Data-driven algorithms for inverse design of polymers

The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft matter Ročník 17; číslo 33; s. 7607
Hlavní autoři: Sattari, Kianoosh, Xie, Yunchao, Lin, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: 07.09.2021
ISSN:1744-6848, 1744-6848
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.
AbstractList The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently, data-driven approaches to explore the chemical space for polymer design have emerged. Among them, inverse design strategies for designing polymers with specific properties have evolved to be a significant materials informatics platform by learning hidden knowledge from materials data as well as smartly navigating the chemical space in an optimized way. In this review, we first summarize the progress in the representation of polymers, a prerequisite step for the inverse design of polymers. Then, we systematically introduce three data-driven strategies implemented for the inverse design of polymers, i.e., high-throughput virtual screening, global optimization, and generative models. Finally, we discuss the challenges and opportunities of the data-driven strategies as well as optimization algorithms employed in the inverse design of polymers.
Author Sattari, Kianoosh
Lin, Jian
Xie, Yunchao
Author_xml – sequence: 1
  givenname: Kianoosh
  surname: Sattari
  fullname: Sattari, Kianoosh
– sequence: 2
  givenname: Yunchao
  surname: Xie
  fullname: Xie, Yunchao
– sequence: 3
  givenname: Jian
  surname: Lin
  fullname: Lin, Jian
BookMark eNpNjM1KAzEURoNUsK1ufIIs3Yzmb5LJUqpWoeBG1-Vm7k0dmUnqZFrw7S3owtV3OAe-BZulnIixaylupdD-DmUZhHCqxjM2l86Yyjammf3jC7Yo5VMI3Rhp56x-gAkqHLsjJQ79Lo_d9DEUHvPIu3SksRBHKt0u8Rz5Pvffw8ldsvMIfaGrv12y96fHt9VztXldv6zuN1VrpJ6qNngVEKQm0CBsdFjHYHVAhcF7REEUnItoHUQwmshJrVoQ5pS01F4t2c3v737MXwcq03boSkt9D4nyoWxVbaVXtTNS_QCUWEwH
CitedBy_id crossref_primary_10_3390_e25101396
crossref_primary_10_1016_j_memsci_2025_124172
crossref_primary_10_1016_j_mtphys_2024_101438
crossref_primary_10_1177_09540083251313522
crossref_primary_10_1016_j_pmatsci_2022_101043
crossref_primary_10_1038_s41467_023_39396_3
crossref_primary_10_1016_j_memsci_2024_123169
crossref_primary_10_1002_adfm_202309844
crossref_primary_10_3390_polym17121667
crossref_primary_10_3390_polym16233368
crossref_primary_10_1007_s10853_024_09379_w
crossref_primary_10_1021_jacs_4c16325
crossref_primary_10_1007_s00707_025_04317_6
crossref_primary_10_1016_j_pmatsci_2025_101544
crossref_primary_10_1002_adts_202100565
crossref_primary_10_1016_j_compscitech_2024_110439
crossref_primary_10_1063_5_0201522
crossref_primary_10_1016_j_matdes_2023_111773
crossref_primary_10_1016_j_nexres_2025_100692
crossref_primary_10_3390_ma15051811
crossref_primary_10_1016_j_fluid_2022_113403
crossref_primary_10_1016_j_matt_2022_04_016
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1002_pi_6345
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1016_j_tifs_2023_06_005
crossref_primary_10_1039_D4SC05900J
crossref_primary_10_1080_15376494_2025_2480689
crossref_primary_10_1038_s41578_024_00708_8
crossref_primary_10_1016_j_apenergy_2024_125203
crossref_primary_10_1021_acs_macromol_5c01192
crossref_primary_10_1039_D3PY00565H
crossref_primary_10_3390_macromol5030038
crossref_primary_10_1002_adma_202413695
crossref_primary_10_1063_5_0162380
crossref_primary_10_1016_j_progpolymsci_2024_101828
crossref_primary_10_1016_j_addma_2024_104204
crossref_primary_10_1016_j_ces_2022_118326
crossref_primary_10_32604_cmc_2025_060109
crossref_primary_10_1038_s41467_023_40459_8
crossref_primary_10_1002_smll_202300036
crossref_primary_10_1002_smm2_1320
crossref_primary_10_1016_j_actamat_2023_119562
crossref_primary_10_1039_D4ME00123K
ContentType Journal Article
DBID 7X8
DOI 10.1039/d1sm00725d
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1744-6848
GroupedDBID 0-7
0R~
123
4.4
705
70~
7X8
7~J
AAEMU
AAFBY
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGMRB
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
F5P
GGIMP
GNO
H13
HZ~
H~N
J3I
KZ1
L-8
N9A
O9-
P2P
R7B
RAOCF
RCNCU
RNS
RPMJG
RSCEA
SKA
SLH
VH6
ID FETCH-LOGICAL-c413t-cb92bda13ea3a06f7d5fb63bd2db99dd0eeb77fd67afa43ee7132ca04dd031392
IEDL.DBID 7X8
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000686800800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1744-6848
IngestDate Sun Nov 09 13:48:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-cb92bda13ea3a06f7d5fb63bd2db99dd0eeb77fd67afa43ee7132ca04dd031392
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2561925741
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2561925741
PublicationCentury 2000
PublicationDate 2021-09-07
PublicationDateYYYYMMDD 2021-09-07
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-07
  day: 07
PublicationDecade 2020
PublicationTitle Soft matter
PublicationYear 2021
SSID ssj0038416
Score 2.5786426
SecondaryResourceType review_article
Snippet The ever-increasing demand for novel polymers with superior properties requires a deeper understanding and exploration of the chemical space. Recently,...
SourceID proquest
SourceType Aggregation Database
StartPage 7607
Title Data-driven algorithms for inverse design of polymers
URI https://www.proquest.com/docview/2561925741
Volume 17
WOSCitedRecordID wos000686800800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjxLb6J4DVst0mT5iSiLp4WDwp7WyYvXdht120V_Pdmul09eBE8t5QymceX-b5kCLlSIscDn70YabljIkYTi6hIMh8EALcQnHfNsAk1GOTDoX5sG25VK6tc5sQmUbvSYo-8G0tzBCNZLIDXszeGU6OQXW1HaKySDo9QBr1aDb9ZBI6U2uJApGAyF_nyelKuu65XTfHW7Mz9SsJNZelv__efdshWiynpzcIJdsmKL_bIRqPttNU-ye6gBubmmNcoTF7iF-rXaUUjXKXjAmUZnrpGyEHLQGfl5BN72QfkuX__dPvA2mkJzMZCVDNrdGoc9LgHDokMymXBSG5c6ozWziXeG6WCkwoCCO593J6mFhIRH6Hx0kOyVpSFPyJUmYAEYc6ltAJ0rrPEawGZTbWRBuQxuVzaYxS9ESkGKHz5Xo1-LHLyh3dOyWaKEhHkZ9QZ6YQYcf6crNuPelzNL5rF_AJhYapz
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+algorithms+for+inverse+design+of+polymers&rft.jtitle=Soft+matter&rft.au=Sattari%2C+Kianoosh&rft.au=Xie%2C+Yunchao&rft.au=Lin%2C+Jian&rft.date=2021-09-07&rft.issn=1744-6848&rft.eissn=1744-6848&rft.volume=17&rft.issue=33&rft.spage=7607&rft_id=info:doi/10.1039%2Fd1sm00725d&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-6848&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-6848&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-6848&client=summon