Structural and Material Optimization of a Sensor-Integrated Autonomous Aerial Vehicle Using KMU-3 CFRP
This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) c...
Uložené v:
| Vydané v: | Polymers Ročník 17; číslo 16; s. 2175 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
08.08.2025
MDPI |
| Predmet: | |
| ISSN: | 2073-4360, 2073-4360 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3’s microstructure, comprising high-modulus carbon fibers (5–7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000–2500 MPa), low density (1.6–1.8 g/cm3), and thermal stability (−60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 106 cycles at 50% load. The material properties remained stable across the operational temperature range of −60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions. |
|---|---|
| AbstractList | This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3’s microstructure, comprising high-modulus carbon fibers (5–7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000–2500 MPa), low density (1.6–1.8 g/cm3), and thermal stability (−60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 106 cycles at 50% load. The material properties remained stable across the operational temperature range of −60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions. This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3’s microstructure, comprising high-modulus carbon fibers (5–7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000–2500 MPa), low density (1.6–1.8 g/cm[sup.3]), and thermal stability (−60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 10[sup.6] cycles at 50% load. The material properties remained stable across the operational temperature range of −60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions. This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3's microstructure, comprising high-modulus carbon fibers (5-7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000-2500 MPa), low density (1.6-1.8 g/cm3), and thermal stability (-60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 106 cycles at 50% load. The material properties remained stable across the operational temperature range of -60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions.This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3's microstructure, comprising high-modulus carbon fibers (5-7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000-2500 MPa), low density (1.6-1.8 g/cm3), and thermal stability (-60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 106 cycles at 50% load. The material properties remained stable across the operational temperature range of -60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions. This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a particular focus on high-altitude pseudo-satellites (HAPS). This research is centered on the development of a 400 kg autonomous aerial vehicle (AAV) capable of sustained operations at altitudes of up to 30 km. KMU-3's microstructure, comprising high-modulus carbon fibers (5-7 µm diameter) in a 5-211B epoxy matrix, provides a high specific strength (1000-2500 MPa), low density (1.6-1.8 g/cm ), and thermal stability (-60 °C to +600 °C), ensuring structural integrity in stratospheric conditions. The mechanical, thermal, and aerodynamic properties of KMU-3-based truss structures were evaluated using finite element method (FEM) simulations, computational fluid dynamics (CFD) analysis, and experimental prototyping. The results indicate that ultra-thin KMU-3 with a wall thickness of 0.1 mm maintains structural integrity under dynamic loads while minimizing overall mass. A novel thermal bonding technique employing 5-211B epoxy resin was developed, resulting in joints with a shear strength of 40 MPa and fatigue life exceeding 10 cycles at 50% load. The material properties remained stable across the operational temperature range of -60 °C to +80 °C. An optimized fiber orientation (0°/90° for longerons and ±45° for diagonals) enhanced the resistance to axial, shear, and torsional stresses, while the epoxy matrix ensures radiation resistance. Finite element method (FEM) and computational fluid dynamics (CFD) analyses, validated by prototyping, confirm the performance of ultra-thin (0.1 mm) truss structures, achieving a lightweight (45 kg) design. These findings provide a validated, lightweight framework for next-generation HAPS, supporting extended mission durations under harsh stratospheric conditions. |
| Audience | Academic |
| Author | Fedorov, Igor Uzbekbayev, Arman Karypov, Andrey Nurgizat, Yerkebulan Bebenin, Andrey |
| AuthorAffiliation | 1 Research & Development Center “Kazakhstan Engineering” LLP, Astana 010000, Kazakhstan figor.ole@gmail.com (I.F.); abebenin_77@mail.ru (A.B.) 2 Institute of Telecommunications and Space Engineering, Almaty University of Power Engineering and Telecommunications Named Gumarbek Daukeev, Almaty 050062, Kazakhstan |
| AuthorAffiliation_xml | – name: 2 Institute of Telecommunications and Space Engineering, Almaty University of Power Engineering and Telecommunications Named Gumarbek Daukeev, Almaty 050062, Kazakhstan – name: 1 Research & Development Center “Kazakhstan Engineering” LLP, Astana 010000, Kazakhstan figor.ole@gmail.com (I.F.); abebenin_77@mail.ru (A.B.) |
| Author_xml | – sequence: 1 givenname: Yerkebulan orcidid: 0000-0002-9712-5592 surname: Nurgizat fullname: Nurgizat, Yerkebulan – sequence: 2 givenname: Arman orcidid: 0009-0003-6728-0748 surname: Uzbekbayev fullname: Uzbekbayev, Arman – sequence: 3 givenname: Igor orcidid: 0000-0002-8158-5092 surname: Fedorov fullname: Fedorov, Igor – sequence: 4 givenname: Andrey orcidid: 0000-0002-3603-6860 surname: Bebenin fullname: Bebenin, Andrey – sequence: 5 givenname: Andrey surname: Karypov fullname: Karypov, Andrey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40871122$$D View this record in MEDLINE/PubMed |
| BookMark | eNpdkstPFTEUxhuDEbyydGuauHEz2OdMZ2VubkQJEIh43TadPi4lM-2l7ZjgX2_JBQK0i75-5_T7cs57sBdisAB8xOiI0h593cbxbsIdbgnu-BtwQFBHG0ZbtPdsvw8Oc75BdTDetrh7B_YZEh3GhBwAd1XSrMuc1AhVMPBcFZt8PVxsi5_8P1V8DDA6qOCVDTmm5iQUu0kVM3A5lxjiFOcMl7uoP_ba69HCdfZhA0_P1w2Fq-Nflx_AW6fGbA8f1gVYH3__vfrZnF38OFktzxrNMC2Nob1rheuFctwIwRR3gisliHMEYYqdEUxbZTgaurY3fCBYWeQ6zplWwyDoAnzb5d3Ow2SNtqFUZ3Kb_KTSnYzKy5cvwV_LTfwrMaGip4jVDF8eMqR4O9tc5OSztuOogq1GJSWspVULxRX9_Aq9iXMK1d89xRDHiNBKHe2ojRqt9MHF-rGu09jJ61pP5-v9UnAqSNdWHQvw6bmHJ_GPRatAswN0ijkn654QjOR9X8gXfUH_A4KKqug |
| Cites_doi | 10.3390/ma2042369 10.2478/adms-2019-0023 10.1016/j.jmrt.2022.09.085 10.1557/mrs.2015.278 10.1016/j.compositesb.2018.10.101 10.1016/j.trpro.2025.03.030 10.1080/09243046.2024.2369370 10.1016/j.matpr.2021.06.276 10.1007/s42114-024-00971-x 10.1533/9780857092229 10.1177/13694332231194686 10.1007/978-0-387-74365-3 10.3390/coatings14111456 10.1109/IROS47612.2022.9981191 10.3390/polym13213721 10.12968/S1478-2774(22)50461-5 10.1016/j.jallcom.2015.12.084 10.1016/j.wear.2020.203280 10.59287/iccar.736 10.1109/ICECS53924.2021.9665513 10.1016/j.matdes.2020.109140 10.1016/B978-0-08-102131-6.00001-3 10.1021/acs.iecr.8b04903 10.3390/polym16131912 10.1177/0021998312472217 10.1023/A:1004780301489 10.1109/AERO.2018.8396531 10.1002/adem.202402000 10.1016/j.jnucmat.2014.06.003 10.1007/s42823-022-00358-2 10.3390/polym15214333 10.3390/polym13152474 10.1016/j.ast.2018.06.020 10.1109/CIEES62939.2024.10811378 10.1016/j.jmapro.2020.05.042 10.1007/978-3-030-39062-4_20 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
| DOI | 10.3390/polym17162175 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: KB. name: Materials Science Database url: http://search.proquest.com/materialsscijournals sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | PMC12389304 A853827612 40871122 10_3390_polym17162175 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Committee of Science of the Ministry of Science and Higher Education of the Republic of Ka-zakhstan grantid: BR218014/0223 – fundername: Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan grantid: BR218014/0223 |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS ESTFP NPM PUEGO 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c413t-d39f68f98af5d884a5f85aa82ff20131fd84cead50b769d5b21ae0f7554cabb83 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001557548000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4360 |
| IngestDate | Tue Nov 04 02:05:43 EST 2025 Thu Oct 02 21:33:44 EDT 2025 Sat Nov 01 15:06:47 EDT 2025 Mon Nov 24 15:47:37 EST 2025 Tue Sep 16 01:42:39 EDT 2025 Sat Nov 29 07:09:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | carbon fibers truss structures finite element analysis computational aerodynamics aerospace engineering composite materials |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-d39f68f98af5d884a5f85aa82ff20131fd84cead50b769d5b21ae0f7554cabb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0003-6728-0748 0000-0002-3603-6860 0000-0002-9712-5592 0000-0002-8158-5092 |
| OpenAccessLink | https://www.proquest.com/docview/3244051023?pq-origsite=%requestingapplication% |
| PMID | 40871122 |
| PQID | 3244051023 |
| PQPubID | 2032345 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12389304 proquest_miscellaneous_3246301331 proquest_journals_3244051023 gale_infotracacademiconefile_A853827612 pubmed_primary_40871122 crossref_primary_10_3390_polym17162175 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-08 |
| PublicationDateYYYYMMDD | 2025-08-08 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Polymers |
| PublicationTitleAlternate | Polymers (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Chak (ref_22) 2020; 56 Putilina (ref_10) 2023; 8 Zhang (ref_7) 2020; 196 ref_14 Katoh (ref_4) 2014; 455 ref_12 ref_19 Wang (ref_43) 2023; 26 Zhai (ref_49) 2025; 34 Chand (ref_39) 2000; 35 Gore (ref_32) 2018; 57 Boyer (ref_2) 2015; 40 Yolshina (ref_28) 2016; 663 Nitai (ref_41) 2024; 7 Tiwary (ref_1) 2022; 51 ref_25 Naslain (ref_5) 2020; 109 Kausar (ref_30) 2019; 19 ref_23 Chen (ref_38) 2021; 4 ref_21 ref_20 Toor (ref_18) 2018; 8 Struzziero (ref_17) 2021; 48 ref_29 Ahmadijokani (ref_34) 2020; 452 ref_27 Agrawal (ref_3) 2014; 48 Rezo (ref_11) 2025; 83 Roper (ref_13) 2021; 2021 Huang (ref_40) 2009; 2 Benzerga (ref_31) 2023; 1 Coenen (ref_47) 2025; 413 ref_36 ref_35 Mishkin (ref_16) 2022; 5 Hopkins (ref_26) 2018; 115 Ramachandran (ref_15) 2025; 27 Alarifi (ref_33) 2022; 21 Sayam (ref_37) 2022; 32 ref_46 Hilmer (ref_24) 2018; 79 ref_45 ref_44 ref_42 ref_48 ref_9 ref_8 Barile (ref_6) 2019; 162 |
| References_xml | – volume: 2 start-page: 2369 year: 2009 ident: ref_40 article-title: Fabrication and properties of carbon fibers publication-title: Materials doi: 10.3390/ma2042369 – volume: 19 start-page: 67 year: 2019 ident: ref_30 article-title: Advances in carbon fiber reinforced polyamide-based composite materials publication-title: Adv. Mater. Sci. doi: 10.2478/adms-2019-0023 – volume: 115 start-page: 971 year: 2018 ident: ref_26 article-title: Carbon Fiber-Reinforced Polymer Concrete Masonry Unit Bond After 20 Years of Outdoor Exposure publication-title: ACI Struct. J. – volume: 21 start-page: 884 year: 2022 ident: ref_33 article-title: A performance evaluation study of 3D printed nylon/glass fiber and nylon/carbon fiber composite materials publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.09.085 – volume: 40 start-page: 1055 year: 2015 ident: ref_2 article-title: Materials Considerations for Aerospace Applications publication-title: MRS Bull. doi: 10.1557/mrs.2015.278 – volume: 8 start-page: 65 year: 2018 ident: ref_18 article-title: Space Applications of Composite Materials publication-title: J. Space Technol. – volume: 109 start-page: 100736 year: 2020 ident: ref_5 article-title: Design, Preparation and Properties of Non-Oxide CMCs for Application in Engines and Nuclear Reactors: An Overview publication-title: Prog. Mater. Sci. – volume: 413 start-page: 116221 year: 2025 ident: ref_47 article-title: An explicit D-FE2 method for transient multiscale analysis publication-title: Comput. Methods Appl. Mech. Eng. – ident: ref_35 – ident: ref_23 – volume: 162 start-page: 122 year: 2019 ident: ref_6 article-title: Mechanical Comparison of New Composite Materials for Aerospace Applications publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.10.101 – volume: 83 start-page: 593 year: 2025 ident: ref_11 article-title: High-Altitude Pseudo-Satellite platforms as support to air traffic management publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2025.03.030 – volume: 34 start-page: 287 year: 2025 ident: ref_49 article-title: Mechanical analysis and bionic improvement on buckling of CFRP tubes with high energy absorption capacity publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2024.2369370 – ident: ref_48 – volume: 51 start-page: 865 year: 2022 ident: ref_1 article-title: A Review on Characteristics of Composite and Advanced Materials Used for Aerospace Applications publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.06.276 – volume: 8 start-page: 85 year: 2023 ident: ref_10 article-title: Polimernye kompozitsionnye materialy na osnove uglerodnykh i steklyannykh volokon dlya izgotovleniya detalei bespilotnykh letatel’nykh apparatov i perspektivy ikh razvitiya publication-title: Tr. VIAM – volume: 7 start-page: 169 year: 2024 ident: ref_41 article-title: Carbon fiber and carbon fiber composites—Creating defects for superior material properties publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-024-00971-x – ident: ref_27 doi: 10.1533/9780857092229 – ident: ref_20 – volume: 5 start-page: 87 year: 2022 ident: ref_16 article-title: Primenenie ugleplastikov v konstruktsiyakh bespilotnykh apparatov (obzor) publication-title: Tr. VIAM – volume: 26 start-page: 2543 year: 2023 ident: ref_43 article-title: Photogrammetry-based bending monitoring and load identification of steel truss structures publication-title: Adv. Struct. Eng. doi: 10.1177/13694332231194686 – ident: ref_29 doi: 10.1007/978-0-387-74365-3 – ident: ref_14 doi: 10.3390/coatings14111456 – ident: ref_42 doi: 10.1109/IROS47612.2022.9981191 – ident: ref_8 doi: 10.3390/polym13213721 – volume: 2021 start-page: 31 year: 2021 ident: ref_13 article-title: Flying at the Edge publication-title: Aerosp. Test. Int. doi: 10.12968/S1478-2774(22)50461-5 – volume: 663 start-page: 449 year: 2016 ident: ref_28 article-title: Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2015.12.084 – volume: 452 start-page: 203280 year: 2020 ident: ref_34 article-title: Effects of hybrid carbon-aramid fiber on performance of non-asbestos organic brake friction composites publication-title: Wear doi: 10.1016/j.wear.2020.203280 – volume: 1 start-page: 42 year: 2023 ident: ref_31 article-title: Reinforcement of concrete with composite materials based on fiberglass publication-title: Int. Conf. Contemp. Acad. Res. doi: 10.59287/iccar.736 – ident: ref_46 doi: 10.1109/ICECS53924.2021.9665513 – volume: 196 start-page: 109140 year: 2020 ident: ref_7 article-title: Materials selection of 3D-printed continuous carbon fiber reinforced composites considering multiple criteria publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109140 – ident: ref_19 doi: 10.1016/B978-0-08-102131-6.00001-3 – volume: 57 start-page: 16537 year: 2018 ident: ref_32 article-title: Functionalized aramid fibers and composites for protective applications: A review publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b04903 – ident: ref_9 doi: 10.3390/polym16131912 – ident: ref_21 – volume: 48 start-page: 317 year: 2014 ident: ref_3 article-title: Impact damage on fiber-reinforced polymer matrix composite—A review publication-title: J. Compos. Mater. doi: 10.1177/0021998312472217 – volume: 48 start-page: 102458 year: 2021 ident: ref_17 article-title: Consolidation of continuous fiber reinforced composites in additive processes: A review publication-title: Addit. Manuf. – volume: 35 start-page: 1303 year: 2000 ident: ref_39 article-title: Review carbon fibers for composites publication-title: J. Mater. Sci. doi: 10.1023/A:1004780301489 – ident: ref_12 doi: 10.1109/AERO.2018.8396531 – volume: 27 start-page: 2402000 year: 2025 ident: ref_15 article-title: Oxide-Based Ceramic Matrix Composites for High-Temperature Environments: A Review publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202402000 – volume: 455 start-page: 387 year: 2014 ident: ref_4 article-title: Current status and recent research achievements in SiC/SiC composites publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.06.003 – volume: 32 start-page: 1173 year: 2022 ident: ref_37 article-title: A review on carbon fiber-reinforced hierarchical composites: Mechanical performance, manufacturing process, structural applications and allied challenges publication-title: Carbon Lett. doi: 10.1007/s42823-022-00358-2 – ident: ref_45 doi: 10.3390/polym15214333 – ident: ref_50 doi: 10.3390/polym13152474 – ident: ref_36 – volume: 79 start-page: 669 year: 2018 ident: ref_24 article-title: Eco-Efficiency Assessment of Manufacturing Carbon Fiber Reinforced Polymers (CFRP) in Aerospace Industry publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.06.020 – ident: ref_44 doi: 10.1109/CIEES62939.2024.10811378 – volume: 56 start-page: 1059 year: 2020 ident: ref_22 article-title: A Review on Fabrication Methods, Reinforcements and Mechanical Properties of Aluminum Matrix Composites publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.05.042 – volume: 4 start-page: 468 year: 2021 ident: ref_38 article-title: Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties publication-title: Int. J. Lightweight Mater. Manuf. – ident: ref_25 doi: 10.1007/978-3-030-39062-4_20 |
| SSID | ssj0000456617 |
| Score | 2.3808692 |
| Snippet | This study addresses the selection and application of composite materials for aerospace systems operating in extreme environmental conditions, with a... |
| SourceID | pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 2175 |
| SubjectTerms | Aerodynamics Aerospace systems Altitude Aluminum Analysis Carbon fiber reinforced plastics Carbon fiber reinforcement Composite materials Computational fluid dynamics Corrosion resistance Design Drone aircraft Dynamic loads Epoxy resins Fatigue Fatigue life Fatigue testing machines Fiber orientation Finite element method High altitude Interfacial bonding Load Longerons Material properties Materials Optimization Polymers Prototyping Radiation Radiation tolerance Sensors Shear strength Simulation methods Structural integrity Tensile strength Thermal stability Trussed structures Unmanned aerial vehicles Wall thickness |
| Title | Structural and Material Optimization of a Sensor-Integrated Autonomous Aerial Vehicle Using KMU-3 CFRP |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40871122 https://www.proquest.com/docview/3244051023 https://www.proquest.com/docview/3246301331 https://pubmed.ncbi.nlm.nih.gov/PMC12389304 |
| Volume | 17 |
| WOSCitedRecordID | wos001557548000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Materials Science Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KB. dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/materialsscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RLRJcyrMQKJWREJxM87ZzQttVV1TVLlFL0XKK7MRWK9Fk290i8e-ZSZyl4cCFo2UntjzjmW_8-AbgXWp0UqLd45nIDAYouuIyLkNujEGHrqXJAt0mmxDzuVwsstxtuK3ctcreJraGumpK2iM_QMcfkwKF0aflNaesUXS66lJobME2MZXFI9g-PJrnp5tdFgIs6KM7cs0I4_uDZfPj1xVxxCAWTwbO6G-TfMcnDe9L3nFA00f_O_THsOOgJxt3uvIE7pn6KTyY9BnfnoE9a8lkiYiDqbpiM7Vu9ZN9Qbty5R5sssYyxc4w-m1u-HFPNlGx8e2a3kc0tys27r76Zi6oI9beSmAns3Mescn0NH8O59Ojr5PP3OVh4CW6uDWvosym0mZS2aSSMlaJlYlSMrQ2JLoeW6F4USMTX4s0qxIdBsr4ViBSKZXWMtqFUd3U5iUwhH-l9RU9HMK4MNCy1JVMlfDjQPtGCA_e9wIplh3dRoFhCkmuGEjOgw8kroKWIcqkVO41AXZDhFbFGGGIDAXiNw_2eqkUbn2uij8i8eDtphqnm45LVG1wsqhNiuYvigIPXnQKsBlT7GOgGYT4czlQjU0DYu0e1tSXFy17N0IFxIh-_Orf43oND0NKNUy3U-QejFABzBu4X_5cX65u9mFLLOS-03YsnRx-xFJ-PMu__waleA2K |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLVK50PIObcFIPE5WE-flHBBaLay62u6yoi0qp2AntlqJJkt3C-qf4jcyk8fScODWA-ckjuN8nvnG9nwD8DIyOszQ7vEkTgwGKDrnMsgEN8agQ9fSJJ6uik3E06k8OUlma_CrzYWhY5WtTawMdV5mtEa-h44_IAAJ_938O6eqUbS72pbQqGExNlc_MWRbvB29x__7Sojhh6PBPm-qCvAMDfaS535iI2kTqWyYSxmo0MpQKSmsFSQ-Y3PsLI5v6Oo4SvJQC08Z18bodzOltfSx3VuwHiDYZQ_WZ6PJ7MtqVYcIEnKCWszT9xN3b15-uzonTRrk_mHH-f3tAq75wO75zGsOb7j5vw3VFtxtqDXr13PhHqyZ4j5sDNqKdg_AHlZiuSQ0wlSRs4laVvOPfUS7ed4kpLLSMsUOMbovL_ioFdPIWf9ySfkf5eWC9eunPptTehGrTl2w8eSY-2ww_DR7CMc38pmPoFeUhXkCDOltZl1FiVEY93paZjqXkYrdwNOuiWMHXrcASOe1nEiKYRghJe0gxYE3BI-UzAxiIFNNtgS-hgS70j7SLCli5KcO7LQoSBv7s0j_QMCBF6vLONy0HaQKg4NF90Ro3n3fc-BxDbhVnwIXA2lPYOOyA8XVDaRK3r1SnJ1W6uRIhZADu8HTf_frOWzsH00O0oPRdLwNdwSVVaaTOHIHeggGswu3sx_Ls8XFs2aOMfh601j9DcawaUo |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VFlEuvCmBAkbicbI2cV7OAaHVlhWrZZeIUlROwU5stRJNlu4W1L_Gr2Mmj6XhwK0Hznk5zueZb5yZbwCeR0aHOdo9nsSJwQBFF1wGueDGGHToWprE03WziXg-l4eHSboBv7paGEqr7GxibaiLKqc98gE6_oAAJPyBbdMi0r3xm8V3Th2k6E9r106jgcjUnP_E8G35erKH3_qFEOO3n0bveNthgOdovFe88BMbSZtIZcNCykCFVoZKSWGtICEaW-DAca5DV8dRUoRaeMq4NkYfnCutpY_3vQJbSMkDXGNb6WSWflnv8BBZQn7QCHv6fuIOFtW38xPSp8E4IOw5wr_dwQV_2M_VvOD8xjf_52m7BTdays2GzRq5DRumvAPbo67T3V2w-7WILgmQMFUWbKZW9bpkH9CenrSFqqyyTLF9jPqrUz7pRDYKNjxbUV1IdbZkw-aqz-aIHsTqbAw2nR1wn43GH9N7cHApr3kfNsuqNA-AIe3NrauoYArjYU_LXBcyUrEbeNo1cezAyw4M2aKRGckwPCPUZD3UOPCKoJKR-UE85KqtosDHkJBXNkT6JUWMvNWB3Q4RWWuXltkfODjwbH0Yp5t-E6nS4GTRORGafd_3HNhpwLceU-BigO0JvLnswXJ9AqmV94-Ux0e1ajlSJOTGbvDw3-N6CtcQoNn7yXz6CK4L6rZMCTpyFzYRC-YxXM1_rI6Xp0_a5cbg62VD9Tem5XIK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Material+Optimization+of+a+Sensor-Integrated+Autonomous+Aerial+Vehicle+Using+KMU-3+CFRP&rft.jtitle=Polymers&rft.au=Nurgizat%2C+Yerkebulan&rft.au=Uzbekbayev%2C+Arman&rft.au=Fedorov%2C+Igor&rft.au=Bebenin%2C+Andrey&rft.date=2025-08-08&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=17&rft.issue=16&rft.spage=2175&rft_id=info:doi/10.3390%2Fpolym17162175&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_polym17162175 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |