Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations
In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min...
Saved in:
| Published in: | Biomechanics and modeling in mechanobiology Vol. 19; no. 5; pp. 1679 - 1695 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2020
|
| Subjects: | |
| ISSN: | 1617-7959, 1617-7940, 1617-7940 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the “glottal jet” phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG
k
−
ε
model and SST
k
−
ω
model were recommended to simulate the flow field in the respiratory tract during exhalation. |
|---|---|
| AbstractList | In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the “glottal jet” phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG
k
−
ε
model and SST
k
−
ω
model were recommended to simulate the flow field in the respiratory tract during exhalation. In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation.In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation. In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation. |
| Author | Fu, Ming Weng, Wenguo Wu, Jialin Xu, Xiaoyu |
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Xu fullname: Xu, Xiaoyu organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University – sequence: 2 givenname: Jialin surname: Wu fullname: Wu, Jialin organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University – sequence: 3 givenname: Wenguo surname: Weng fullname: Weng, Wenguo email: wgweng@tsinghua.edu.cn organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University – sequence: 4 givenname: Ming surname: Fu fullname: Fu, Ming organization: Hefei Institute for Public Safety Research, Tsinghua University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32026145$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URH_gBVggL9kE_DN3PFmigZaRKsEC2Fo3zk3rKrGDnVDmBXjuupO2CxZd2Vf-zpHvOafsKMRAjL2V4oMUwnzMUihtKqFEJaSq60q_YCdyLU1l6pU4erpDfcxOc74RhdQb_YodayXUWq7ghP3bhT-UJ3-Fk4-Bx477cI39MmFoOf19Grs-3vIRp4lSKBhHngh7X9SOX88DBj6PIyWOPt3ing-xpZ43e_5996vYlBc_UJjywXZ7_plnP8yLdX7NXnbYZ3rzcJ6xn-dffmy_VpffLnbbT5eVW0k9VU5DoxygA1CbVhnXtKBaEGsD5BoH2gg0UjVdQ4ZaBGgFdB0ZrGENyil9xt4vvmOKv-eyuB18dtT3GCjO2SoNSoDcyHv03QM6NwO1dizfx7S3j9kVYLMALsWcE3XW-emwzpTQ91YKe1-TXWqyJXx7qMnqIlX_SR_dnxXpRZQLHK4o2Zs4p1Diek51B_9Xpso |
| CitedBy_id | crossref_primary_10_1007_s10237_023_01769_4 crossref_primary_10_1016_j_resp_2020_103587 crossref_primary_10_1007_s00784_025_06533_9 crossref_primary_10_1016_j_partic_2024_11_018 crossref_primary_10_1007_s10237_023_01707_4 crossref_primary_10_1016_j_ijpharm_2025_126059 crossref_primary_10_1016_j_jobcr_2025_01_009 crossref_primary_10_1016_j_medengphy_2021_103746 crossref_primary_10_1016_j_jaerosci_2025_106634 crossref_primary_10_1016_j_cmpb_2023_107501 crossref_primary_10_1016_j_cmpb_2023_107589 crossref_primary_10_1016_j_compfluid_2023_105819 crossref_primary_10_1080_08958378_2020_1840679 crossref_primary_10_3390_fluids8030078 crossref_primary_10_2478_pjmpe_2023_0008 crossref_primary_10_1007_s10338_024_00510_7 crossref_primary_10_1016_j_scs_2022_103704 crossref_primary_10_1016_j_resp_2022_103986 crossref_primary_10_1097_SCS_0000000000009516 crossref_primary_10_1016_j_cmpb_2020_105613 crossref_primary_10_1007_s10439_022_03036_6 crossref_primary_10_1016_j_buildenv_2023_110913 crossref_primary_10_1063_5_0219877 crossref_primary_10_1016_j_apr_2024_102155 crossref_primary_10_1016_j_ejps_2021_105959 crossref_primary_10_1088_1742_6596_2899_1_012009 crossref_primary_10_1007_s10694_023_01411_w crossref_primary_10_1016_j_ijpharm_2022_122219 crossref_primary_10_1177_1420326X251336124 crossref_primary_10_1016_j_addr_2022_114518 crossref_primary_10_1016_j_jcms_2025_02_005 crossref_primary_10_1016_j_partic_2024_04_006 crossref_primary_10_32604_cmes_2023_022716 crossref_primary_10_1002_ohn_1330 crossref_primary_10_1016_j_buildenv_2024_111656 crossref_primary_10_1016_j_resp_2023_104085 crossref_primary_10_1146_annurev_fluid_031424_103721 crossref_primary_10_1007_s11517_022_02715_9 crossref_primary_10_1007_s11517_022_02716_8 crossref_primary_10_1016_j_cmpb_2025_109028 crossref_primary_10_1016_j_jaerosci_2025_106593 crossref_primary_10_3390_computation12010016 crossref_primary_10_1055_s_0043_1778072 crossref_primary_10_1016_j_jddst_2024_105978 crossref_primary_10_1007_s10237_021_01531_8 crossref_primary_10_3390_fluids9010027 crossref_primary_10_1088_1752_7163_ace6c7 |
| Cites_doi | 10.1152/japplphysiol.90764.2008 10.1016/j.compbiomed.2014.12.004 10.1007/s10439-013-0747-0 10.1016/j.buildenv.2015.10.002 10.1080/07853890701881788 10.1007/BF01061452 10.1016/0017-9310(94)90168-6 10.1002/lary.26954 10.1016/s0140-6736(14)60617-6 10.1016/j.envint.2014.10.005 10.1361/asmhba0003397 10.1016/j.scitotenv.2018.12.067 10.1007/s00348-010-0984-z 10.1016/j.jtherbio.2017.05.003 10.1098/rsta.2008.0083 10.1007/s003480050430 10.1088/0957-0233/15/6/007 10.1007/s00348-011-1044-z 10.1007/s10494-006-9047-1 10.1007/s42757-019-0007-0 10.1016/j.buildenv.2013.01.022 10.1007/s10237-015-0701-1 10.1016/j.buildenv.2016.02.020 10.1093/annhyg/mew018 10.1007/s00348-003-0636-7 10.1016/j.jaerosci.2012.04.006 10.1016/j.clinbiomech.2018.12.006 10.1016/j.procs.2016.05.392 10.1016/j.resp.2008.07.027 10.1177/0003489419826601 10.1063/1.3366500 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1007/s10237-020-01299-3 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Biology |
| EISSN | 1617-7940 |
| EndPage | 1695 |
| ExternalDocumentID | 32026145 10_1007_s10237_020_01299_3 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71725006 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Key Technologies Research and Development Program grantid: 2016YFC0802801 funderid: http://dx.doi.org/10.13039/501100012165 – fundername: China National Funds for Distinguished Young Scientists grantid: 71725006 funderid: http://dx.doi.org/10.13039/501100005153 – fundername: China National Funds for Distinguished Young Scientists grantid: 71725006 – fundername: National Natural Science Foundation of China grantid: 71725006 – fundername: Key Technologies Research and Development Program grantid: 2016YFC0802801 |
| GroupedDBID | --- -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 7X7 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V LAS LK8 LLZTM M1P M2P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOS R89 R9I ROL RPX RSV S0W S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7Y Z83 ZMTXR ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7X8 PUEGO |
| ID | FETCH-LOGICAL-c413t-c35b2c5ac5528d27cbd52d50675ecbc5370a712bfbe7eda55d05ffe7a95652c23 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515890300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1617-7959 1617-7940 |
| IngestDate | Thu Oct 02 10:55:01 EDT 2025 Wed Feb 19 02:32:31 EST 2025 Tue Nov 18 22:31:39 EST 2025 Sat Nov 29 02:06:47 EST 2025 Fri Feb 21 02:35:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Human upper airway model CFD PIV Flow field distribution |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c413t-c35b2c5ac5528d27cbd52d50675ecbc5370a712bfbe7eda55d05ffe7a95652c23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 32026145 |
| PQID | 2352051812 |
| PQPubID | 23479 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2352051812 pubmed_primary_32026145 crossref_citationtrail_10_1007_s10237_020_01299_3 crossref_primary_10_1007_s10237_020_01299_3 springer_journals_10_1007_s10237_020_01299_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationTitle | Biomechanics and modeling in mechanobiology |
| PublicationTitleAbbrev | Biomech Model Mechanobiol |
| PublicationTitleAlternate | Biomech Model Mechanobiol |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | Menter, Langtry, Völker (CR22) 2006; 77 Heenan, Matida, Pollard, Finlay (CR14) 2003; 35 Peltola, Grijpma, Melchels, Kellomäki (CR24) 2008; 40 Elcner, Lizal, Jedelsky, Jicha, Chovancova (CR9) 2016; 15 Cheng, Carpenter, Cohen, Witsell, Frank-Ito (CR4) 2018; 128 CR19 Mason, McGhee, Zhao, Chiang, Matrka (CR20) 2019; 128 Spence, Buchmann, Jermy, Moore (CR28) 2010; 50 Abe, Kondcjh (CR1) 1994; 37 Conway (CR5) 2012; 52 Guarnieri, Balmes (CR13) 2014; 383 Deng, Ou, Shen, Xiang, Miao, Li (CR6) 2019; 657 Hopkins, Kelly, Wexler, Prasad (CR15) 2000; 29 Frank-Ito, Schulz, Vess, Witsell (CR10) 2015; 57 Menter, Kuntz, Langtry (CR21) 2003; 4 Phuong, Ito (CR25) 2015; 94 Gu, Wen, Wang, Jian, Zheng, Wang (CR12) 2019; 1 Azarnoosh, Sreenivas, Arabshahi (CR2) 2016; 80 Tian, Inthavong, Liden, Shang, Tu (CR31) 2016; 60 Kim, Kabir, Kabir (CR18) 2015; 74 Doorly, Taylor, Schroter (CR8) 2008; 163 Yakhot, Orszag (CR34) 1986; 1 Villafruela, Olmedo, de Adana, Méndez, Nielsen (CR32) 2013; 62 Xu, Ni, Fu, Zheng, Luo, Weng (CR33) 2017; 70 Spence, Buchmann, Jermy (CR29) 2011; 52 Morris (CR23) 2001; 109 Shang, Dong, Tian, Inthavong, Tu (CR27) 2019; 61 Sun, Yu, Liu, Zhang, SU (CR30) 2006; 19 Doorly, Taylor, Gambaruto, Schroter, Tolley (CR7) 2008; 366 Kim, Chung (CR17) 2004; 15 Phuong, Yamashita, Yoo, Ito (CR26) 2016; 100 Bourell, Beaman, Klosterman, Gibson, Bandyopadhyay (CR3) 2001; 21 Golshahi, Noga, Vehring, Finlay (CR11) 2013; 41 Jayaraju, Paiva, Brouns, Lacor, Verbanck (CR16) 2008; 105 NL Phuong (1299_CR26) 2016; 100 XY Xu (1299_CR33) 2017; 70 DO Frank-Ito (1299_CR10) 2015; 57 SM Peltola (1299_CR24) 2008; 40 J Conway (1299_CR5) 2012; 52 L Golshahi (1299_CR11) 2013; 41 FR Menter (1299_CR21) 2003; 4 NL Phuong (1299_CR25) 2015; 94 DJ Doorly (1299_CR8) 2008; 163 RD Morris (1299_CR23) 2001; 109 X Gu (1299_CR12) 2019; 1 Y Shang (1299_CR27) 2019; 61 XZ Sun (1299_CR30) 2006; 19 CJT Spence (1299_CR29) 2011; 52 JM Villafruela (1299_CR32) 2013; 62 1299_CR19 J Azarnoosh (1299_CR2) 2016; 80 J Elcner (1299_CR9) 2016; 15 LM Hopkins (1299_CR15) 2000; 29 T Cheng (1299_CR4) 2018; 128 CJT Spence (1299_CR28) 2010; 50 L Tian (1299_CR31) 2016; 60 AF Heenan (1299_CR14) 2003; 35 K Abe (1299_CR1) 1994; 37 V Yakhot (1299_CR34) 1986; 1 DL Bourell (1299_CR3) 2001; 21 FR Menter (1299_CR22) 2006; 77 SK Kim (1299_CR17) 2004; 15 KH Kim (1299_CR18) 2015; 74 ST Jayaraju (1299_CR16) 2008; 105 M Guarnieri (1299_CR13) 2014; 383 EC Mason (1299_CR20) 2019; 128 DJ Doorly (1299_CR7) 2008; 366 Q Deng (1299_CR6) 2019; 657 |
| References_xml | – volume: 105 start-page: 1733 year: 2008 end-page: 1740 ident: CR16 article-title: Contribution of upper airway geometry to convective mixing publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.90764.2008 – volume: 57 start-page: 116 year: 2015 end-page: 122 ident: CR10 article-title: Changes in aerodynamics during vocal cord dysfunction publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2014.12.004 – volume: 41 start-page: 979 year: 2013 end-page: 989 ident: CR11 article-title: An in vitro study on the deposition of micrometer-sized particles in the extrathoracic airways of adults during tidal oral breathing publication-title: Ann Biomed Eng doi: 10.1007/s10439-013-0747-0 – volume: 19 start-page: 129 issue: 2 year: 2006 end-page: 133 ident: CR30 article-title: 3D finite element model reconstruction and numerical simulation of airflow in human upper air publication-title: Space Med Med Eng – volume: 4 start-page: 625 year: 2003 end-page: 632 ident: CR21 article-title: Ten years of industrial experience with the SST turbulence model publication-title: Turbul Heat Mass Transf – volume: 94 start-page: 504 year: 2015 end-page: 515 ident: CR25 article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD publication-title: Build Environ doi: 10.1016/j.buildenv.2015.10.002 – volume: 40 start-page: 268 year: 2008 end-page: 280 ident: CR24 article-title: A review of rapid prototyping techniques for tissue engineering purposes publication-title: QUT Digit Repos doi: 10.1080/07853890701881788 – volume: 1 start-page: 3 issue: 1 year: 1986 end-page: 51 ident: CR34 article-title: Renormalization group analysis of turbulence publication-title: J Sci Comput doi: 10.1007/BF01061452 – volume: 37 start-page: 139 issue: 1 year: 1994 end-page: 151 ident: CR1 article-title: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(94)90168-6 – volume: 128 start-page: E141 year: 2018 end-page: E149 ident: CR4 article-title: Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics publication-title: Laryngoscope doi: 10.1002/lary.26954 – volume: 383 start-page: 1581 year: 2014 end-page: 1592 ident: CR13 publication-title: Outdoor air pollution and asthma The Lancet doi: 10.1016/s0140-6736(14)60617-6 – volume: 109 start-page: 495 issue: 4 year: 2001 end-page: 500 ident: CR23 article-title: Airborne particulates and hospital admissions for cardiovascular disease a quantitative review of the evidence publication-title: Environ Health Perspect – volume: 74 start-page: 136 year: 2015 end-page: 143 ident: CR18 article-title: A review on the human health impact of airborne particulate matter publication-title: Environ Int doi: 10.1016/j.envint.2014.10.005 – volume: 21 start-page: 383 year: 2001 end-page: 387 ident: CR3 article-title: Rapid prototyping publication-title: ASM Handb doi: 10.1361/asmhba0003397 – volume: 657 start-page: 819 year: 2019 end-page: 826 ident: CR6 article-title: Health effects of physical activity as predicted by particle deposition in the human respiratory tract publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.067 – volume: 50 start-page: 1005 year: 2010 end-page: 1017 ident: CR28 article-title: Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy publication-title: Exp Fluids doi: 10.1007/s00348-010-0984-z – volume: 70 start-page: 53 year: 2017 end-page: 63 ident: CR33 article-title: Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2017.05.003 – volume: 366 start-page: 3225 year: 2008 end-page: 3246 ident: CR7 article-title: Nasal architecture: form and flow publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2008.0083 – volume: 29 start-page: 91 year: 2000 end-page: 95 ident: CR15 article-title: Particle image velocimetry measurements in complex geometries publication-title: Exp Fluids doi: 10.1007/s003480050430 – volume: 15 start-page: 1090 year: 2004 end-page: 1096 ident: CR17 article-title: An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV publication-title: Meas Sci Technol doi: 10.1088/0957-0233/15/6/007 – ident: CR19 – volume: 52 start-page: 569 year: 2011 end-page: 579 ident: CR29 article-title: Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV publication-title: Exp Fluids doi: 10.1007/s00348-011-1044-z – volume: 77 start-page: 277 year: 2006 end-page: 303 ident: CR22 article-title: Transition modelling for general purpose CFD codes flow publication-title: Turbul Combust doi: 10.1007/s10494-006-9047-1 – volume: 1 start-page: 39 year: 2019 end-page: 50 ident: CR12 article-title: Numerical investigation of unsteady particle deposition in a realistic human nasal cavity during inhalation publication-title: Exp Comput Multiph Flow doi: 10.1007/s42757-019-0007-0 – volume: 62 start-page: 191 year: 2013 end-page: 200 ident: CR32 article-title: CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies publication-title: Build Environ doi: 10.1016/j.buildenv.2013.01.022 – volume: 15 start-page: 447 year: 2016 end-page: 469 ident: CR9 article-title: Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-015-0701-1 – volume: 100 start-page: 172 year: 2016 end-page: 185 ident: CR26 article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions publication-title: Build Environ doi: 10.1016/j.buildenv.2016.02.020 – volume: 60 start-page: 731 year: 2016 end-page: 747 ident: CR31 article-title: Transport and deposition of welding fume agglomerates in a realistic human nasal airway publication-title: Ann Occup Hyg doi: 10.1093/annhyg/mew018 – volume: 35 start-page: 70 year: 2003 end-page: 84 ident: CR14 article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx publication-title: Exp Fluids doi: 10.1007/s00348-003-0636-7 – volume: 52 start-page: 1 year: 2012 end-page: 17 ident: CR5 article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2012.04.006 – volume: 61 start-page: 105 year: 2019 end-page: 111 ident: CR27 article-title: Detailed computational analysis of flow dynamics in an extended respiratory airway model publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/j.clinbiomech.2018.12.006 – volume: 80 start-page: 965 year: 2016 end-page: 976 ident: CR2 article-title: CFD investigation of human tidal breathing through human airway geometry publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.05.392 – volume: 163 start-page: 100 year: 2008 end-page: 110 ident: CR8 article-title: Mechanics of airflow in the human nasal airways publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2008.07.027 – volume: 128 start-page: 453 year: 2019 end-page: 459 ident: CR20 article-title: The application of computational fluid dynamics in the evaluation of laryngotracheal pathology publication-title: Ann Otol Rhinol Laryngol doi: 10.1177/0003489419826601 – volume: 105 start-page: 1733 year: 2008 ident: 1299_CR16 publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.90764.2008 – volume: 74 start-page: 136 year: 2015 ident: 1299_CR18 publication-title: Environ Int doi: 10.1016/j.envint.2014.10.005 – volume: 15 start-page: 1090 year: 2004 ident: 1299_CR17 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/15/6/007 – volume: 70 start-page: 53 year: 2017 ident: 1299_CR33 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2017.05.003 – volume: 383 start-page: 1581 year: 2014 ident: 1299_CR13 publication-title: Outdoor air pollution and asthma The Lancet doi: 10.1016/s0140-6736(14)60617-6 – volume: 100 start-page: 172 year: 2016 ident: 1299_CR26 publication-title: Build Environ doi: 10.1016/j.buildenv.2016.02.020 – volume: 57 start-page: 116 year: 2015 ident: 1299_CR10 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2014.12.004 – volume: 52 start-page: 569 year: 2011 ident: 1299_CR29 publication-title: Exp Fluids doi: 10.1007/s00348-011-1044-z – volume: 21 start-page: 383 year: 2001 ident: 1299_CR3 publication-title: ASM Handb doi: 10.1361/asmhba0003397 – volume: 60 start-page: 731 year: 2016 ident: 1299_CR31 publication-title: Ann Occup Hyg doi: 10.1093/annhyg/mew018 – volume: 4 start-page: 625 year: 2003 ident: 1299_CR21 publication-title: Turbul Heat Mass Transf – volume: 15 start-page: 447 year: 2016 ident: 1299_CR9 publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-015-0701-1 – volume: 366 start-page: 3225 year: 2008 ident: 1299_CR7 publication-title: Philos Trans A Math Phys Eng Sci doi: 10.1098/rsta.2008.0083 – volume: 163 start-page: 100 year: 2008 ident: 1299_CR8 publication-title: Respir Physiol Neurobiol doi: 10.1016/j.resp.2008.07.027 – volume: 128 start-page: 453 year: 2019 ident: 1299_CR20 publication-title: Ann Otol Rhinol Laryngol doi: 10.1177/0003489419826601 – volume: 29 start-page: 91 year: 2000 ident: 1299_CR15 publication-title: Exp Fluids doi: 10.1007/s003480050430 – volume: 77 start-page: 277 year: 2006 ident: 1299_CR22 publication-title: Turbul Combust doi: 10.1007/s10494-006-9047-1 – volume: 94 start-page: 504 year: 2015 ident: 1299_CR25 publication-title: Build Environ doi: 10.1016/j.buildenv.2015.10.002 – volume: 80 start-page: 965 year: 2016 ident: 1299_CR2 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.05.392 – volume: 50 start-page: 1005 year: 2010 ident: 1299_CR28 publication-title: Exp Fluids doi: 10.1007/s00348-010-0984-z – volume: 61 start-page: 105 year: 2019 ident: 1299_CR27 publication-title: Clin Biomech (Bristol, Avon) doi: 10.1016/j.clinbiomech.2018.12.006 – volume: 657 start-page: 819 year: 2019 ident: 1299_CR6 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.067 – volume: 37 start-page: 139 issue: 1 year: 1994 ident: 1299_CR1 publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(94)90168-6 – volume: 40 start-page: 268 year: 2008 ident: 1299_CR24 publication-title: QUT Digit Repos doi: 10.1080/07853890701881788 – volume: 35 start-page: 70 year: 2003 ident: 1299_CR14 publication-title: Exp Fluids doi: 10.1007/s00348-003-0636-7 – volume: 1 start-page: 39 year: 2019 ident: 1299_CR12 publication-title: Exp Comput Multiph Flow doi: 10.1007/s42757-019-0007-0 – volume: 62 start-page: 191 year: 2013 ident: 1299_CR32 publication-title: Build Environ doi: 10.1016/j.buildenv.2013.01.022 – volume: 1 start-page: 3 issue: 1 year: 1986 ident: 1299_CR34 publication-title: J Sci Comput doi: 10.1007/BF01061452 – ident: 1299_CR19 doi: 10.1063/1.3366500 – volume: 109 start-page: 495 issue: 4 year: 2001 ident: 1299_CR23 publication-title: Environ Health Perspect – volume: 52 start-page: 1 year: 2012 ident: 1299_CR5 publication-title: J Aerosol Sci doi: 10.1016/j.jaerosci.2012.04.006 – volume: 41 start-page: 979 year: 2013 ident: 1299_CR11 publication-title: Ann Biomed Eng doi: 10.1007/s10439-013-0747-0 – volume: 19 start-page: 129 issue: 2 year: 2006 ident: 1299_CR30 publication-title: Space Med Med Eng – volume: 128 start-page: E141 year: 2018 ident: 1299_CR4 publication-title: Laryngoscope doi: 10.1002/lary.26954 |
| SSID | ssj0020383 |
| Score | 2.4675438 |
| Snippet | In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1679 |
| SubjectTerms | Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Engineering Original Paper Theoretical and Applied Mechanics |
| Title | Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations |
| URI | https://link.springer.com/article/10.1007/s10237-020-01299-3 https://www.ncbi.nlm.nih.gov/pubmed/32026145 https://www.proquest.com/docview/2352051812 |
| Volume | 19 |
| WOSCitedRecordID | wos000515890300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1617-7940 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020383 issn: 1617-7959 databaseCode: RSV dateStart: 20020601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD70ssL2sG5t12ZryxnsbRPEUhQ5jyNbaKGUskvJm9GVBlI7xEnb_IH97kmynWZ0FNpHgywZ6Vy-Y0nfB_CpmyZcdKQhXDFGOjpVRCrKCUuVZU76ksJFdv0zcX6eDoe9i_pSWNmcdm-2JGOkXrnsRpkgodwJP096hK3Dpk93aXDHHz8vl2VWuyLfDMCdBCXt-qrM__v4Nx09wJgP9kdj2hlsP--D38DrGmbi18ou3sKazXdgqxKeXOzAqxUawl34s0K2UeRYOBzlV7I6JIcyN2jvlo9uXNziJJJy5r4ZSvSocxzZnjHq_eF8MrFTlKPprVxgFNpBtcCL00u8VxMoY7f9wTcsR9e1gFi5B78H33_1T0itz0C0T30zohlXVHOpOaepoUIrw6nhoQaxWmnORFuKhCqnrLBGcm7a3DkrpK_JONWUvYONvMjtAWBgpOoqLVNrPIR0RvpKlWmTJNIZQbuqBUmzTJmuycuDhsY4u6ddDrOd-dnO4mxnrAWfl-9MKuqOR1t_bFY_8x4Wtk1kbot5mVGPUX3o8kioBfuVWSz7C-rzHuDwFnxpbCCrg0D5yGDvn9b8A7ykwYziGcJD2JhN5_YIXuib2aicHsO6GKbH0Qf-AqNJ_6I |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB1BAUEfuBQK4TpIvFFLWTuOt4-oELUiRBWUqm-WryJSuhtlk7b5Ab67tnc3DSqqBI8reccre-w5sx6fA_Chn2dc9JQlXDNGeibXRGnKCcu1Y16FlMIndv2hGI3yk5Pdw-ZSWNVWu7dHkmmnXrvsRpkgMd2JP092CbsNd3ohYsVCvu8_jldpVrcm34zAnUQl7eaqzN9t_BmOrmHMa-ejKewMHv3fBz-Ghw3MxE-1XzyBW67Ygnu18ORyCzbXaAifwu81so2ywNLjuPil6iI5VIVFd7F69JPyHKeJlLMIzVBhQJ2TxPaMSe8PF9Opm6Eaz87VEpPQDuolHh4c45WaQJXM7g0-YzU-bQTEqmfwc_DlaG-fNPoMxITQNyeGcU0NV4ZzmlsqjLacWh5zEGe04Ux0lcio9toJZxXntsu9d0KFnIxTQ9k2bBRl4V4ARkaqvjYqdzZASG9VyFSZsVmmvBW0rzuQtdMkTUNeHjU0JvKKdjmOtgyjLdNoS9aBj6t3pjV1x42t37ezL8MKi8cmqnDlopI0YNSwdQUk1IHntVus7EX1-QBweAd2Wh-QzSZQ3dDZy39r_g7u7x99G8rhwejrK3hAo0ulesLXsDGfLdwbuGvO5uNq9jathEuhIwGt |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CcRE8cBm3cj1IvIG1xq7r7BFtVExMVSVg2pvlq6hUnKhpGf0D_G5sJ-2KhiYhHiM5J5FzbH9f7PN9AG-GZcHFQFnCNWNkYEpNlKacsFI75lWkFD6r6x-L8bg8Pd2fbFXx59Pu6y3JtqYhqTSFxV5t_d5W4RtlgiTqk36k7BN2Fa4NkmlQ4uufTzaUq98KcSYQT5Krdlc28_cYfy5NF_Dmhb3SvASN7v7_y9-DOx38xPdtvtyHKy7swo3WkHK1C7e35AkfwK8tEY4qYOVxGr6p9vAcqmDR_dxc-ll1hnUW6wyxGSqMaHSWVaAx-wDisq7dHNV0fqZWmA14UK9wcnSC5y4DTQ57MDrEZvq9MxZrHsLX0YcvBx9J59tATFwSF8QwrqnhynBOS0uF0ZZTyxM3cUYbzkRfiYJqr51wVnFu-9x7J1Tkapwayh7BTqiCewKYlKqG2qjS2QgtvVWRwTJji0J5K-hQ96BYfzJpOlHz5K0xk-dyzKm3ZextmXtbsh683dxTt5Iel7Z-vc4EGUde2k5RwVXLRtKIXeOUFhFSDx63KbKJl1zpI_DhPXi3zgfZTQ7NJQ97-m_NX8HNyeFIHh-NPz2DWzRlVD5m-Bx2FvOlewHXzY_FtJm_zIPiN3LzCpE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+inhalation+and+exhalation+flow+pattern+in+a+realistic+human+upper+airway+model+by+PIV+experiments+and+CFD+simulations&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Xu%2C+Xiaoyu&rft.au=Wu%2C+Jialin&rft.au=Weng%2C+Wenguo&rft.au=Fu%2C+Ming&rft.date=2020-10-01&rft.issn=1617-7940&rft.eissn=1617-7940&rft.volume=19&rft.issue=5&rft.spage=1679&rft_id=info:doi/10.1007%2Fs10237-020-01299-3&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon |