A truncated Newton method in an augmented Lagrangian framework for nonlinear programming

In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direc...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computational optimization and applications Ročník 45; číslo 2; s. 311 - 352
Hlavní autori: Di Pillo, Gianni, Liuzzi, Giampaolo, Lucidi, Stefano, Palagi, Laura
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Boston Springer US 01.03.2010
Springer Nature B.V
Predmet:
ISSN:0926-6003, 1573-2894
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376–406, 2001 ), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.
AbstractList In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376-406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.[PUBLICATION ABSTRACT]
In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376-406, 2001), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.
In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which relies on a truncated procedure for the computation of a search direction, and is thus suitable for large scale problems. The truncated direction produces a sequence of points which locally converges to a KKT pair with superlinear convergence rate. The local algorithm is globalized by means of a suitable merit function which is able to measure and to enforce progress of the iterates towards a KKT pair, without deteriorating the local efficiency. In particular, we adopt the exact augmented Lagrangian function introduced in Pillo and Lucidi (SIAM J. Optim. 12:376–406, 2001 ), which allows us to guarantee the boundedness of the sequence produced by the algorithm and which has strong connections with the above mentioned truncated direction. The resulting overall algorithm is globally and superlinearly convergent under mild assumptions.
Author Di Pillo, Gianni
Palagi, Laura
Lucidi, Stefano
Liuzzi, Giampaolo
Author_xml – sequence: 1
  givenname: Gianni
  surname: Di Pillo
  fullname: Di Pillo, Gianni
  email: dipillo@dis.uniroma1.it
  organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Università di Roma “La Sapienza”
– sequence: 2
  givenname: Giampaolo
  surname: Liuzzi
  fullname: Liuzzi, Giampaolo
  organization: CNR–Consiglio Nazionale delle Ricerche, IASI–Istituto di Analisi dei Sistemi ed Informatica “A. Ruberti”
– sequence: 3
  givenname: Stefano
  surname: Lucidi
  fullname: Lucidi, Stefano
  organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Università di Roma “La Sapienza”
– sequence: 4
  givenname: Laura
  surname: Palagi
  fullname: Palagi, Laura
  organization: Dipartimento di Informatica e Sistemistica “Antonio Ruberti”, Università di Roma “La Sapienza”
BookMark eNp9kEtLBSEYhiUKOl1-QLuhTaupTx3HcXk4dINDbQraiTOjkzWjpQ7Rv8_DCYKgQBD0efxe3wO067zTCJ1gOMcA_CJiYI0oAZpSEFyXdActMOO0JI2odtECBKnLGoDuo4MYXwBAcEoW6GlZpDC7TiXdF3f6I3lXTDo9-76wrlB5zcOk3eZ2rYag3GDzoQlq0h8-vBbGhyJHGa3TKhRvwWdmmqwbjtCeUWPUx9_7IXq8unxY3ZTr--vb1XJddhWmqey44LwjpGp5A21DWWsY65tWEMVa0pu2roRou14bqEA1rcENVBWBHmvBsDb0EJ1t382z32cdk5xs7PQ4Kqf9HCWvaE1J_n4mT3-RL34OLoeTBLOaESxohvgW6oKPMWgjO5tUst6loOwoMchN33Lbt8x9y03fcmPiX-ZbsJMKn_86ZOvEzLpBh59If0tf5zOUtQ
CitedBy_id crossref_primary_10_1007_s10107_023_01935_7
crossref_primary_10_1007_s10898_017_0603_0
crossref_primary_10_1080_10556788_2013_841692
crossref_primary_10_1007_s10957_012_0114_6
crossref_primary_10_1007_s10589_012_9468_9
crossref_primary_10_1007_s12190_011_0504_1
crossref_primary_10_1137_110852401
crossref_primary_10_1007_s10589_014_9664_x
crossref_primary_10_1080_02331934_2022_2157678
crossref_primary_10_1137_16M1063873
crossref_primary_10_1080_01630563_2015_1070864
crossref_primary_10_1080_02331934_2010_505964
crossref_primary_10_1007_s11766_014_3173_7
Cites_doi 10.1007/BF01581275
10.1007/978-3-663-12160-2
10.1007/BF02192227
10.1137/S1052623497321894
10.1007/s101070100263
10.1007/PL00011391
10.1007/BF00940345
10.1145/962437.962439
10.1137/0327068
10.1023/A:1008677427361
10.1137/S1052623496305560
10.1007/BF02591986
10.1137/0802027
10.1137/S1052623499357258
10.1016/0167-6377(94)00059-F
10.1007/BF01588240
10.1137/0724076
10.1137/S1052623497325107
10.1007/s101070100244
10.1007/BF01385810
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2008
Springer Science+Business Media, LLC 2010
Copyright_xml – notice: Springer Science+Business Media, LLC 2008
– notice: Springer Science+Business Media, LLC 2010
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-008-9216-3
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 352
ExternalDocumentID 1973886991
10_1007_s10589_008_9216_3
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c413t-c7977c224b780b835bf55d8b92a5b2dfb6499bcdef040a8bf1804420d1e951ef3
IEDL.DBID RSV
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000274903400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-6003
IngestDate Thu Sep 04 17:05:40 EDT 2025
Wed Nov 26 13:11:39 EST 2025
Tue Nov 18 20:52:11 EST 2025
Sat Nov 29 01:51:24 EST 2025
Fri Feb 21 02:30:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Large scale optimization
Exact augmented Lagrangian functions
Truncated Newton-type algorithms
Nonlinear programming algorithms
Constrained optimization
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-c7977c224b780b835bf55d8b92a5b2dfb6499bcdef040a8bf1804420d1e951ef3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 215652193
PQPubID 30811
PageCount 42
ParticipantIDs proquest_miscellaneous_743632092
proquest_journals_215652193
crossref_citationtrail_10_1007_s10589_008_9216_3
crossref_primary_10_1007_s10589_008_9216_3
springer_journals_10_1007_s10589_008_9216_3
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References YabeH.YamashitaH.Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimizationMath. Program.1996753773971422177
OrthegaJ.M.RheinboldtW.C.Iterative Solution of Nonlinear Equations in Several Variables1970San DiegoAcademic Press
FletcherR.GouldN.I.M.LeyfferS.TointPh.L.WachterA.Global convergence of trust-region SQP-filter algorithms for general nonlinear programmingSIAM J. Optim.2002136356591038.9007610.1137/S10526234993572581972208
GayD.M.OvertonM.L.WrightM.H.YuanY.A primal-dual interior method for nonconvex nonlinear programmingAdvances in Nonlinear Programming1998DordrechtKluwer Academic
ByrdR.H.SchnabelR.B.ShultzG.A.A trust region algorithm for nonlinearly constrained optimizationSIAM J. Numer. Anal.198724115211700631.6506810.1137/0724076909071
DolanE.D.MoréJ.J.Benchmarking optimization software with performance profilesMath. Program. Ser. A2002912012131049.9000410.1007/s101070100263
GladT.PolakE.A multiplier method with automatic limitation of penalty growthMath. Program.1979171401550414.9007810.1007/BF01588240546352
GrippoL.LamparielloF.LucidiS.A truncated Newton method with nonmonotone line search for unconstrained optimizationJ. Optim. Theory Appl.1989604014190632.9005910.1007/BF00940345993007
BertsekasD.P.Nonlinear Programming1995BelmontAthena Scientific0935.90037
GouldN.I.M.OrbanD.TointPh.L.CUTEr and SifDec: a constrained and unconstrained testing environment, revisitedACM Trans. Math. Softw.2003293733941068.9052610.1145/962437.9624392077337
Di PilloG.GrippoL.An exact penalty method with global convergence propertiesMath. Program.19863611810.1007/BF02591986
ByrdR.H.GilbertJ.C.NocedalJ.A trust region method based on interior point techniques for nonlinear programmingMath. Program. Ser. A2000891491851033.9015210.1007/PL000113911795061
GillP.E.MurrayW.SaundersM.A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{SNOPT}$\end{document} : an SQP algorithm for large-scale constrained optimizationSIAM J. Optim.2001997910061922505
GuddatJ.Guerra VasquezF.JongenH.Th.Parametric Optimization: Singularities, Pathfollowing and Jumps1990New YorkWiley0718.90056
Di PilloG.GrippoL.Toft-ChristensenE.A class of continuously differentiable exact penalty function algorithms for nonlinear programming problemsSystem Modelling and Optimization1984BerlinSpringer
QiL.SunJ.A nonsmooth version of Newton’s methodMath. Program.19935835336710.1007/BF015812751216791
Di PilloG.GrippoL.Exact penalty functions in constrained optimizationSIAM J. Control Optim.198927133313600681.4903510.1137/03270681022431
FacchineiF.Minimization of SC1 functions and the Maratos effectOper. Res. Lett.1995171311370843.9010810.1016/0167-6377(94)00059-F1342260
GrippoL.LamparielloF.LucidiS.A class of nonmonotone stabilization methods in unconstrained optimizationNumer. Math.1991597798050724.9006010.1007/BF013858101128033
ForsgrenA.GillP.E.Primal-dual interior methods for nonconvex nonlinear programmingSIAM J. Optim.19988113211520915.9023610.1137/S10526234963055601646122
Di PilloG.LucidiS.An augmented Lagrangian function with improved exactness propertiesSIAM J. Optim.2001123764060996.6506410.1137/S10526234973218941885567
BertsekasD.P.Constrained Optimization and Lagrange Multipliers Methods1982San DiegoAcademic Press
Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: A truncated Newton method in an augmented Lagrangian framework for nonlinear programming. Technical Report 09-07, Department of Computer and System Sciences, University of Rome “La Sapienza”, Rome, Italy (2007). Available for download at URL http://www.dis.uniroma1.it/~liuzzi/papers/TR09_07.pdf
FletcherR.LeyfferS.Nonlinear programming without a penalty functionMath. Program.2002912392701049.9008810.1007/s1010701002441875517
LucidiS.New results on a continuously differentiable exact penalty functionSIAM J. Optim.199225585740761.9008910.1137/08020271186162
ByrdR.H.HribarM.E.NocedalJ.An interior point algorithm for large-scale nonlinear programmingSIAM J. Optim.199998779000957.6505710.1137/S10526234973251071724768
FacchineiF.LucidiS.Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problemsJ. Optim. Theory Appl.1995852652890830.9012510.1007/BF021922271333788
ShannoD.F.VanderbeiR.J.An interior point algorithm for nonconvex nonlinear programmingComput. Optim. Appl.1999132312521040.9056410.1023/A:10086774273611704122
Wachter, A., Biegler, L.T.: Global and local convergence of line search filter methods for nonlinear programming. Technical Report B-01-09, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA (2001)
D.F. Shanno (9216_CR27) 1999; 13
D.P. Bertsekas (9216_CR2) 1995
R.H. Byrd (9216_CR4) 1999; 9
J.M. Orthega (9216_CR25) 1970
L. Grippo (9216_CR21) 1989; 60
E.D. Dolan (9216_CR11) 2002; 91
H. Yabe (9216_CR29) 1996; 75
G. Pillo Di (9216_CR8) 1989; 27
G. Pillo Di (9216_CR9) 2001; 12
N.I.M. Gould (9216_CR20) 2003; 29
G. Pillo Di (9216_CR6) 1984
R. Fletcher (9216_CR14) 2002; 13
S. Lucidi (9216_CR24) 1992; 2
A. Forsgren (9216_CR16) 1998; 8
R.H. Byrd (9216_CR3) 2000; 89
D.P. Bertsekas (9216_CR1) 1982
J. Guddat (9216_CR23) 1990
G. Pillo Di (9216_CR7) 1986; 36
F. Facchinei (9216_CR13) 1995; 85
L. Qi (9216_CR26) 1993; 58
F. Facchinei (9216_CR12) 1995; 17
9216_CR28
L. Grippo (9216_CR22) 1991; 59
R.H. Byrd (9216_CR5) 1987; 24
9216_CR10
T. Glad (9216_CR19) 1979; 17
D.M. Gay (9216_CR17) 1998
R. Fletcher (9216_CR15) 2002; 91
P.E. Gill (9216_CR18) 2001; 9
References_xml – reference: QiL.SunJ.A nonsmooth version of Newton’s methodMath. Program.19935835336710.1007/BF015812751216791
– reference: Di PilloG.GrippoL.An exact penalty method with global convergence propertiesMath. Program.19863611810.1007/BF02591986
– reference: GladT.PolakE.A multiplier method with automatic limitation of penalty growthMath. Program.1979171401550414.9007810.1007/BF01588240546352
– reference: OrthegaJ.M.RheinboldtW.C.Iterative Solution of Nonlinear Equations in Several Variables1970San DiegoAcademic Press
– reference: YabeH.YamashitaH.Superlinear and quadratic convergence of some primal-dual interior point methods for constrained optimizationMath. Program.1996753773971422177
– reference: Di PilloG.GrippoL.Toft-ChristensenE.A class of continuously differentiable exact penalty function algorithms for nonlinear programming problemsSystem Modelling and Optimization1984BerlinSpringer
– reference: Di PilloG.GrippoL.Exact penalty functions in constrained optimizationSIAM J. Control Optim.198927133313600681.4903510.1137/03270681022431
– reference: GrippoL.LamparielloF.LucidiS.A truncated Newton method with nonmonotone line search for unconstrained optimizationJ. Optim. Theory Appl.1989604014190632.9005910.1007/BF00940345993007
– reference: ShannoD.F.VanderbeiR.J.An interior point algorithm for nonconvex nonlinear programmingComput. Optim. Appl.1999132312521040.9056410.1023/A:10086774273611704122
– reference: ByrdR.H.HribarM.E.NocedalJ.An interior point algorithm for large-scale nonlinear programmingSIAM J. Optim.199998779000957.6505710.1137/S10526234973251071724768
– reference: GillP.E.MurrayW.SaundersM.A.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathsf{SNOPT}$\end{document} : an SQP algorithm for large-scale constrained optimizationSIAM J. Optim.2001997910061922505
– reference: ByrdR.H.GilbertJ.C.NocedalJ.A trust region method based on interior point techniques for nonlinear programmingMath. Program. Ser. A2000891491851033.9015210.1007/PL000113911795061
– reference: GayD.M.OvertonM.L.WrightM.H.YuanY.A primal-dual interior method for nonconvex nonlinear programmingAdvances in Nonlinear Programming1998DordrechtKluwer Academic
– reference: FletcherR.LeyfferS.Nonlinear programming without a penalty functionMath. Program.2002912392701049.9008810.1007/s1010701002441875517
– reference: Wachter, A., Biegler, L.T.: Global and local convergence of line search filter methods for nonlinear programming. Technical Report B-01-09, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA (2001)
– reference: FletcherR.GouldN.I.M.LeyfferS.TointPh.L.WachterA.Global convergence of trust-region SQP-filter algorithms for general nonlinear programmingSIAM J. Optim.2002136356591038.9007610.1137/S10526234993572581972208
– reference: GuddatJ.Guerra VasquezF.JongenH.Th.Parametric Optimization: Singularities, Pathfollowing and Jumps1990New YorkWiley0718.90056
– reference: FacchineiF.Minimization of SC1 functions and the Maratos effectOper. Res. Lett.1995171311370843.9010810.1016/0167-6377(94)00059-F1342260
– reference: ForsgrenA.GillP.E.Primal-dual interior methods for nonconvex nonlinear programmingSIAM J. Optim.19988113211520915.9023610.1137/S10526234963055601646122
– reference: Di Pillo, G., Liuzzi, G., Lucidi, S., Palagi, L.: A truncated Newton method in an augmented Lagrangian framework for nonlinear programming. Technical Report 09-07, Department of Computer and System Sciences, University of Rome “La Sapienza”, Rome, Italy (2007). Available for download at URL http://www.dis.uniroma1.it/~liuzzi/papers/TR09_07.pdf
– reference: BertsekasD.P.Nonlinear Programming1995BelmontAthena Scientific0935.90037
– reference: Di PilloG.LucidiS.An augmented Lagrangian function with improved exactness propertiesSIAM J. Optim.2001123764060996.6506410.1137/S10526234973218941885567
– reference: FacchineiF.LucidiS.Quadratically and superlinearly convergent algorithms for the solution of inequality constrained minimization problemsJ. Optim. Theory Appl.1995852652890830.9012510.1007/BF021922271333788
– reference: LucidiS.New results on a continuously differentiable exact penalty functionSIAM J. Optim.199225585740761.9008910.1137/08020271186162
– reference: GrippoL.LamparielloF.LucidiS.A class of nonmonotone stabilization methods in unconstrained optimizationNumer. Math.1991597798050724.9006010.1007/BF013858101128033
– reference: DolanE.D.MoréJ.J.Benchmarking optimization software with performance profilesMath. Program. Ser. A2002912012131049.9000410.1007/s101070100263
– reference: BertsekasD.P.Constrained Optimization and Lagrange Multipliers Methods1982San DiegoAcademic Press
– reference: GouldN.I.M.OrbanD.TointPh.L.CUTEr and SifDec: a constrained and unconstrained testing environment, revisitedACM Trans. Math. Softw.2003293733941068.9052610.1145/962437.9624392077337
– reference: ByrdR.H.SchnabelR.B.ShultzG.A.A trust region algorithm for nonlinearly constrained optimizationSIAM J. Numer. Anal.198724115211700631.6506810.1137/0724076909071
– volume: 58
  start-page: 353
  year: 1993
  ident: 9216_CR26
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 9
  start-page: 979
  year: 2001
  ident: 9216_CR18
  publication-title: SIAM J. Optim.
– volume-title: Parametric Optimization: Singularities, Pathfollowing and Jumps
  year: 1990
  ident: 9216_CR23
  doi: 10.1007/978-3-663-12160-2
– ident: 9216_CR28
– volume: 85
  start-page: 265
  year: 1995
  ident: 9216_CR13
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF02192227
– volume: 12
  start-page: 376
  year: 2001
  ident: 9216_CR9
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497321894
– volume: 91
  start-page: 201
  year: 2002
  ident: 9216_CR11
  publication-title: Math. Program. Ser. A
  doi: 10.1007/s101070100263
– volume-title: System Modelling and Optimization
  year: 1984
  ident: 9216_CR6
– volume-title: Iterative Solution of Nonlinear Equations in Several Variables
  year: 1970
  ident: 9216_CR25
– volume: 89
  start-page: 149
  year: 2000
  ident: 9216_CR3
  publication-title: Math. Program. Ser. A
  doi: 10.1007/PL00011391
– volume: 60
  start-page: 401
  year: 1989
  ident: 9216_CR21
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940345
– volume: 75
  start-page: 377
  year: 1996
  ident: 9216_CR29
  publication-title: Math. Program.
– volume: 29
  start-page: 373
  year: 2003
  ident: 9216_CR20
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/962437.962439
– volume: 27
  start-page: 1333
  year: 1989
  ident: 9216_CR8
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0327068
– volume: 13
  start-page: 231
  year: 1999
  ident: 9216_CR27
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008677427361
– ident: 9216_CR10
– volume: 8
  start-page: 1132
  year: 1998
  ident: 9216_CR16
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623496305560
– volume: 36
  start-page: 1
  year: 1986
  ident: 9216_CR7
  publication-title: Math. Program.
  doi: 10.1007/BF02591986
– volume: 2
  start-page: 558
  year: 1992
  ident: 9216_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/0802027
– volume: 13
  start-page: 635
  year: 2002
  ident: 9216_CR14
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499357258
– volume-title: Constrained Optimization and Lagrange Multipliers Methods
  year: 1982
  ident: 9216_CR1
– volume: 17
  start-page: 131
  year: 1995
  ident: 9216_CR12
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(94)00059-F
– volume: 17
  start-page: 140
  year: 1979
  ident: 9216_CR19
  publication-title: Math. Program.
  doi: 10.1007/BF01588240
– volume: 24
  start-page: 1152
  year: 1987
  ident: 9216_CR5
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0724076
– volume-title: Advances in Nonlinear Programming
  year: 1998
  ident: 9216_CR17
– volume-title: Nonlinear Programming
  year: 1995
  ident: 9216_CR2
– volume: 9
  start-page: 877
  year: 1999
  ident: 9216_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497325107
– volume: 91
  start-page: 239
  year: 2002
  ident: 9216_CR15
  publication-title: Math. Program.
  doi: 10.1007/s101070100244
– volume: 59
  start-page: 779
  year: 1991
  ident: 9216_CR22
  publication-title: Numer. Math.
  doi: 10.1007/BF01385810
SSID ssj0009732
Score 1.9627265
Snippet In this paper we propose a primal-dual algorithm for the solution of general nonlinear programming problems. The core of the method is a local algorithm which...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 311
SubjectTerms Algorithms
Convex and Discrete Geometry
Globalization
Lagrange multiplier
Management Science
Mathematics
Mathematics and Statistics
Nonlinear programming
Operations Research
Operations Research/Decision Theory
Optimization
Optimization techniques
Statistics
Studies
SummonAdditionalLinks – databaseName: Computer Science Database
  dbid: K7-
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HfTgW1xXJQdPSrBN2jQ9ySKKoCweFPZW8lwWdFf34e930seuCnoRemublM5Mvi-d6TcAZ9ZrYdIoodInCjcoGtfBJOeUW6uE59YoX-rMPmTdruz18se6NmdSl1U2a2K5UNuRCd_ILxGaBEJNzq_e3mloGhWSq3UHjWVYjRmLg5vfZ3ShuZuV_cminAmKuM6bpGb151waaoUijHYWC8q_w9KCa_5Ij5aoc7v1z-fdhs2abpJO5R87sOSGu7DxRYRwD3odMh3PgjasswTXPCSDpOorTQZDovCY9UvlTkseVB-hrY8eRXxT1EWQ9ZJhJbihxqSu93rFoffh-fbm6fqO1v0WqEEom1KTIRk0iOk6k5FGaqZ9mlqpc6ZSzYJVcXukjXUeI19J7WMZJQmLbOyQpznPD2AF53OHQGyWeIF7OcsMXuu41DL2zgmplRIR0y2ImtddmFqMPPTEeCkWMsrBQkVokhksVPAWnM9veauUOP66uN1YpaiDclLMTdICMj-L0RRSJGroRrNJgXxKcIYe04KLxvKLAX6d7ujP6dqwXtUchMq1Y1hBo7oTWDMf08FkfFr67CckufJX
  priority: 102
  providerName: ProQuest
Title A truncated Newton method in an augmented Lagrangian framework for nonlinear programming
URI https://link.springer.com/article/10.1007/s10589-008-9216-3
https://www.proquest.com/docview/215652193
https://www.proquest.com/docview/743632092
Volume 45
WOSCitedRecordID wos000274903400006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: 7WY
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M0C
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: P5Z
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: K7-
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M7S
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: M2P
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2894
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009732
  issn: 0926-6003
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7Y1of6ULUqbqtLHnxSBrLJTCbzWEuLYLssrZfVlyHXRWhX2e36-_0yl90qKigMgZDMZMjJyfnCOfkO0QsfrXIFzzMdc4MDisU-mFcyk94bFaV3JjY8s2fleKyn02rS3eNe9tHuvUuy2alvXXYrUngPh4KKkcrkFu3A2umkjReXHzZMu2WTlYxXQmWw5rJ3Zf7uEz8bow3C_MUp2tia0_v_9ZcPaK-DluyoXQsP6U6Y79O9W4SDqJ2vWVqX-7SbkGZL1PyIpkfsZrFKFLHBM2x9wISsTS_NvsyZwbOaNQSenp2ZGSzcDAuLxT62iwH8snnLu2EWrAv7usaoj-n96cm74zdZl3Yhc7BoN5krgQkdTLstNbdAaDYWhde2EqawIgkXpyTrfIjYAIy2caR5ngvuRwFwLUT5hLYxXnhKzJd5VDjSeeHQN0ht9SiGoLQ1RnFhB8T7-a9dx0meUmNc1Rs25TSfdcqVmeazlgN6uX7lW0vI8bfOh71Q6043lzVAjgJoqdDK1q1QquQpMfPwdbWsAauUFFhCA3rVi3nzgT8Od_BPvQ9ptw1FSAFtz2gbQg7P6a77DskvhrRVfvw0pJ3XJ-PJBWpvywzlOT9OpZiksrxEOSk-DxsF-AGxS_jg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqEQ5AAWqLo_iA72AIrx24jiHCiEeArGsOFBpb8HPFRIsdB9U_VH8x47z2AUkuHGolFsSO4k_z3zOjL8B2LZeC5PQOJI-VrhA0WgH44xH3FolPLdG-UJntpW227LTyS6n4KneCxPSKmubWBhqe2_CP_I9dE0CXU3G9x9-R6FoVAiu1hU0SlScu79_cMU2-Hl2hMP7g7GT46vD06gqKhAZtNfDyKTIeAw6Lp1KqpF_aJ8kVuqMqUSz8Oi4BtDGOo_wVlL7pqRxzKhtOiQjznNsdxpm4xhnQ8gUpIcTjd-0qIdGMyYi5BG8DqKWO_WSkJtE0bqwpoj4Szc44bavwrGFlztZ_M--zxIsVHSaHJT4_wJTrrcM889EFlegc0CG_VHQvnWWoE1HskvKutnkpkcUHqNuoUxqSUt10XV3ccYQXyetEWT1pFcKiqg-qfLZ7rDpVfj1Ia_2FWawP_cNiE1jL3CtapnBax2XWja9c0JqpQRlugG0Ht7cVGLroebHbT6RiQ6IyEMR0ICInDdgZ3zLQ6k08t7F6zUK8sroDPIxBBpAxmfRWoQQkOq5-9EgR74oOEOENmC3RtqkgTe7W3u3uy2YO726aOWts_b5Onwu8ytClt4GzOAAu034ZB6HN4P-92K-ELj-aAD-A9DIT70
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7xqBAceBQQaWjZA1xAVpxde70-IBSVRkVEUQ6tFHFx9xkhQYA8QPw0_l1n_UjaSnDjUMk327ta77cz33hnvwE4NE5xHYdRIFwkMUBRaAejlAXMGMkdM1q6XGe2k3S7ot9PewvwUp2F8WmVlU3MDbW50_4feQNdE0dXk7KGK7Mieufts_uHwBeQ8hutVTWNAiGX9vkJo7fx6cU5TvURpe1vP75-D8oCA4FG2z0JdILsR6MTU4kIFXIR5eLYCJVSGSvqh4HxgNLGOoS6FMo1RRhFNDRNi8TEOobtLsJygiGmj_t68dVc7zfJa6OFKeUBcgpWbagWp_Zin6cUoqWhTR6wv13inOf-szWbe7z2xn_8rTZhvaTZpFWsiy1YsMOPsPaH-OI29FtkMpp6TVxrCNp6JMGkqKdNrodE4jUd5IqlhnTkAF36AFcScVUyG0G2T4aF0IgckTLP7Rab3oGf7zK0XVjC_uweEJNEjmMMa6jGZy0TSjSdtVwoKXlIVQ3CaqozXYqw-1ogN9lcPtqjI_PFQT06MlaD49kr94UCyVsP1ytEZKUxGmczONSAzO6iFfFbQ3Jo76bjDHkkZxTRWoOTCnXzBl7t7tOb3R3ACuIu61x0L-uwWqRd-OS9fVjC-bWf4YN-nFyPR1_ypUPg13vj7zeENFjO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+truncated+Newton+method+in+an+augmented+Lagrangian+framework+for+nonlinear+programming&rft.jtitle=Computational+optimization+and+applications&rft.au=Di+Pillo%2C+Gianni&rft.au=Liuzzi%2C+Giampaolo&rft.au=Lucidi%2C+Stefano&rft.au=Palagi%2C+Laura&rft.date=2010-03-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=45&rft.issue=2&rft.spage=311&rft.epage=352&rft_id=info:doi/10.1007%2Fs10589-008-9216-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_008_9216_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon