Data-driven algorithms for inverse design of polymers
The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers w...
Uloženo v:
| Vydáno v: | Soft matter Ročník 17; číslo 33; s. 7607 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
07.09.2021
|
| ISSN: | 1744-6848, 1744-6848 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers. |
|---|---|
| AbstractList | The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers. |
| Author | Sattari, Kianoosh Lin, Jian Xie, Yunchao |
| Author_xml | – sequence: 1 givenname: Kianoosh surname: Sattari fullname: Sattari, Kianoosh – sequence: 2 givenname: Yunchao surname: Xie fullname: Xie, Yunchao – sequence: 3 givenname: Jian surname: Lin fullname: Lin, Jian |
| BookMark | eNpNjM1KAzEURoNUsK1ufIIs3Yzmb5LJUqpWoeBG1-Vm7k0dmUnqZFrw7S3owtV3OAe-BZulnIixaylupdD-DmUZhHCqxjM2l86Yyjammf3jC7Yo5VMI3Rhp56x-gAkqHLsjJQ79Lo_d9DEUHvPIu3SksRBHKt0u8Rz5Pvffw8ldsvMIfaGrv12y96fHt9VztXldv6zuN1VrpJ6qNngVEKQm0CBsdFjHYHVAhcF7REEUnItoHUQwmshJrVoQ5pS01F4t2c3v737MXwcq03boSkt9D4nyoWxVbaVXtTNS_QCUWEwH |
| CitedBy_id | crossref_primary_10_3390_e25101396 crossref_primary_10_1016_j_memsci_2025_124172 crossref_primary_10_1016_j_mtphys_2024_101438 crossref_primary_10_1177_09540083251313522 crossref_primary_10_1016_j_pmatsci_2022_101043 crossref_primary_10_1038_s41467_023_39396_3 crossref_primary_10_1016_j_memsci_2024_123169 crossref_primary_10_1002_adfm_202309844 crossref_primary_10_3390_polym17121667 crossref_primary_10_3390_polym16233368 crossref_primary_10_1007_s10853_024_09379_w crossref_primary_10_1021_jacs_4c16325 crossref_primary_10_1007_s00707_025_04317_6 crossref_primary_10_1016_j_pmatsci_2025_101544 crossref_primary_10_1002_adts_202100565 crossref_primary_10_1016_j_compscitech_2024_110439 crossref_primary_10_1063_5_0201522 crossref_primary_10_1016_j_matdes_2023_111773 crossref_primary_10_1016_j_nexres_2025_100692 crossref_primary_10_3390_ma15051811 crossref_primary_10_1016_j_fluid_2022_113403 crossref_primary_10_1016_j_matt_2022_04_016 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1002_pi_6345 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1016_j_tifs_2023_06_005 crossref_primary_10_1039_D4SC05900J crossref_primary_10_1080_15376494_2025_2480689 crossref_primary_10_1038_s41578_024_00708_8 crossref_primary_10_1016_j_apenergy_2024_125203 crossref_primary_10_1021_acs_macromol_5c01192 crossref_primary_10_1039_D3PY00565H crossref_primary_10_3390_macromol5030038 crossref_primary_10_1002_adma_202413695 crossref_primary_10_1063_5_0162380 crossref_primary_10_1016_j_progpolymsci_2024_101828 crossref_primary_10_1016_j_addma_2024_104204 crossref_primary_10_1016_j_ces_2022_118326 crossref_primary_10_32604_cmc_2025_060109 crossref_primary_10_1038_s41467_023_40459_8 crossref_primary_10_1002_smll_202300036 crossref_primary_10_1002_smm2_1320 crossref_primary_10_1016_j_actamat_2023_119562 crossref_primary_10_1039_D4ME00123K |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1039/d1sm00725d |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1744-6848 |
| GroupedDBID | 0-7 0R~ 123 4.4 705 70~ 7X8 7~J AAEMU AAFBY AAIWI AAJAE AANOJ AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGMRB AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N J3I KZ1 L-8 N9A O9- P2P R7B RAOCF RCNCU RNS RPMJG RSCEA SKA SLH VH6 |
| ID | FETCH-LOGICAL-c413t-cb92bda13ea3a06f7d5fb63bd2db99dd0eeb77fd67afa43ee7132ca04dd031392 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686800800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1744-6848 |
| IngestDate | Sun Nov 09 13:48:18 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 33 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-cb92bda13ea3a06f7d5fb63bd2db99dd0eeb77fd67afa43ee7132ca04dd031392 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2561925741 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2561925741 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-07 |
| PublicationDateYYYYMMDD | 2021-09-07 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationTitle | Soft matter |
| PublicationYear | 2021 |
| SSID | ssj0038416 |
| Score | 2.5786426 |
| SecondaryResourceType | review_article |
| Snippet | The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently,... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 7607 |
| Title | Data-driven algorithms for inverse design of polymers |
| URI | https://www.proquest.com/docview/2561925741 |
| Volume | 17 |
| WOSCitedRecordID | wos000686800800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjxLb6J4DVst0mT5iSiLp4WDwp7WyYvXdht120V_Pdmul09eBE8t5QymceX-b5kCLlSIscDn70YabljIkYTi6hIMh8EALcQnHfNsAk1GOTDoX5sG25VK6tc5sQmUbvSYo-8G0tzBCNZLIDXszeGU6OQXW1HaKySDo9QBr1aDb9ZBI6U2uJApGAyF_nyelKuu65XTfHW7Mz9SsJNZelv__efdshWiynpzcIJdsmKL_bIRqPttNU-ye6gBubmmNcoTF7iF-rXaUUjXKXjAmUZnrpGyEHLQGfl5BN72QfkuX__dPvA2mkJzMZCVDNrdGoc9LgHDokMymXBSG5c6ozWziXeG6WCkwoCCO593J6mFhIRH6Hx0kOyVpSFPyJUmYAEYc6ltAJ0rrPEawGZTbWRBuQxuVzaYxS9ESkGKHz5Xo1-LHLyh3dOyWaKEhHkZ9QZ6YQYcf6crNuPelzNL5rF_AJhYapz |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+algorithms+for+inverse+design+of+polymers&rft.jtitle=Soft+matter&rft.au=Sattari%2C+Kianoosh&rft.au=Xie%2C+Yunchao&rft.au=Lin%2C+Jian&rft.date=2021-09-07&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=17&rft.issue=33&rft.spage=7607&rft_id=info:doi/10.1039%2Fd1sm00725d&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-6848&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-6848&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-6848&client=summon |