Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations

In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomechanics and modeling in mechanobiology Ročník 19; číslo 5; s. 1679 - 1695
Hlavní autoři: Xu, Xiaoyu, Wu, Jialin, Weng, Wenguo, Fu, Ming
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2020
Témata:
ISSN:1617-7959, 1617-7940, 1617-7940
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the “glottal jet” phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k  −  ε model and SST k  −  ω model were recommended to simulate the flow field in the respiratory tract during exhalation.
AbstractList In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the “glottal jet” phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k  −  ε model and SST k  −  ω model were recommended to simulate the flow field in the respiratory tract during exhalation.
In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation.In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation.
In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry (PIV) in the air under three constant inhalation and exhalation conditions: 36 L/min, 64 L/min and 90 L/min, representing flow rates of 18 L/min, 32 L/min and 45 L/min in real human airway (the model was twice the size of a human airway). Computational fluid dynamics (CFD) analyses were performed on four turbulence models, with boundary conditions corresponding to the PIV experiments. The effects of flow rates and breathing modes on the airflow patterns were investigated. The CFD prediction results were compared with the PIV measurements and showed relatively good agreement in all cases. During inhalation, the higher the flow rates, the less significant the "glottal jet" phenomenon, and the smaller the area of the separation zone. The air in the nasal inhalation condition accelerated more dramatically after glottis. The SST-Transition model was the best choice for predicting inhalation velocity profiles. For exhalation condition, the maximum velocity was much smaller than that during inhalation due to the more uniform flow field. The exhalation flow rates and breathing modes had little effect on the flow characteristics in the trachea region. The RNG k - ε model and SST k - ω model were recommended to simulate the flow field in the respiratory tract during exhalation.
Author Fu, Ming
Weng, Wenguo
Wu, Jialin
Xu, Xiaoyu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Xu
  fullname: Xu, Xiaoyu
  organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University
– sequence: 2
  givenname: Jialin
  surname: Wu
  fullname: Wu, Jialin
  organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University
– sequence: 3
  givenname: Wenguo
  surname: Weng
  fullname: Weng, Wenguo
  email: wgweng@tsinghua.edu.cn
  organization: Institute of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing Key Laboratory of City Integrated Emergency Response Science, Tsinghua University
– sequence: 4
  givenname: Ming
  surname: Fu
  fullname: Fu, Ming
  organization: Hefei Institute for Public Safety Research, Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32026145$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gBVggL9kE_DN3PFmigZaRKsEC2Fo3zk3rKrGDnVDmBXjuupO2CxZd2Vf-zpHvOafsKMRAjL2V4oMUwnzMUihtKqFEJaSq60q_YCdyLU1l6pU4erpDfcxOc74RhdQb_YodayXUWq7ghP3bhT-UJ3-Fk4-Bx477cI39MmFoOf19Grs-3vIRp4lSKBhHngh7X9SOX88DBj6PIyWOPt3ing-xpZ43e_5996vYlBc_UJjywXZ7_plnP8yLdX7NXnbYZ3rzcJ6xn-dffmy_VpffLnbbT5eVW0k9VU5DoxygA1CbVhnXtKBaEGsD5BoH2gg0UjVdQ4ZaBGgFdB0ZrGENyil9xt4vvmOKv-eyuB18dtT3GCjO2SoNSoDcyHv03QM6NwO1dizfx7S3j9kVYLMALsWcE3XW-emwzpTQ91YKe1-TXWqyJXx7qMnqIlX_SR_dnxXpRZQLHK4o2Zs4p1Diek51B_9Xpso
CitedBy_id crossref_primary_10_1007_s10237_023_01769_4
crossref_primary_10_1016_j_resp_2020_103587
crossref_primary_10_1007_s00784_025_06533_9
crossref_primary_10_1016_j_partic_2024_11_018
crossref_primary_10_1007_s10237_023_01707_4
crossref_primary_10_1016_j_ijpharm_2025_126059
crossref_primary_10_1016_j_jobcr_2025_01_009
crossref_primary_10_1016_j_medengphy_2021_103746
crossref_primary_10_1016_j_jaerosci_2025_106634
crossref_primary_10_1016_j_cmpb_2023_107501
crossref_primary_10_1016_j_cmpb_2023_107589
crossref_primary_10_1016_j_compfluid_2023_105819
crossref_primary_10_1080_08958378_2020_1840679
crossref_primary_10_3390_fluids8030078
crossref_primary_10_2478_pjmpe_2023_0008
crossref_primary_10_1007_s10338_024_00510_7
crossref_primary_10_1016_j_scs_2022_103704
crossref_primary_10_1016_j_resp_2022_103986
crossref_primary_10_1097_SCS_0000000000009516
crossref_primary_10_1016_j_cmpb_2020_105613
crossref_primary_10_1007_s10439_022_03036_6
crossref_primary_10_1016_j_buildenv_2023_110913
crossref_primary_10_1063_5_0219877
crossref_primary_10_1016_j_apr_2024_102155
crossref_primary_10_1016_j_ejps_2021_105959
crossref_primary_10_1088_1742_6596_2899_1_012009
crossref_primary_10_1007_s10694_023_01411_w
crossref_primary_10_1016_j_ijpharm_2022_122219
crossref_primary_10_1177_1420326X251336124
crossref_primary_10_1016_j_addr_2022_114518
crossref_primary_10_1016_j_jcms_2025_02_005
crossref_primary_10_1016_j_partic_2024_04_006
crossref_primary_10_32604_cmes_2023_022716
crossref_primary_10_1002_ohn_1330
crossref_primary_10_1016_j_buildenv_2024_111656
crossref_primary_10_1016_j_resp_2023_104085
crossref_primary_10_1146_annurev_fluid_031424_103721
crossref_primary_10_1007_s11517_022_02715_9
crossref_primary_10_1007_s11517_022_02716_8
crossref_primary_10_1016_j_cmpb_2025_109028
crossref_primary_10_1016_j_jaerosci_2025_106593
crossref_primary_10_3390_computation12010016
crossref_primary_10_1055_s_0043_1778072
crossref_primary_10_1016_j_jddst_2024_105978
crossref_primary_10_1007_s10237_021_01531_8
crossref_primary_10_3390_fluids9010027
crossref_primary_10_1088_1752_7163_ace6c7
Cites_doi 10.1152/japplphysiol.90764.2008
10.1016/j.compbiomed.2014.12.004
10.1007/s10439-013-0747-0
10.1016/j.buildenv.2015.10.002
10.1080/07853890701881788
10.1007/BF01061452
10.1016/0017-9310(94)90168-6
10.1002/lary.26954
10.1016/s0140-6736(14)60617-6
10.1016/j.envint.2014.10.005
10.1361/asmhba0003397
10.1016/j.scitotenv.2018.12.067
10.1007/s00348-010-0984-z
10.1016/j.jtherbio.2017.05.003
10.1098/rsta.2008.0083
10.1007/s003480050430
10.1088/0957-0233/15/6/007
10.1007/s00348-011-1044-z
10.1007/s10494-006-9047-1
10.1007/s42757-019-0007-0
10.1016/j.buildenv.2013.01.022
10.1007/s10237-015-0701-1
10.1016/j.buildenv.2016.02.020
10.1093/annhyg/mew018
10.1007/s00348-003-0636-7
10.1016/j.jaerosci.2012.04.006
10.1016/j.clinbiomech.2018.12.006
10.1016/j.procs.2016.05.392
10.1016/j.resp.2008.07.027
10.1177/0003489419826601
10.1063/1.3366500
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1007/s10237-020-01299-3
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1617-7940
EndPage 1695
ExternalDocumentID 32026145
10_1007_s10237_020_01299_3
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71725006
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Key Technologies Research and Development Program
  grantid: 2016YFC0802801
  funderid: http://dx.doi.org/10.13039/501100012165
– fundername: China National Funds for Distinguished Young Scientists
  grantid: 71725006
  funderid: http://dx.doi.org/10.13039/501100005153
– fundername: China National Funds for Distinguished Young Scientists
  grantid: 71725006
– fundername: National Natural Science Foundation of China
  grantid: 71725006
– fundername: Key Technologies Research and Development Program
  grantid: 2016YFC0802801
GroupedDBID ---
-5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
7X7
88E
88I
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
LAS
LK8
LLZTM
M1P
M2P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOS
R89
R9I
ROL
RPX
RSV
S0W
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7Y
Z83
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7X8
PUEGO
ID FETCH-LOGICAL-c413t-c35b2c5ac5528d27cbd52d50675ecbc5370a712bfbe7eda55d05ffe7a95652c23
IEDL.DBID RSV
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000515890300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1617-7959
1617-7940
IngestDate Thu Oct 02 10:55:01 EDT 2025
Wed Feb 19 02:32:31 EST 2025
Tue Nov 18 22:31:39 EST 2025
Sat Nov 29 02:06:47 EST 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Human upper airway model
CFD
PIV
Flow field distribution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-c35b2c5ac5528d27cbd52d50675ecbc5370a712bfbe7eda55d05ffe7a95652c23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32026145
PQID 2352051812
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_2352051812
pubmed_primary_32026145
crossref_citationtrail_10_1007_s10237_020_01299_3
crossref_primary_10_1007_s10237_020_01299_3
springer_journals_10_1007_s10237_020_01299_3
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle Biomechanics and modeling in mechanobiology
PublicationTitleAbbrev Biomech Model Mechanobiol
PublicationTitleAlternate Biomech Model Mechanobiol
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Menter, Langtry, Völker (CR22) 2006; 77
Heenan, Matida, Pollard, Finlay (CR14) 2003; 35
Peltola, Grijpma, Melchels, Kellomäki (CR24) 2008; 40
Elcner, Lizal, Jedelsky, Jicha, Chovancova (CR9) 2016; 15
Cheng, Carpenter, Cohen, Witsell, Frank-Ito (CR4) 2018; 128
CR19
Mason, McGhee, Zhao, Chiang, Matrka (CR20) 2019; 128
Spence, Buchmann, Jermy, Moore (CR28) 2010; 50
Abe, Kondcjh (CR1) 1994; 37
Conway (CR5) 2012; 52
Guarnieri, Balmes (CR13) 2014; 383
Deng, Ou, Shen, Xiang, Miao, Li (CR6) 2019; 657
Hopkins, Kelly, Wexler, Prasad (CR15) 2000; 29
Frank-Ito, Schulz, Vess, Witsell (CR10) 2015; 57
Menter, Kuntz, Langtry (CR21) 2003; 4
Phuong, Ito (CR25) 2015; 94
Gu, Wen, Wang, Jian, Zheng, Wang (CR12) 2019; 1
Azarnoosh, Sreenivas, Arabshahi (CR2) 2016; 80
Tian, Inthavong, Liden, Shang, Tu (CR31) 2016; 60
Kim, Kabir, Kabir (CR18) 2015; 74
Doorly, Taylor, Schroter (CR8) 2008; 163
Yakhot, Orszag (CR34) 1986; 1
Villafruela, Olmedo, de Adana, Méndez, Nielsen (CR32) 2013; 62
Xu, Ni, Fu, Zheng, Luo, Weng (CR33) 2017; 70
Spence, Buchmann, Jermy (CR29) 2011; 52
Morris (CR23) 2001; 109
Shang, Dong, Tian, Inthavong, Tu (CR27) 2019; 61
Sun, Yu, Liu, Zhang, SU (CR30) 2006; 19
Doorly, Taylor, Gambaruto, Schroter, Tolley (CR7) 2008; 366
Kim, Chung (CR17) 2004; 15
Phuong, Yamashita, Yoo, Ito (CR26) 2016; 100
Bourell, Beaman, Klosterman, Gibson, Bandyopadhyay (CR3) 2001; 21
Golshahi, Noga, Vehring, Finlay (CR11) 2013; 41
Jayaraju, Paiva, Brouns, Lacor, Verbanck (CR16) 2008; 105
NL Phuong (1299_CR26) 2016; 100
XY Xu (1299_CR33) 2017; 70
DO Frank-Ito (1299_CR10) 2015; 57
SM Peltola (1299_CR24) 2008; 40
J Conway (1299_CR5) 2012; 52
L Golshahi (1299_CR11) 2013; 41
FR Menter (1299_CR21) 2003; 4
NL Phuong (1299_CR25) 2015; 94
DJ Doorly (1299_CR8) 2008; 163
RD Morris (1299_CR23) 2001; 109
X Gu (1299_CR12) 2019; 1
Y Shang (1299_CR27) 2019; 61
XZ Sun (1299_CR30) 2006; 19
CJT Spence (1299_CR29) 2011; 52
JM Villafruela (1299_CR32) 2013; 62
1299_CR19
J Azarnoosh (1299_CR2) 2016; 80
J Elcner (1299_CR9) 2016; 15
LM Hopkins (1299_CR15) 2000; 29
T Cheng (1299_CR4) 2018; 128
CJT Spence (1299_CR28) 2010; 50
L Tian (1299_CR31) 2016; 60
AF Heenan (1299_CR14) 2003; 35
K Abe (1299_CR1) 1994; 37
V Yakhot (1299_CR34) 1986; 1
DL Bourell (1299_CR3) 2001; 21
FR Menter (1299_CR22) 2006; 77
SK Kim (1299_CR17) 2004; 15
KH Kim (1299_CR18) 2015; 74
ST Jayaraju (1299_CR16) 2008; 105
M Guarnieri (1299_CR13) 2014; 383
EC Mason (1299_CR20) 2019; 128
DJ Doorly (1299_CR7) 2008; 366
Q Deng (1299_CR6) 2019; 657
References_xml – volume: 105
  start-page: 1733
  year: 2008
  end-page: 1740
  ident: CR16
  article-title: Contribution of upper airway geometry to convective mixing
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.90764.2008
– volume: 57
  start-page: 116
  year: 2015
  end-page: 122
  ident: CR10
  article-title: Changes in aerodynamics during vocal cord dysfunction
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2014.12.004
– volume: 41
  start-page: 979
  year: 2013
  end-page: 989
  ident: CR11
  article-title: An in vitro study on the deposition of micrometer-sized particles in the extrathoracic airways of adults during tidal oral breathing
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-013-0747-0
– volume: 19
  start-page: 129
  issue: 2
  year: 2006
  end-page: 133
  ident: CR30
  article-title: 3D finite element model reconstruction and numerical simulation of airflow in human upper air
  publication-title: Space Med Med Eng
– volume: 4
  start-page: 625
  year: 2003
  end-page: 632
  ident: CR21
  article-title: Ten years of industrial experience with the SST turbulence model
  publication-title: Turbul Heat Mass Transf
– volume: 94
  start-page: 504
  year: 2015
  end-page: 515
  ident: CR25
  article-title: Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2015.10.002
– volume: 40
  start-page: 268
  year: 2008
  end-page: 280
  ident: CR24
  article-title: A review of rapid prototyping techniques for tissue engineering purposes
  publication-title: QUT Digit Repos
  doi: 10.1080/07853890701881788
– volume: 1
  start-page: 3
  issue: 1
  year: 1986
  end-page: 51
  ident: CR34
  article-title: Renormalization group analysis of turbulence
  publication-title: J Sci Comput
  doi: 10.1007/BF01061452
– volume: 37
  start-page: 139
  issue: 1
  year: 1994
  end-page: 151
  ident: CR1
  article-title: A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(94)90168-6
– volume: 128
  start-page: E141
  year: 2018
  end-page: E149
  ident: CR4
  article-title: Investigating the effects of laryngotracheal stenosis on upper airway aerodynamics
  publication-title: Laryngoscope
  doi: 10.1002/lary.26954
– volume: 383
  start-page: 1581
  year: 2014
  end-page: 1592
  ident: CR13
  publication-title: Outdoor air pollution and asthma The Lancet
  doi: 10.1016/s0140-6736(14)60617-6
– volume: 109
  start-page: 495
  issue: 4
  year: 2001
  end-page: 500
  ident: CR23
  article-title: Airborne particulates and hospital admissions for cardiovascular disease a quantitative review of the evidence
  publication-title: Environ Health Perspect
– volume: 74
  start-page: 136
  year: 2015
  end-page: 143
  ident: CR18
  article-title: A review on the human health impact of airborne particulate matter
  publication-title: Environ Int
  doi: 10.1016/j.envint.2014.10.005
– volume: 21
  start-page: 383
  year: 2001
  end-page: 387
  ident: CR3
  article-title: Rapid prototyping
  publication-title: ASM Handb
  doi: 10.1361/asmhba0003397
– volume: 657
  start-page: 819
  year: 2019
  end-page: 826
  ident: CR6
  article-title: Health effects of physical activity as predicted by particle deposition in the human respiratory tract
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.067
– volume: 50
  start-page: 1005
  year: 2010
  end-page: 1017
  ident: CR28
  article-title: Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy
  publication-title: Exp Fluids
  doi: 10.1007/s00348-010-0984-z
– volume: 70
  start-page: 53
  year: 2017
  end-page: 63
  ident: CR33
  article-title: Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2017.05.003
– volume: 366
  start-page: 3225
  year: 2008
  end-page: 3246
  ident: CR7
  article-title: Nasal architecture: form and flow
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2008.0083
– volume: 29
  start-page: 91
  year: 2000
  end-page: 95
  ident: CR15
  article-title: Particle image velocimetry measurements in complex geometries
  publication-title: Exp Fluids
  doi: 10.1007/s003480050430
– volume: 15
  start-page: 1090
  year: 2004
  end-page: 1096
  ident: CR17
  article-title: An investigation on airflow in disordered nasal cavity and its corrected models by tomographic PIV
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/15/6/007
– ident: CR19
– volume: 52
  start-page: 569
  year: 2011
  end-page: 579
  ident: CR29
  article-title: Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV
  publication-title: Exp Fluids
  doi: 10.1007/s00348-011-1044-z
– volume: 77
  start-page: 277
  year: 2006
  end-page: 303
  ident: CR22
  article-title: Transition modelling for general purpose CFD codes flow
  publication-title: Turbul Combust
  doi: 10.1007/s10494-006-9047-1
– volume: 1
  start-page: 39
  year: 2019
  end-page: 50
  ident: CR12
  article-title: Numerical investigation of unsteady particle deposition in a realistic human nasal cavity during inhalation
  publication-title: Exp Comput Multiph Flow
  doi: 10.1007/s42757-019-0007-0
– volume: 62
  start-page: 191
  year: 2013
  end-page: 200
  ident: CR32
  article-title: CFD analysis of the human exhalation flow using different boundary conditions and ventilation strategies
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.01.022
– volume: 15
  start-page: 447
  year: 2016
  end-page: 469
  ident: CR9
  article-title: Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-015-0701-1
– volume: 100
  start-page: 172
  year: 2016
  end-page: 185
  ident: CR26
  article-title: Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2016.02.020
– volume: 60
  start-page: 731
  year: 2016
  end-page: 747
  ident: CR31
  article-title: Transport and deposition of welding fume agglomerates in a realistic human nasal airway
  publication-title: Ann Occup Hyg
  doi: 10.1093/annhyg/mew018
– volume: 35
  start-page: 70
  year: 2003
  end-page: 84
  ident: CR14
  article-title: Experimental measurements and computational modeling of the flow field in an idealized human oropharynx
  publication-title: Exp Fluids
  doi: 10.1007/s00348-003-0636-7
– volume: 52
  start-page: 1
  year: 2012
  end-page: 17
  ident: CR5
  article-title: Controlled, parametric, individualized, 2-D and 3-D imaging measurements of aerosol deposition in the respiratory tract of healthy human subjects for model validation
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2012.04.006
– volume: 61
  start-page: 105
  year: 2019
  end-page: 111
  ident: CR27
  article-title: Detailed computational analysis of flow dynamics in an extended respiratory airway model
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2018.12.006
– volume: 80
  start-page: 965
  year: 2016
  end-page: 976
  ident: CR2
  article-title: CFD investigation of human tidal breathing through human airway geometry
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.392
– volume: 163
  start-page: 100
  year: 2008
  end-page: 110
  ident: CR8
  article-title: Mechanics of airflow in the human nasal airways
  publication-title: Respir Physiol Neurobiol
  doi: 10.1016/j.resp.2008.07.027
– volume: 128
  start-page: 453
  year: 2019
  end-page: 459
  ident: CR20
  article-title: The application of computational fluid dynamics in the evaluation of laryngotracheal pathology
  publication-title: Ann Otol Rhinol Laryngol
  doi: 10.1177/0003489419826601
– volume: 105
  start-page: 1733
  year: 2008
  ident: 1299_CR16
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.90764.2008
– volume: 74
  start-page: 136
  year: 2015
  ident: 1299_CR18
  publication-title: Environ Int
  doi: 10.1016/j.envint.2014.10.005
– volume: 15
  start-page: 1090
  year: 2004
  ident: 1299_CR17
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/15/6/007
– volume: 70
  start-page: 53
  year: 2017
  ident: 1299_CR33
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2017.05.003
– volume: 383
  start-page: 1581
  year: 2014
  ident: 1299_CR13
  publication-title: Outdoor air pollution and asthma The Lancet
  doi: 10.1016/s0140-6736(14)60617-6
– volume: 100
  start-page: 172
  year: 2016
  ident: 1299_CR26
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2016.02.020
– volume: 57
  start-page: 116
  year: 2015
  ident: 1299_CR10
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2014.12.004
– volume: 52
  start-page: 569
  year: 2011
  ident: 1299_CR29
  publication-title: Exp Fluids
  doi: 10.1007/s00348-011-1044-z
– volume: 21
  start-page: 383
  year: 2001
  ident: 1299_CR3
  publication-title: ASM Handb
  doi: 10.1361/asmhba0003397
– volume: 60
  start-page: 731
  year: 2016
  ident: 1299_CR31
  publication-title: Ann Occup Hyg
  doi: 10.1093/annhyg/mew018
– volume: 4
  start-page: 625
  year: 2003
  ident: 1299_CR21
  publication-title: Turbul Heat Mass Transf
– volume: 15
  start-page: 447
  year: 2016
  ident: 1299_CR9
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-015-0701-1
– volume: 366
  start-page: 3225
  year: 2008
  ident: 1299_CR7
  publication-title: Philos Trans A Math Phys Eng Sci
  doi: 10.1098/rsta.2008.0083
– volume: 163
  start-page: 100
  year: 2008
  ident: 1299_CR8
  publication-title: Respir Physiol Neurobiol
  doi: 10.1016/j.resp.2008.07.027
– volume: 128
  start-page: 453
  year: 2019
  ident: 1299_CR20
  publication-title: Ann Otol Rhinol Laryngol
  doi: 10.1177/0003489419826601
– volume: 29
  start-page: 91
  year: 2000
  ident: 1299_CR15
  publication-title: Exp Fluids
  doi: 10.1007/s003480050430
– volume: 77
  start-page: 277
  year: 2006
  ident: 1299_CR22
  publication-title: Turbul Combust
  doi: 10.1007/s10494-006-9047-1
– volume: 94
  start-page: 504
  year: 2015
  ident: 1299_CR25
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2015.10.002
– volume: 80
  start-page: 965
  year: 2016
  ident: 1299_CR2
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.05.392
– volume: 50
  start-page: 1005
  year: 2010
  ident: 1299_CR28
  publication-title: Exp Fluids
  doi: 10.1007/s00348-010-0984-z
– volume: 61
  start-page: 105
  year: 2019
  ident: 1299_CR27
  publication-title: Clin Biomech (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2018.12.006
– volume: 657
  start-page: 819
  year: 2019
  ident: 1299_CR6
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.067
– volume: 37
  start-page: 139
  issue: 1
  year: 1994
  ident: 1299_CR1
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(94)90168-6
– volume: 40
  start-page: 268
  year: 2008
  ident: 1299_CR24
  publication-title: QUT Digit Repos
  doi: 10.1080/07853890701881788
– volume: 35
  start-page: 70
  year: 2003
  ident: 1299_CR14
  publication-title: Exp Fluids
  doi: 10.1007/s00348-003-0636-7
– volume: 1
  start-page: 39
  year: 2019
  ident: 1299_CR12
  publication-title: Exp Comput Multiph Flow
  doi: 10.1007/s42757-019-0007-0
– volume: 62
  start-page: 191
  year: 2013
  ident: 1299_CR32
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2013.01.022
– volume: 1
  start-page: 3
  issue: 1
  year: 1986
  ident: 1299_CR34
  publication-title: J Sci Comput
  doi: 10.1007/BF01061452
– ident: 1299_CR19
  doi: 10.1063/1.3366500
– volume: 109
  start-page: 495
  issue: 4
  year: 2001
  ident: 1299_CR23
  publication-title: Environ Health Perspect
– volume: 52
  start-page: 1
  year: 2012
  ident: 1299_CR5
  publication-title: J Aerosol Sci
  doi: 10.1016/j.jaerosci.2012.04.006
– volume: 41
  start-page: 979
  year: 2013
  ident: 1299_CR11
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-013-0747-0
– volume: 19
  start-page: 129
  issue: 2
  year: 2006
  ident: 1299_CR30
  publication-title: Space Med Med Eng
– volume: 128
  start-page: E141
  year: 2018
  ident: 1299_CR4
  publication-title: Laryngoscope
  doi: 10.1002/lary.26954
SSID ssj0020383
Score 2.4675438
Snippet In this study, flow field characteristics in the trachea region in a realistic human upper airway model were firstly measured by particle image velocimetry...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1679
SubjectTerms Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Engineering
Original Paper
Theoretical and Applied Mechanics
Title Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations
URI https://link.springer.com/article/10.1007/s10237-020-01299-3
https://www.ncbi.nlm.nih.gov/pubmed/32026145
https://www.proquest.com/docview/2352051812
Volume 19
WOSCitedRecordID wos000515890300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1617-7940
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020383
  issn: 1617-7959
  databaseCode: RSV
  dateStart: 20020601
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4BAwkeNmADOhg6JN42S6lT18kjKlQgTQixrepb5F8Rlbqkalqg_wB_N7aTtJ1ASOMxkmNH9vnuu9j3fQCn2obYSMR2BWhLkFaYhkS2A01kk_FUcRPFnomp95NfX0f9fnxTFYUV9W33-kjSe-qlYjcacuLSHffzJCbhKnyw4S5y2_H2V2-eZgUl-aYD7sQpaVelMq_38W84eoExX5yP-rDT_fS-D96GjxXMxLPSLnZgxWS7sFEKT852YWuJhvAzPC2RbeQZ5ikOsjtRXpJDkWk0j_PHdJg_4MiTcma2GQq0qHPo2Z7R6_3hdDQyYxSD8YOYoRfaQTnDm6seLtQECt9tp3uOxeBvJSBWfIE_3YvfnUtS6TMQZUPfhKiQSaqYUIzRSFOupGZUM5eDGCUVC3kgeJPKVBputGBMByxNDRc2J2NU0XAP1rI8MweAsU1UZMyMsPCtFchYtqX1NU1Xpqs1Fe0GNOtlSlRFXu40NIbJgnbZzXZiZzvxs52EDfg-f2dUUne82fqkXv3E7jB3bCIyk0-LhFqMal2XRUIN2C_NYt6fU5-3AIc14EdtA0nlBIo3Bvv6f80PYZM6M_J3CI9gbTKemm-wru4ng2J8DKu8Hx37PfAMZr3-aQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7BAG08MBj7UWDbIfHGLKVOXTePaFBtWldNMKq9Wf4VUalLqqZl9B_Y343tJG1R0SR4jOQ4kX25-y6--z6AD8aF2I5M3A7QliStOI2JakeGqCbjqea2kwQmpkGP9_udm5vkqmoKK-pq9_pIMnjqlWY3GnPi0x3_8yQh8WN40nIRyxfyff02WKRZUUm-6YE78UraVavM3-f4MxytYcy189EQdrrb__fCL-FFBTPxU2kXr-CRzXbgWSk8Od-B5ys0hK_hfoVsI88wT3GY_ZBlkRzKzKD9tbhMR_kdjgMpZ-aGoUSHOkeB7RmD3h_OxmM7QTmc3Mk5BqEdVHO8Oh_gUk2gCNOedj9jMbytBMSKXfje_XJ9ekYqfQaiXeibEh0zRTWTmjHaMZRrZRg1zOcgVivNYh5J3qQqVZZbIxkzEUtTy6XLyRjVNN6DjSzP7AFg4hIVlTArHXxrRSpRbeV8TdO36RpDZbsBzXqbhK7Iy72GxkgsaZf9agu32iKstogb8HFxz7ik7nhw9Pt694X7wvyxicxsPisEdRjVuS6HhBqwX5rFYj6vPu8ADmvASW0DonICxQMPe_Nvw49h8-z6sid65_2Lt7BFvUmFesJ3sDGdzOwhPNU_p8NichS-hN9dQQB0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD507Tbah126rUt3O4O9baKOHEXxY2kXVlZCYFvom9DNNJDKJk7W5g_0d0-SnTSlozD2aJAlIx3pfMc65_sAPhnvYnsy8ytAO5J00jwlqpsYotqM55rbXhaZmEanfDDonZ1lw7Uq_pjtvrySrGsaAkuTmx2UJj9YK3yjKSch9Ak_UjKSPoCtThANCvH6j9Eq5EpqIs4A4klQ1W7KZv7ex23XdAdv3rkrjS6o__T_P_4ZPGngJx7W9vIcNqzbhUe1IOViF3bW6AlfwPUaCUfhsMhx7M5lnTyH0hm0V6vHfFJcYhnJOp1vhhI9Gp1EFmiMOoA4L0s7RTmeXsoFRgEeVAscnozwRmWgit0e9Y-xGl80wmLVS_jV__rz6BtpdBuI9i5xRnTKFNVMasZoz1CulWHUsBCbWK00S3kieZuqXFlujWTMJCzPLZc-VmNU0_QVbLrC2deAmQ9gVMas9LCuk6hMdZU_g9qhfNcYKrstaC-XTOiG1Dxoa0zEDR1zmG3hZ1vE2RZpCz6v3ilrSo97W39cWoLwOy9cp0hni3klqMeu_kjzCKkFe7WJrPoLqvQe-LAWfFnag2gOh-qewfb_rfkHeDw87ovTk8H3N7BNg0XFNMO3sDmbzu07eKh_z8bV9H3cFH8AJ_IJWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+inhalation+and+exhalation+flow+pattern+in+a+realistic+human+upper+airway+model+by+PIV+experiments+and+CFD+simulations&rft.jtitle=Biomechanics+and+modeling+in+mechanobiology&rft.au=Xu%2C+Xiaoyu&rft.au=Wu%2C+Jialin&rft.au=Weng%2C+Wenguo&rft.au=Fu%2C+Ming&rft.date=2020-10-01&rft.eissn=1617-7940&rft_id=info:doi/10.1007%2Fs10237-020-01299-3&rft_id=info%3Apmid%2F32026145&rft.externalDocID=32026145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-7959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-7959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-7959&client=summon