039_D4MH01645A crossref_primary_10_1002_adfm_202502583 crossref_primary_10_1002_smll_202503699 crossref_primary_10_1016_j_mtcomm_2025_112992 crossref_primary_10_1016_j_enchem_2025_100154 crossref_primary_10_1016_j_molliq_2024_124354 crossref_primary_10_1038_s41467_024_46472_9 crossref_primary_10_1002_pol_20241038 crossref_primary_10_1038_s41467_023_35810_y crossref_primary_10_1093_nsr_nwae412 crossref_primary_10_1557_s43578_024_01397_3 crossref_primary_10_1002_marc_202300116 crossref_primary_10_1016_j_aca_2025_344552 crossref_primary_10_1002_advs_202305702 crossref_primary_10_1002_anie_202505034 crossref_primary_10_1021_acsapm_5c02515 crossref_primary_10_1002_adfm_202310963 crossref_primary_10_1038_s41427_023_00514_8 crossref_primary_10_1002_smm2_1269 crossref_primary_10_1002_anie_202212512 crossref_primary_10_1038_s41467_024_49091_6 crossref_primary_10_1002_admt_202301904 crossref_primary_10_1002_smll_202309231 crossref_primary_10_1016_j_coco_2023_101658 crossref_primary_10_1002_marc_202200419 crossref_primary_10_1016_j_cej_2025_161716 crossref_primary_10_1021_acs_chemrev_5c00245 crossref_primary_10_1016_j_cej_2025_159636 crossref_primary_10_1016_j_addma_2022_103343 crossref_primary_10_1039_D3MH01560B crossref_primary_10_1016_j_nanoen_2024_109449 crossref_primary_10_1002_adma_202307990 crossref_primary_10_1038_s41467_025_62449_8 crossref_primary_10_1016_j_mattod_2023_07_020 crossref_primary_10_1021_acsapm_5c02421 crossref_primary_10_1016_j_ijbiomac_2024_136115 crossref_primary_10_1016_j_pmatsci_2025_101476 crossref_primary_10_1016_j_dental_2024_03_002 crossref_primary_10_1039_D5TA05373K crossref_primary_10_1002_adma_202309821 crossref_primary_10_1007_s40843_022_2286_5 crossref_primary_10_1038_s41467_025_62742_6 crossref_primary_10_1016_j_cej_2025_160750 crossref_primary_10_3390_polym17081093 crossref_primary_10_1016_j_matt_2024_09_009 crossref_primary_10_1039_D3MH01587D crossref_primary_10_1002_adfm_202307402 crossref_primary_10_1038_s41467_023_38493_7 crossref_primary_10_1038_s41467_025_58062_4 crossref_primary_10_1002_marc_202200752 crossref_primary_10_1002_adfm_202410588 crossref_primary_10_1002_ange_202301762 crossref_primary_10_1016_j_cej_2025_164085 crossref_primary_10_1002_marc_202200512 crossref_primary_10_1016_j_diamond_2024_111724 crossref_primary_10_1016_j_jil_2023_100066 crossref_primary_10_1016_j_matt_2023_08_011 crossref_primary_10_1002_smll_202502449 crossref_primary_10_1016_j_cej_2024_151850 crossref_primary_10_1016_j_cej_2023_143937 crossref_primary_10_1016_j_cej_2025_160728 crossref_primary_10_1016_j_polymer_2025_129058 crossref_primary_10_1016_j_cej_2022_137633 crossref_primary_10_1016_j_ijbiomac_2024_135493 crossref_primary_10_1016_j_cej_2025_159502 crossref_primary_10_1039_D2MH01034H crossref_primary_10_1016_j_matt_2025_102214 crossref_primary_10_1002_anie_202301762 crossref_primary_10_1515_epoly_2024_0016 crossref_primary_10_1002_adma_202304157 crossref_primary_10_1039_D5TA04186D crossref_primary_10_1002_adfm_202507821 crossref_primary_10_1002_smm2_1189 crossref_primary_10_1002_adfm_202414936 crossref_primary_10_1016_j_colsurfa_2023_131633 crossref_primary_10_1002_adfm_202316346 crossref_primary_10_1016_j_cej_2023_144212 crossref_primary_10_1073_pnas_2412684121 crossref_primary_10_1002_smll_202500477 crossref_primary_10_1002_adfm_202301404 crossref_primary_10_1002_adma_202400099 crossref_primary_10_1016_j_cej_2025_164625 crossref_primary_10_1016_j_est_2025_116488 crossref_primary_10_1007_s40820_024_01432_2 crossref_primary_10_1002_adma_202508549 crossref_primary_10_1016_j_chempr_2023_08_012 crossref_primary_10_1038_s41563_022_01214_4 crossref_primary_10_1039_D3MH01386C crossref_primary_10_1002_sus2_70026 crossref_primary_10_1016_j_cej_2024_156608 crossref_primary_10_1002_adma_202308520 crossref_primary_10_1016_j_orgel_2023_106895 crossref_primary_10_1002_adma_202309508 crossref_primary_10_1038_s41467_024_45079_4 crossref_primary_10_1002_admt_202401325 crossref_primary_10_1002_smll_202401164 crossref_primary_10_1016_j_jcis_2024_12_187 crossref_primary_10_1002_anie_202210078 crossref_primary_10_1016_j_recm_2024_12_001 crossref_primary_10_3390_gels11080673 crossref_primary_10_1093_nsr_nwae351 crossref_primary_10_1002_adma_202408826 crossref_primary_10_1002_marc_202300736 crossref_primary_10_1038_s41467_024_55472_8 crossref_primary_10_1002_adhm_202201730 crossref_primary_10_1002_adma_202306350 crossref_primary_10_1002_adma_202412083 crossref_primary_10_1360_TB_2024_0455 crossref_primary_10_1039_D4MH01129E crossref_primary_10_1002_adfm_202417982 crossref_primary_10_1016_j_cej_2023_147947 crossref_primary_10_1016_j_cclet_2023_108861 crossref_primary_10_1002_marc_202300650 crossref_primary_10_1038_s41928_025_01389_z crossref_primary_10_1016_j_addma_2025_104699 crossref_primary_10_1002_adhm_202301313 crossref_primary_10_1021_acs_chemmater_5c01046 crossref_primary_10_1016_j_cej_2025_160244 crossref_primary_10_1002_adma_202312816 crossref_primary_10_1002_adfm_202402115 crossref_primary_10_1002_advs_202207233 crossref_primary_10_1016_j_sna_2025_116736 crossref_primary_10_1016_j_cej_2023_146840 crossref_primary_10_1002_adma_202402386 crossref_primary_10_1021_acsmaterialslett_5c00042 crossref_primary_10_1002_advs_202510481 crossref_primary_10_1016_j_polymer_2025_128284 crossref_primary_10_1002_adma_202400084 crossref_primary_10_1002_adfm_202210188 crossref_primary_10_1002_sus2_196 crossref_primary_10_1016_j_xcrp_2024_102073 crossref_primary_10_1002_adma_202506563 crossref_primary_10_1002_adma_202405776 crossref_primary_10_1016_j_cemconres_2023_107407 crossref_primary_10_1039_D4RA05968A crossref_primary_10_1680_jensu_22_10000 crossref_primary_10_1016_j_nanoen_2023_109166 crossref_primary_10_1002_cjoc_202200631 crossref_primary_10_1021_acsami_5c09081 crossref_primary_10_1039_D4LP00381K crossref_primary_10_1002_anie_202506349 crossref_primary_10_1016_j_mattod_2023_11_014 crossref_primary_10_1038_s41467_025_57800_y crossref_primary_10_1002_ange_202408673 crossref_primary_10_1002_adfm_202416701 crossref_primary_10_1002_smll_202403252 crossref_primary_10_1021_acsapm_5c00868 crossref_primary_10_1088_1674_4926_24080036 crossref_primary_10_1038_s41586_024_07564_0 crossref_primary_10_1002_ange_202212512 crossref_primary_10_1002_adma_202407931 crossref_primary_10_1002_cplu_202300694 crossref_primary_10_1002_advs_202302891 crossref_primary_10_1039_D4MH00497C crossref_primary_10_1002_adma_202510713 crossref_primary_10_1021_acssuschemeng_5c01420 crossref_primary_10_1002_smm2_1325 crossref_primary_10_1016_j_mtbio_2025_101966 crossref_primary_10_1016_j_progpolymsci_2024_101847 crossref_primary_10_1002_adfm_202409050 crossref_primary_10_1002_anie_202411270 crossref_primary_10_1016_j_scib_2025_01_013 crossref_primary_10_1021_acsami_5c03411 crossref_primary_10_1038_s41563_023_01764_1 crossref_primary_10_1016_j_nanoen_2025_110658 crossref_primary_10_1016_j_compositesb_2022_109895 crossref_primary_10_1016_j_ijbiomac_2023_125417 crossref_primary_10_1016_j_ijbiomac_2023_127958 crossref_primary_10_1002_smll_202410806 crossref_primary_10_1021_acsapm_5c01985 crossref_primary_10_1016_j_jcis_2024_06_192 crossref_primary_10_1038_s44160_023_00315_5 crossref_primary_10_1038_s41467_025_59396_9 crossref_primary_10_1002_anie_202315076 crossref_primary_10_1016_j_actbio_2025_04_053 crossref_primary_10_1016_j_actbio_2025_02_003 crossref_primary_10_1002_adfm_202307367 crossref_primary_10_1016_j_cej_2024_153510 crossref_primary_10_1016_j_cej_2024_153752 crossref_primary_10_1021_acs_macromol_5c00072 crossref_primary_10_1021_acs_biomac_5c00788 crossref_primary_10_1039_D2EE01326F crossref_primary_10_1002_adfm_202413334 crossref_primary_10_1016_j_nanoen_2022_107962 crossref_primary_10_1016_j_cej_2024_154605 crossref_primary_10_1360_SSC_2025_0127 crossref_primary_10_1007_s10704_024_00810_6 crossref_primary_10_1016_j_polymer_2022_125328 crossref_primary_10_1002_flm2_31 crossref_primary_10_1002_smll_202301204 crossref_primary_10_1002_adfm_202415744 crossref_primary_10_1002_flm2_36 crossref_primary_10_1002_anie_202401331 crossref_primary_10_1021_acs_macromol_5c01293 crossref_primary_10_1021_acs_macromol_5c01294 crossref_primary_10_1016_j_matt_2024_101956 crossref_primary_10_1021_acsapm_5c02172 crossref_primary_10_1038_s41428_023_00814_4 crossref_primary_10_3390_molecules28135192 crossref_primary_10_1016_j_ijbiomac_2023_127736 crossref_primary_10_1002_advs_202504778 crossref_primary_10_1002_marc_202400518 crossref_primary_10_1002_adma_202205376 crossref_primary_10_1515_revce_2023_0052 crossref_primary_10_1021_acs_chemmater_5c01421 crossref_primary_10_1002_marc_202500359 crossref_primary_10_1038_s41467_023_42209_2 crossref_primary_10_1002_adma_202406915 crossref_primary_10_1021_acs_langmuir_5c02377 crossref_primary_10_1016_j_cej_2025_167623 crossref_primary_10_1016_j_compscitech_2024_110684 crossref_primary_10_1002_smll_202502700 crossref_primary_10_1039_D2MH00880G crossref_primary_10_1002_adfm_202509794 crossref_primary_10_1021_acsnano_5c02399 crossref_primary_10_1021_jacs_4c01758 crossref_primary_10_1016_j_compositesa_2024_108652 crossref_primary_10_1002_ange_202511493 crossref_primary_10_1016_j_matt_2025_102193 crossref_primary_10_1002_adma_202502140 crossref_primary_10_1002_adma_202211802 crossref_primary_10_1002_adma_202411273 crossref_primary_10_1002_admt_202401174 crossref_primary_10_1016_j_trac_2024_117662 crossref_primary_10_1002_ange_202423847 crossref_primary_10_1016_j_cej_2023_147544 crossref_primary_10_1039_D5TC01998B crossref_primary_10_1016_j_eurpolymj_2023_112325 crossref_primary_10_1038_s41467_024_55245_3 crossref_primary_10_1002_marc_202400973 crossref_primary_10_1002_advs_202207527 crossref_primary_10_1016_j_ijbiomac_2024_134520 crossref_primary_10_1039_D2MH01339H crossref_primary_10_1002_ange_202210078 crossref_primary_10_1002_agt2_249 crossref_primary_10_1002_ange_202502440 crossref_primary_10_1002_adfm_202405345 crossref_primary_10_1002_marc_202500270 crossref_primary_10_1038_s41467_025_57785_8 crossref_primary_10_1039_D2PY00646D crossref_primary_10_1002_adfm_202314408 crossref_primary_10_1016_j_cej_2022_140328 crossref_primary_10_1021_acs_biomac_4c01212 crossref_primary_10_1016_j_ijbiomac_2022_11_284 crossref_primary_10_1002_adfm_202416599 crossref_primary_10_1002_anie_202502440 crossref_primary_10_1002_adma_202416916 crossref_primary_10_1002_adma_202412317 crossref_primary_10_1002_marc_202400832 crossref_primary_10_1021_acs_chemmater_5c00418 crossref_primary_10_1016_j_cej_2025_165518 crossref_primary_10_1002_adfm_202210395 crossref_primary_10_1002_anie_202411418 crossref_primary_10_1016_j_cej_2024_153136 crossref_primary_10_1002_adfm_202204823 crossref_primary_10_1002_adfm_202314635 crossref_primary_10_1016_j_seppur_2024_127019 crossref_primary_10_1002_adfm_202500640 crossref_primary_10_1002_adfm_202313781 crossref_primary_10_1016_j_jcis_2025_137993 crossref_primary_10_1021_acs_macromol_4c02420 crossref_primary_10_1021_acs_chemmater_5c00423 crossref_primary_10_1039_D3SC06717C crossref_primary_10_1016_j_cej_2024_156871 crossref_primary_10_1002_smll_202409754 crossref_primary_10_1038_s41467_025_63148_0 crossref_primary_10_1016_j_cej_2024_157726 crossref_primary_10_1016_j_cej_2025_163344 crossref_primary_10_1016_j_progpolymsci_2023_101743 crossref_primary_10_1002_advs_202300857 crossref_primary_10_1002_adfm_202301421 crossref_primary_10_1002_admt_202400008 crossref_primary_10_1016_j_cej_2024_151163 crossref_primary_10_1016_j_memsci_2024_123200 crossref_primary_10_1002_ange_202411418 crossref_primary_10_1002_smll_202208156 crossref_primary_10_1088_2752_5724_ad5c84 crossref_primary_10_1002_adfm_202407848 crossref_primary_10_1002_adfm_202511996 crossref_primary_10_1002_adma_202409137 crossref_primary_10_1016_j_polymer_2022_125600 crossref_primary_10_1002_adma_202300114 crossref_primary_10_1002_adfm_202208083 crossref_primary_10_1007_s12274_023_6365_8 crossref_primary_10_1007_s10971_024_06639_8 crossref_primary_10_1002_adma_202310020 crossref_primary_10_1039_D4NR04636F crossref_primary_10_1016_j_clay_2025_107815 crossref_primary_10_1016_j_cej_2024_154672 crossref_primary_10_1002_adfm_202203988 crossref_primary_10_1002_adma_202402501 crossref_primary_10_1002_mame_202400137 crossref_primary_10_1002_adma_202410572 crossref_primary_10_1002_adfm_202512794 crossref_primary_10_1002_smll_202407143 crossref_primary_10_1002_smll_202409565 crossref_primary_10_1016_j_ensm_2025_104383 crossref_primary_10_1002_smll_202407026 crossref_primary_10_1002_advs_202305697 crossref_primary_10_1016_j_cis_2025_103633 crossref_primary_10_1002_zaac_202400202 crossref_primary_10_1016_j_cclet_2024_110554 crossref_primary_10_1021_jacs_4c09062 crossref_primary_10_1016_j_ijbiomac_2023_126132 crossref_primary_10_1002_anie_202423847 crossref_primary_10_1021_acs_chemmater_5c00987 crossref_primary_10_1002_mame_202300454 crossref_primary_10_1016_j_carbpol_2023_120953 crossref_primary_10_1016_j_mser_2024_100863 crossref_primary_10_1002_anie_202408673 crossref_primary_10_1039_D5PY00346F crossref_primary_10_1016_j_cej_2025_159608 crossref_primary_10_1002_adfm_202305314 crossref_primary_10_1002_smll_202306557 crossref_primary_10_1016_j_cattod_2024_114595 crossref_primary_10_1016_j_compscitech_2024_110613 crossref_primary_10_1016_j_cej_2025_163070 crossref_primary_10_1039_D3MH01975F crossref_primary_10_1002_adfm_202507061 crossref_primary_10_1039_D3RA07433A crossref_primary_10_1002_adfm_202503935 crossref_primary_10_1016_j_cej_2024_155059 crossref_primary_10_1016_j_matt_2024_02_015 crossref_primary_10_1016_j_tifs_2025_105242 crossref_primary_10_1002_adsu_202300079 crossref_primary_10_1038_s41467_025_59875_z crossref_primary_10_1038_s41428_024_00969_8 crossref_primary_10_1002_adma_202300398 crossref_primary_10_1002_adma_202407398 crossref_primary_10_3389_fphy_2022_890845 crossref_primary_10_1002_adfm_202511554 crossref_primary_10_1016_j_nanoen_2025_111158 crossref_primary_10_1002_adfm_202420561 crossref_primary_10_1038_s41467_025_59743_w crossref_primary_10_1016_j_cej_2022_138521 crossref_primary_10_1016_j_cclet_2022_108028 crossref_primary_10_1002_adma_202207006 crossref_primary_10_1002_adsu_202400340 crossref_primary_10_1002_adfm_202207348 crossref_primary_10_1016_j_cej_2025_168502 crossref_primary_10_1021_acssensors_4c02535 crossref_primary_10_1007_s12274_023_5914_5 crossref_primary_10_1002_adfm_202416398 crossref_primary_10_1039_D4SC02089H crossref_primary_10_1002_adma_202503324 crossref_primary_10_1016_j_cej_2022_138417 crossref_primary_10_1002_smll_202412657 crossref_primary_10_1002_adfm_202426081 crossref_primary_10_1039_D5PY00217F crossref_primary_10_1002_admt_202402052 crossref_primary_10_1016_j_ijbiomac_2024_131748 crossref_primary_10_1016_j_cej_2024_149836 crossref_primary_10_2478_aiht_2023_74_3766 crossref_primary_10_3390_gels11050369 crossref_primary_10_1002_anie_202511493 crossref_primary_10_1002_adfm_202211771 crossref_primary_10_1002_adfm_202409726 crossref_primary_10_1016_j_cej_2025_160913 crossref_primary_10_1016_j_cej_2024_156113 crossref_primary_10_1002_ange_202315076 crossref_primary_10_1002_pol_20210933 crossref_primary_10_1002_adfm_202305879 crossref_primary_10_1002_adfm_202314101 crossref_primary_10_1002_adfm_202503647 crossref_primary_10_1016_j_ijmecsci_2025_110818 crossref_primary_10_1039_D4TC05252H crossref_primary_10_1002_adma_202301383 crossref_primary_10_1002_adfm_202209787 crossref_primary_10_1002_marc_202200480 crossref_primary_10_1016_j_colsurfa_2023_132349 crossref_primary_10_1016_j_mtchem_2025_102683 crossref_primary_10_1002_agt2_319 crossref_primary_10_1016_j_cej_2023_148318 crossref_primary_10_1016_j_giant_2025_100371 crossref_primary_10_1016_j_sna_2023_114680 crossref_primary_10_1039_D4SM01430H crossref_primary_10_1038_s41563_025_02146_5 crossref_primary_10_1007_s10118_025_3388_5 crossref_primary_10_1002_ange_202401331 crossref_primary_10_1016_j_ces_2025_121965 crossref_primary_10_1016_j_ijbiomac_2025_142903 crossref_primary_10_1002_adma_202211679 crossref_primary_10_1016_j_mtnano_2023_100440 crossref_primary_10_1039_D4RA05446F crossref_primary_10_1002_smll_202412798 crossref_primary_10_1117_1_JATIS_10_4_044010 crossref_primary_10_1016_j_cej_2024_148605 crossref_primary_10_1002_ange_202411270 crossref_primary_10_1016_j_sna_2023_114794 crossref_primary_10_1016_j_eurpolymj_2022_111488 crossref_primary_10_1002_adma_202209581 crossref_primary_10_1002_adfm_202417011 crossref_primary_10_1002_adfm_202423915 crossref_primary_10_1016_j_eml_2025_102367 crossref_primary_10_1016_j_polymer_2023_126151 crossref_primary_10_1088_1361_665X_ad9717 crossref_primary_10_1002_adfm_202418336 crossref_primary_10_1002_adfm_202312383 crossref_primary_10_1016_j_cej_2025_167762 |
| Cites_doi | 10.1002/adma.201902062 10.1016/j.jpowsour.2015.01.066 10.1038/s41563-019-0340-5 10.1002/adma.200304907 10.1039/b924290b 10.1002/adma.201704937 10.1016/S0014-3057(98)00115-3 10.1002/aenm.201900257 10.1002/adma.201704253 10.1002/aenm.202002135 10.1002/adma.201801934 10.1002/smll.201804651 10.1038/s41467-019-09003-5 10.1039/C9MH01699F 10.1039/C0CS00059K 10.1038/nature11409 10.1002/adma.201600466 10.1243/PIME_PROC_1990_204_249_02 10.1002/adma.201503724 10.1021/acs.accounts.6b00308 10.1038/s41427-018-0077-7 10.1126/sciadv.aax0648 10.1039/C7EE00988G 10.1039/C3SM52272E 10.1016/j.euromechsol.2018.12.001 10.1246/bcsj.20110225 10.1038/s41467-018-05165-w 10.1021/acsami.0c18832 10.1038/s41551-018-0335-6 10.1126/science.aay8467 10.1002/adma.202002706 10.1038/nmat3713 10.1002/adfm.201907290 10.1002/adfm.201909736 10.1021/acs.chemrev.7b00291 10.34133/2020/2505619 10.1038/s41467-019-11364-w 10.1021/ma802443b 10.1002/aenm.201702675 10.1021/acsmacrolett.9b01024 10.1002/adma.201802792 10.1002/adma.201502967 10.1002/anie.201504971 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1038/s41563-022-01195-4 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1476-4660 |
| EndPage | 365 |
| ExternalDocumentID | 35190655 10_1038_s41563_022_01195_4 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: EEC-1160483 funderid: https://doi.org/10.13039/100000001 |
| GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFFHD AFHIU AGSTI AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c413t-db84332844114aab7c87a8dff42e8d0a90a8fc8224a61cd12e6b161ca0713b1f3 |
| ISICitedReferencesCount | 594 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000758972100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1476-1122 1476-4660 |
| IngestDate | Sun Nov 09 11:26:22 EST 2025 Wed Feb 19 02:25:47 EST 2025 Sat Nov 29 03:30:34 EST 2025 Tue Nov 18 22:15:46 EST 2025 Fri Feb 21 02:40:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c413t-db84332844114aab7c87a8dff42e8d0a90a8fc8224a61cd12e6b161ca0713b1f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1251-1871 0000-0001-5813-7817 0000-0001-8441-2288 0000-0003-4739-0520 |
| PMID | 35190655 |
| PQID | 2631864312 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2631864312 pubmed_primary_35190655 crossref_citationtrail_10_1038_s41563_022_01195_4 crossref_primary_10_1038_s41563_022_01195_4 springer_journals_10_1038_s41563_022_01195_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature materials |
| PublicationTitleAbbrev | Nat. Mater |
| PublicationTitleAlternate | Nat Mater |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK |
| Publisher_xml | – name: Nature Publishing Group UK |
| References | Zhou (CR3) 2020; 9 Lu (CR8) 2019; 10 Chen, Zhang, Li, Chen, Guo (CR14) 2018; 8 Lei, Wu (CR20) 2019; 10 Gong (CR32) 2010; 6 Liu, He, Chen, Leow, Chen (CR18) 2017; 117 Le Bideau, Viau, Vioux (CR25) 2011; 40 Corkhill, Trevett, Tighe (CR33) 1990; 204 Ueki, Watanabe (CR35) 2012; 85 Osada, de Vries, Scrosati, Passerini (CR13) 2016; 55 Lodge, Ueki (CR1) 2016; 49 Shi (CR17) 2018; 10 Yu (CR26) 2019; 9 Tamate (CR5) 2018; 30 Ma (CR11) 2020; 32 Shi (CR19) 2018; 9 Correia (CR24) 2020; 30 Sato (CR31) 2015; 27 Bai, Yang, Suo (CR43) 2019; 74 Shi (CR4) 2020; 2020 Kong (CR40) 2018; 30 Hu, Vatankhah‐Varnoosfaderani, Zhou, Li, Sheiko (CR39) 2015; 27 Xu (CR9) 2019; 18 Chen (CR15) 2017; 10 Zhao (CR27) 2014; 10 Liu (CR10) 2019; 3 Gong, Katsuyama, Kurokawa, Osada (CR28) 2003; 15 Hyun, Thomas, Hersam (CR16) 2020; 10 Mredha (CR41) 2018; 30 Ding (CR2) 2017; 29 Ueki, Watanabe, Lodge (CR36) 2009; 42 Asaletha, Kumaran, Thomas (CR42) 1999; 35 Weng (CR37) 2020; 12 Li, Wang, Li, Liu, Sun (CR23) 2020; 32 Sun (CR29) 2012; 489 Ren (CR7) 2019; 5 Kim, Moon (CR6) 2020; 30 Cao, Liu, Jiang (CR21) 2020; 7 Kim, Chen, Suo, Hayward (CR12) 2020; 367 Zhang (CR30) 2016; 28 Zhang (CR34) 2015; 279 Zhang (CR22) 2019; 15 Sun (CR38) 2013; 12 J Le Bideau (1195_CR25) 2011; 40 Z Cao (1195_CR21) 2020; 7 Y Ren (1195_CR7) 2019; 5 YM Kim (1195_CR6) 2020; 30 J-Y Sun (1195_CR29) 2012; 489 TP Lodge (1195_CR1) 2016; 49 K Sato (1195_CR31) 2015; 27 MTI Mredha (1195_CR41) 2018; 30 D Weng (1195_CR37) 2020; 12 WJ Hyun (1195_CR16) 2020; 10 L Yu (1195_CR26) 2019; 9 R Tamate (1195_CR5) 2018; 30 L Shi (1195_CR17) 2018; 10 T Ueki (1195_CR36) 2009; 42 TL Sun (1195_CR38) 2013; 12 X Zhao (1195_CR27) 2014; 10 JP Gong (1195_CR28) 2003; 15 R Asaletha (1195_CR42) 1999; 35 B Zhou (1195_CR3) 2020; 9 B Lu (1195_CR8) 2019; 10 H Zhang (1195_CR34) 2015; 279 Y Ding (1195_CR2) 2017; 29 T Ueki (1195_CR35) 2012; 85 R Bai (1195_CR43) 2019; 74 JP Gong (1195_CR32) 2010; 6 Z Lei (1195_CR20) 2019; 10 L Shi (1195_CR19) 2018; 9 Y Liu (1195_CR10) 2019; 3 LM Zhang (1195_CR22) 2019; 15 HJ Zhang (1195_CR30) 2016; 28 I Osada (1195_CR13) 2016; 55 Y Ma (1195_CR11) 2020; 32 L Shi (1195_CR4) 2020; 2020 N Chen (1195_CR15) 2017; 10 X Hu (1195_CR39) 2015; 27 Y Liu (1195_CR18) 2017; 117 W Kong (1195_CR40) 2018; 30 T Li (1195_CR23) 2020; 32 P Corkhill (1195_CR33) 1990; 204 DM Correia (1195_CR24) 2020; 30 HJ Kim (1195_CR12) 2020; 367 N Chen (1195_CR14) 2018; 8 J Xu (1195_CR9) 2019; 18 35190657 - Nat Mater. 2022 Mar;21(3):266-268 |
| References_xml | – volume: 32 start-page: 1902062 year: 2020 ident: CR11 article-title: Flexible hybrid electronics for digital healthcare publication-title: Adv. Mater. doi: 10.1002/adma.201902062 – volume: 279 start-page: 667 year: 2015 end-page: 677 ident: CR34 article-title: Polyelectrolyte microcapsules as ionic liquid reservoirs within ionomer membrane to confer high anhydrous proton conductivity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.066 – volume: 18 start-page: 594 year: 2019 end-page: 601 ident: CR9 article-title: Multi-scale ordering in highly stretchable polymer semiconducting films publication-title: Nat. Mater. doi: 10.1038/s41563-019-0340-5 – volume: 15 start-page: 1155 year: 2003 end-page: 1158 ident: CR28 article-title: Double‐network hydrogels with extremely high mechanical strength publication-title: Adv. Mater. doi: 10.1002/adma.200304907 – volume: 6 start-page: 2583 year: 2010 end-page: 2590 ident: CR32 article-title: Why are double network hydrogels so tough? publication-title: Soft Matter doi: 10.1039/b924290b – volume: 30 start-page: 1704937 year: 2018 ident: CR41 article-title: A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures publication-title: Adv. Mater. doi: 10.1002/adma.201704937 – volume: 35 start-page: 253 year: 1999 end-page: 271 ident: CR42 article-title: Thermoplastic elastomers from blends of polystyrene and natural rubber: morphology and mechanical properties publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(98)00115-3 – volume: 9 start-page: 1900257 year: 2019 ident: CR26 article-title: Highly tough, Li‐metal compatible organic–inorganic double‐network solvate ionogel publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900257 – volume: 29 start-page: 1704253 year: 2017 ident: CR2 article-title: Preparation of high‐performance ionogels with excellent transparency, good mechanical strength, and high conductivity publication-title: Adv. Mater. doi: 10.1002/adma.201704253 – volume: 10 start-page: 2002135 year: 2020 ident: CR16 article-title: Nanocomposite ionogel electrolytes for solid‐state rechargeable batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002135 – volume: 30 start-page: 1801934 year: 2018 ident: CR40 article-title: Muscle‐inspired highly anisotropic, strong, ion‐conductive hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201801934 – volume: 15 start-page: 1804651 year: 2019 ident: CR22 article-title: Self‐healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation publication-title: Small doi: 10.1002/smll.201804651 – volume: 10 start-page: 1043 year: 2019 ident: CR8 article-title: Pure PEDOT: PSS hydrogels publication-title: Nat. Commun. doi: 10.1038/s41467-019-09003-5 – volume: 7 start-page: 912 year: 2020 end-page: 918 ident: CR21 article-title: Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids publication-title: Mater. Horiz. doi: 10.1039/C9MH01699F – volume: 40 start-page: 907 year: 2011 end-page: 925 ident: CR25 article-title: Ionogels, ionic liquid based hybrid materials publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00059K – volume: 489 start-page: 133 year: 2012 end-page: 136 ident: CR29 article-title: Highly stretchable and tough hydrogels publication-title: Nature doi: 10.1038/nature11409 – volume: 28 start-page: 4884 year: 2016 end-page: 4890 ident: CR30 article-title: Tough physical double‐network hydrogels based on amphiphilic triblock copolymers publication-title: Adv. Mater. doi: 10.1002/adma.201600466 – volume: 204 start-page: 147 year: 1990 end-page: 155 ident: CR33 article-title: The potential of hydrogels as synthetic articular cartilage publication-title: Proc. Inst. Mech. Eng. H doi: 10.1243/PIME_PROC_1990_204_249_02 – volume: 27 start-page: 6899 year: 2015 end-page: 6905 ident: CR39 article-title: Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201503724 – volume: 49 start-page: 2107 year: 2016 end-page: 2114 ident: CR1 article-title: Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00308 – volume: 10 start-page: 821 year: 2018 end-page: 826 ident: CR17 article-title: Dielectric gels with ultra-high dielectric constant, low elastic modulus, and excellent transparency publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0077-7 – volume: 5 start-page: eaax0648 year: 2019 ident: CR7 article-title: Ionic liquid–based click-ionogels publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0648 – volume: 10 start-page: 1660 year: 2017 end-page: 1667 ident: CR15 article-title: Biomimetic ant-nest ionogel electrolyte boosts the performance of dendrite-free lithium batteries publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00988G – volume: 10 start-page: 672 year: 2014 end-page: 687 ident: CR27 article-title: Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks publication-title: Soft Matter doi: 10.1039/C3SM52272E – volume: 74 start-page: 337 year: 2019 end-page: 370 ident: CR43 article-title: Fatigue of hydrogels publication-title: Eur. J. Mech. A doi: 10.1016/j.euromechsol.2018.12.001 – volume: 85 start-page: 33 year: 2012 end-page: 50 ident: CR35 article-title: Polymers in ionic liquids: dawn of neoteric solvents and innovative materials publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.20110225 – volume: 9 start-page: 2630 year: 2018 ident: CR19 article-title: Highly stretchable and transparent ionic conducting elastomers publication-title: Nat. Commun. doi: 10.1038/s41467-018-05165-w – volume: 12 start-page: 57477 year: 2020 end-page: 57485 ident: CR37 article-title: Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18832 – volume: 3 start-page: 58 year: 2019 end-page: 68 ident: CR10 article-title: Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0335-6 – volume: 367 start-page: 773 year: 2020 end-page: 776 ident: CR12 article-title: Ionoelastomer junctions between polymer networks of fixed anions and cations publication-title: Science doi: 10.1126/science.aay8467 – volume: 32 start-page: 2002706 year: 2020 ident: CR23 article-title: Mechanically robust, elastic, and healable ionogels for highly sensitive ultra‐durable ionic skins publication-title: Adv. Mater. doi: 10.1002/adma.202002706 – volume: 12 start-page: 932 year: 2013 end-page: 937 ident: CR38 article-title: Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity publication-title: Nat. Mater. doi: 10.1038/nmat3713 – volume: 30 start-page: 1907290 year: 2020 ident: CR6 article-title: Ionoskins: nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907290 – volume: 30 start-page: 1909736 year: 2020 ident: CR24 article-title: Ionic liquid–polymer composites: a new platform for multifunctional applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909736 – volume: 117 start-page: 12893 year: 2017 end-page: 12941 ident: CR18 article-title: Nature-inspired structural materials for flexible electronic devices publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00291 – volume: 2020 start-page: 2505619 year: 2020 ident: CR4 article-title: Highly stretchable and transparent ionic conductor with novel hydrophobicity and extreme-temperature tolerance publication-title: Research doi: 10.34133/2020/2505619 – volume: 10 start-page: 3429 year: 2019 ident: CR20 article-title: A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation publication-title: Nat. Commun. doi: 10.1038/s41467-019-11364-w – volume: 42 start-page: 1315 year: 2009 end-page: 1320 ident: CR36 article-title: Doubly thermosensitive self-assembly of diblock copolymers in ionic liquids publication-title: Macromolecules doi: 10.1021/ma802443b – volume: 8 start-page: 1702675 year: 2018 ident: CR14 article-title: Ionogel electrolytes for high‐performance lithium batteries: a review publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702675 – volume: 9 start-page: 525 year: 2020 end-page: 532 ident: CR3 article-title: Flexible, self-healing, and fire-resistant polymer electrolytes fabricated via photopolymerization for all-solid-state lithium metal batteries publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b01024 – volume: 30 start-page: 1802792 year: 2018 ident: CR5 article-title: Self‐healing micellar ion gels based on multiple hydrogen bonding publication-title: Adv. Mater. doi: 10.1002/adma.201802792 – volume: 27 start-page: 6990 year: 2015 end-page: 6998 ident: CR31 article-title: Phase‐separation‐induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels publication-title: Adv. Mater. doi: 10.1002/adma.201502967 – volume: 55 start-page: 500 year: 2016 end-page: 513 ident: CR13 article-title: Ionic‐liquid‐based polymer electrolytes for battery applications publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201504971 – volume: 367 start-page: 773 year: 2020 ident: 1195_CR12 publication-title: Science doi: 10.1126/science.aay8467 – volume: 10 start-page: 821 year: 2018 ident: 1195_CR17 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0077-7 – volume: 10 start-page: 3429 year: 2019 ident: 1195_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11364-w – volume: 32 start-page: 2002706 year: 2020 ident: 1195_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.202002706 – volume: 55 start-page: 500 year: 2016 ident: 1195_CR13 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201504971 – volume: 10 start-page: 672 year: 2014 ident: 1195_CR27 publication-title: Soft Matter doi: 10.1039/C3SM52272E – volume: 42 start-page: 1315 year: 2009 ident: 1195_CR36 publication-title: Macromolecules doi: 10.1021/ma802443b – volume: 6 start-page: 2583 year: 2010 ident: 1195_CR32 publication-title: Soft Matter doi: 10.1039/b924290b – volume: 15 start-page: 1804651 year: 2019 ident: 1195_CR22 publication-title: Small doi: 10.1002/smll.201804651 – volume: 204 start-page: 147 year: 1990 ident: 1195_CR33 publication-title: Proc. Inst. Mech. Eng. H doi: 10.1243/PIME_PROC_1990_204_249_02 – volume: 489 start-page: 133 year: 2012 ident: 1195_CR29 publication-title: Nature doi: 10.1038/nature11409 – volume: 30 start-page: 1909736 year: 2020 ident: 1195_CR24 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909736 – volume: 74 start-page: 337 year: 2019 ident: 1195_CR43 publication-title: Eur. J. Mech. A doi: 10.1016/j.euromechsol.2018.12.001 – volume: 5 start-page: eaax0648 year: 2019 ident: 1195_CR7 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0648 – volume: 7 start-page: 912 year: 2020 ident: 1195_CR21 publication-title: Mater. Horiz. doi: 10.1039/C9MH01699F – volume: 27 start-page: 6899 year: 2015 ident: 1195_CR39 publication-title: Adv. Mater. doi: 10.1002/adma.201503724 – volume: 9 start-page: 525 year: 2020 ident: 1195_CR3 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.9b01024 – volume: 40 start-page: 907 year: 2011 ident: 1195_CR25 publication-title: Chem. Soc. Rev. doi: 10.1039/C0CS00059K – volume: 12 start-page: 932 year: 2013 ident: 1195_CR38 publication-title: Nat. Mater. doi: 10.1038/nmat3713 – volume: 35 start-page: 253 year: 1999 ident: 1195_CR42 publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(98)00115-3 – volume: 30 start-page: 1907290 year: 2020 ident: 1195_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201907290 – volume: 9 start-page: 1900257 year: 2019 ident: 1195_CR26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900257 – volume: 10 start-page: 1043 year: 2019 ident: 1195_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09003-5 – volume: 15 start-page: 1155 year: 2003 ident: 1195_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.200304907 – volume: 279 start-page: 667 year: 2015 ident: 1195_CR34 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.01.066 – volume: 12 start-page: 57477 year: 2020 ident: 1195_CR37 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18832 – volume: 30 start-page: 1704937 year: 2018 ident: 1195_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201704937 – volume: 30 start-page: 1801934 year: 2018 ident: 1195_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201801934 – volume: 32 start-page: 1902062 year: 2020 ident: 1195_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201902062 – volume: 8 start-page: 1702675 year: 2018 ident: 1195_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702675 – volume: 10 start-page: 2002135 year: 2020 ident: 1195_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002135 – volume: 85 start-page: 33 year: 2012 ident: 1195_CR35 publication-title: Bull. Chem. Soc. Jpn doi: 10.1246/bcsj.20110225 – volume: 29 start-page: 1704253 year: 2017 ident: 1195_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201704253 – volume: 9 start-page: 2630 year: 2018 ident: 1195_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05165-w – volume: 49 start-page: 2107 year: 2016 ident: 1195_CR1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00308 – volume: 27 start-page: 6990 year: 2015 ident: 1195_CR31 publication-title: Adv. Mater. doi: 10.1002/adma.201502967 – volume: 117 start-page: 12893 year: 2017 ident: 1195_CR18 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00291 – volume: 28 start-page: 4884 year: 2016 ident: 1195_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201600466 – volume: 3 start-page: 58 year: 2019 ident: 1195_CR10 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0335-6 – volume: 30 start-page: 1802792 year: 2018 ident: 1195_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201802792 – volume: 2020 start-page: 2505619 year: 2020 ident: 1195_CR4 publication-title: Research doi: 10.34133/2020/2505619 – volume: 10 start-page: 1660 year: 2017 ident: 1195_CR15 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE00988G – volume: 18 start-page: 594 year: 2019 ident: 1195_CR9 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0340-5 – reference: 35190657 - Nat Mater. 2022 Mar;21(3):266-268 |
| SSID | ssj0021556 |
| Score | 2.7403197 |
| Snippet | Ionogels are compelling materials for technological devices due to their excellent ionic conductivity, thermal and electrochemical stability, and... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 359 |
| SubjectTerms | 639/301/1023 639/301/923 Biomaterials Chemistry and Materials Science Condensed Matter Physics Electric Conductivity Gels - chemistry Hydrogen Bonding Ionic Liquids - chemistry Materials Science Nanotechnology Optical and Electronic Materials Polymers |
| Title | Tough and stretchable ionogels by in situ phase separation |
| URI | https://link.springer.com/article/10.1038/s41563-022-01195-4 https://www.ncbi.nlm.nih.gov/pubmed/35190655 https://www.proquest.com/docview/2631864312 |
| Volume | 21 |
| WOSCitedRecordID | wos000758972100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M7S dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: 7X7 dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: KB. dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (via ProQuest SciTech Premium Collection) customDbUrl: eissn: 1476-4660 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0021556 issn: 1476-1122 databaseCode: M2P dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLQc4IN6kQGQkxCW4xI4fa24UpUKiMRGkUk6sdtfr1FJrp7FTpf-e2YftIKOqHLisnFXstXbGM9_MzgOhd37EuOdFqc0dHtigr7kNShDbXuDzIML-KOVYNZsI4xgvFtGs1_tV58JcX4R5jrfbaPVfSQ1zQGyZOvsP5G4eChNwDUSHEcgO490Ir_ruKH94tZZEUclRMnlhCXpQws0sH5ZZtRmuzkGFDUuhy38b-higGquCn0PAs_qdW8e7Fg5TkW2Bs5Ydx_NM5MsbWjSem3N6WaqIgWkBl5c0aUNRpMbTkbq8YCb9wTggwHZtIrCMzPRCoHKg2wIcib_MGUHrOjsMNd6RmmNdFLwjzXXt9lLamPKwWcaQyNaSXqu76vP6-Ds5OTs9JfPJYv5-dWXLrmLy9N20WNlDB27oR1LqTd1ZY5ADltLZZ-ZlTVIVLPuxu-ifwKVjjXRO0hVAmT9CD41lYX3WHPEY9UT-BD3YqTf5FH1SvGEBb1g7vGHVvGGxGyvLLckbluINq-WNZ-jsZDL_8tU2zTNsDrikshOGZWk6DHDX8ShlIcchxUmaeq7AyYhGI4rhOwQERwOHJ44rAgbon1PptmBOOn6O9vMiFy-RJZyEeiETNHUpWKsJFg7zGCBPFsnK0l4fOfXOEG4qy8sGJxdERTiMMdG7SWA3idpNAvcMm3tWuq7Krf9-W284AfEnz7RoLopNSdwAlBKgasftoxeaEs3zZO9JQNh-H32oSUPMh1restjhHRZ7he63n8JrtF-tN-INusevq6xcD9BeuAjViAfo4HgSz37Ar2_HRwPFf3IMf_4G3MaS1Q |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tough+and+stretchable+ionogels+by+in+situ+phase+separation&rft.jtitle=Nature+materials&rft.au=Wang%2C+Meixiang&rft.au=Zhang%2C+Pengyao&rft.au=Shamsi%2C+Mohammad&rft.au=Thelen%2C+Jacob+L&rft.date=2022-03-01&rft.issn=1476-4660&rft.eissn=1476-4660&rft.volume=21&rft.issue=3&rft.spage=359&rft_id=info:doi/10.1038%2Fs41563-022-01195-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |