Research on Vehicle Object Detection Algorithm Based on Improved YOLOv3 Algorithm

Vehicle object detection is one of the important research directions in the field of computer vision. Aiming at solving the problems of low accuracy, slow speed, and unsatisfactory results of using traditional methods to detect the object of the vehicle in front of the driverless car on the road, th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series Vol. 1575; no. 1; pp. 12150 - 12158
Main Authors: Liu, Jin, Zhang, Dongquan
Format: Journal Article
Language:English
Published: Bristol IOP Publishing 01.06.2020
Subjects:
ISSN:1742-6588, 1742-6596
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vehicle object detection is one of the important research directions in the field of computer vision. Aiming at solving the problems of low accuracy, slow speed, and unsatisfactory results of using traditional methods to detect the object of the vehicle in front of the driverless car on the road, this paper proposes an improved YOLOv3 vehicle target detection algorithm which we name it F-YOLOv3. First the multi-scale prediction network model is improved according to actual traffic conditions and efficiency requirements based on the original general object detection YOLOv3 algorithm. Then a scale prediction layer is added to improve the detection accuracy of large vehicles and improved k-means++ the algorithm is used to improve the effect of anchor box dimensional clustering and the detection speed. At last an experiment was conducted on a self-made dataset and compared with YOLOv3 in order to test the effectiveness of the F-YOLOv3 algorithm. The test results show that the improved F-YOLOv3 model has a precision mAP of 91.12% and a speed of 59FPS, which are better than the traditional general object detection YOLOv3 algorithm. Therefore, the algorithm has better performance and popularization prospect in vehicle object detection.
AbstractList Vehicle object detection is one of the important research directions in the field of computer vision. Aiming at solving the problems of low accuracy, slow speed, and unsatisfactory results of using traditional methods to detect the object of the vehicle in front of the driverless car on the road, this paper proposes an improved YOLOv3 vehicle target detection algorithm which we name it F-YOLOv3. First the multi-scale prediction network model is improved according to actual traffic conditions and efficiency requirements based on the original general object detection YOLOv3 algorithm. Then a scale prediction layer is added to improve the detection accuracy of large vehicles and improved k-means++ the algorithm is used to improve the effect of anchor box dimensional clustering and the detection speed. At last an experiment was conducted on a self-made dataset and compared with YOLOv3 in order to test the effectiveness of the F-YOLOv3 algorithm. The test results show that the improved F-YOLOv3 model has a precision mAP of 91.12% and a speed of 59FPS, which are better than the traditional general object detection YOLOv3 algorithm. Therefore, the algorithm has better performance and popularization prospect in vehicle object detection.
Author Liu, Jin
Zhang, Dongquan
Author_xml – sequence: 1
  givenname: Jin
  surname: Liu
  fullname: Liu, Jin
  email: 18121410@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University , China
– sequence: 2
  givenname: Dongquan
  surname: Zhang
  fullname: Zhang, Dongquan
  email: 18121410@bjtu.edu.cn
  organization: School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University , China
BookMark eNqNkF1LwzAUhoNMcE5_gwXvhNqkSZr2wos5vyaD-g1ehTRNXUfX1iQb-O9NqWwoggbCOXCe93y8-2BQN7UC4AjBUwTjOECMhH5EkyhAlNEABRCFiMIdMNxUBps8jvfAvjELCLF7bAjuH5RRQsu519Tei5qXslJemi2UtN6Fsi6UrjCu3hpd2vnSOxdG5R07Xba6Wbv8NZ2la7xFDsBuISqjDr_iCDxfXT5NbvxZej2djGe-JAhbP0tYkRCCpCQkjGiOlZQojAoUYsniWCY0C92XRAhMVSIymhUQyYy46wgVOR6B476v2-N9pYzli2alazeSh5RBHEcMEUed9ZTUjTFaFVyWVnRHWS3KiiPIOxd55w_vvOKdixzx3kWnZz_0rS6XQn_8Q3nSK8um3a52ezd5_A7yNi8cjH-B_xrxCVXekzw
CitedBy_id crossref_primary_10_1038_s41598_023_43458_3
crossref_primary_10_17208_jkpa_2021_04_56_2_79
crossref_primary_10_2478_amns_2024_0322
crossref_primary_10_1155_2022_4260543
crossref_primary_10_3390_app142311175
Cites_doi 10.1109/CVPR.2017.106
10.1007/s12555-014-0229-7
10.1109/TPAMI.2016.2577031
10.1016/j.eswa.2015.01.032
10.1109/CVPR.2016.91
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
H8D
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1088/1742-6596/1575/1/012150
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Research on Vehicle Object Detection Algorithm Based on Improved YOLOv3 Algorithm
EISSN 1742-6596
ExternalDocumentID 10_1088_1742_6596_1575_1_012150
JPCS_1575_1_012150
GroupedDBID 1JI
29L
2WC
4.4
5B3
5GY
5PX
5VS
7.Q
AAJIO
AAJKP
ABHWH
ACAFW
ACHIP
AEFHF
AEJGL
AFKRA
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
FRP
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XSB
~02
AAYXX
AEINN
AFFHD
CITATION
OVT
PHGZM
PHGZT
PQGLB
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
H8D
L7M
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c413t-b97f9441cc44265d3ecc126f123c788c95b295bc4aa35e9ab5bf01cb412145ad3
IEDL.DBID O3W
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617122600150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-6588
IngestDate Sun Nov 30 05:15:15 EST 2025
Tue Nov 18 21:35:51 EST 2025
Sat Nov 29 05:12:22 EST 2025
Thu Jan 07 15:20:50 EST 2021
Wed Aug 21 03:34:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b97f9441cc44265d3ecc126f123c788c95b295bc4aa35e9ab5bf01cb412145ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1742-6596/1575/1/012150
PQID 2570386714
PQPubID 4998668
PageCount 9
ParticipantIDs proquest_journals_2570386714
crossref_citationtrail_10_1088_1742_6596_1575_1_012150
crossref_primary_10_1088_1742_6596_1575_1_012150
iop_journals_10_1088_1742_6596_1575_1_012150
PublicationCentury 2000
PublicationDate 20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 20200601
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of physics. Conference series
PublicationTitleAlternate J. Phys.: Conf. Ser
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Van Pham (JPCS_1575_1_012150bib1) 2015; 13
Hassannejad (JPCS_1575_1_012150bib2) 2015; 42
Girshick (JPCS_1575_1_012150bib4) 2014
Redmon (JPCS_1575_1_012150bib5)
Redmon (JPCS_1575_1_012150bib6) 2017
Redmon (JPCS_1575_1_012150bib7)
Arthur (JPCS_1575_1_012150bib9)
Lin (JPCS_1575_1_012150bib8)
Ren (JPCS_1575_1_012150bib3) 2017; 39
References_xml – ident: JPCS_1575_1_012150bib8
  article-title: Feature Pyramid Networks for Object Detection
  doi: 10.1109/CVPR.2017.106
– ident: JPCS_1575_1_012150bib7
  article-title: YOLOv3: An Incremental Improvement
– volume: 13
  start-page: 1150
  year: 2015
  ident: JPCS_1575_1_012150bib1
  article-title: Front-view car detection and counting with occlusion in dense traffic flow
  publication-title: Int J Control Autom Syst.
  doi: 10.1007/s12555-014-0229-7
– volume: 39
  start-page: 1137
  year: 2017
  ident: JPCS_1575_1_012150bib3
  article-title: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
  publication-title: IEEE Trans Pattern Anal Mach Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 580
  year: 2014
  ident: JPCS_1575_1_012150bib4
  article-title: Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation
– start-page: 6517
  year: 2017
  ident: JPCS_1575_1_012150bib6
  article-title: YOLO9000: Better, Faster, Stronger
– start-page: 9
  ident: JPCS_1575_1_012150bib9
  article-title: k-means++: The Advantages of Careful Seeding
– volume: 42
  start-page: 4167
  year: 2015
  ident: JPCS_1575_1_012150bib2
  article-title: Detection of moving objects in roundabouts based on a monocular system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.01.032
– ident: JPCS_1575_1_012150bib5
  article-title: You Only Look Once: Unified, Real-Time Object Detection
  doi: 10.1109/CVPR.2016.91
SSID ssj0033337
Score 2.3280332
Snippet Vehicle object detection is one of the important research directions in the field of computer vision. Aiming at solving the problems of low accuracy, slow...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12150
SubjectTerms Accuracy
Algorithms
Autonomous cars
Clustering
Computer vision
Driving conditions
Object recognition
Physics
Target detection
Traffic
SummonAdditionalLinks – databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9uKvjitzidUtBHw5p-50nmdIjINvGD6UtI0tYNZle3ur_fS9o6huAeLBRKeglpf-n9ksv1DqFzavnUF4GLoZc2BoYSmHPpY-4QGoaeFRHJdbIJv9MJ-n3aKwxu08KtstSJWlGHY6ls5A2Vbc1Wwdicy_QTq6xRane1SKFRQasqSoJK3dBz30pNbMPh5z9EWhiYNij9u2DRV5RRr0FgwtIgDVM3sMBOleE4_aWiNe-0t_7b4220Wcw4jWY-RHbQSpTsonXt-Smne-ih9L0zxonxEg2UkNEVyjxjXEeZ9tRKjOboHZrOBh_GFdBeqGRzcwRcv3bvuzN7LrKPnts3T61bXORZwBIoLMOC-jGFaZGUDvC1G9oAK7G8GEhNwgpZUldYcEqHc9uNKBeuiE0ihUNUmHPA-ABVk3ESHSID1AOJpYhjTkEFu0L4tielaUYcijwrriGvfL9MFkHIVS6MEdOb4UHAFDBMAcMUMIywHJgaMn8qpnkcjuVVLgBAVnyT0-XiZwvid73W46IES0N4gHoJ9lx0jvTR37eP0Yal1uvailNH1WzyFZ2gNTnLhtPJqR6834xF7oU
  priority: 102
  providerName: ProQuest
Title Research on Vehicle Object Detection Algorithm Based on Improved YOLOv3 Algorithm
URI https://iopscience.iop.org/article/10.1088/1742-6596/1575/1/012150
https://www.proquest.com/docview/2570386714
Volume 1575
WOSCitedRecordID wos000617122600150&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: O3W
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database (ProQuest)
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: P5Z
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: BENPR
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1742-6596
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033337
  issn: 1742-6588
  databaseCode: PIMPY
  dateStart: 20040801
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEA66KvjiLd4U9NHYpumVx_VCRbf1Pl5CkrYqrN1lt-7vd9JDKSIiWGgJYaZNJ-l8k3Qyg9AOs33my8DF0EqKAaEkFkL5WDiExbFnJ0SJItmE3-kEDw-ssRem169U_x4Uy0DBpQgrh7jABBvaxp7LPJOArWESU4cl09P2CRoAmsOYDul9rY0pHH65KVIzBUHt4_XzjRoINQ6t-KamC-w5nv2PVs-hmcryNNolxzwaS7IFNFV4gKrhIrqsffCMXmbcJS-ayAilXqYxDpO88NjKjHb3uTd4zV_ejH2Av1jTlssSUH4Mz8MR_SJZQrfHRzcHJ7jKt4AVQFmOJfNTBuaRUg7gthtT6F5ieymAm4KZsmKutOFUjhDUTZiQrkwtoqRDdLhz6Otl1Mp6WbKCDFATJFUyTQUDVexK6VNPKctKBFR5drqKvFrGXFXByHVOjC4vfooHAdfy4lpeXMuLE17KaxVZn4z9Mh7H7yy70Cm8-jaHv5NvN8jPooPrJgXvx_ACG_WY-CLVGQGpDhjorP3tmeto2tbz-GJ1ZwO18sF7sokm1Sh_HQ620MT-USe62ioGNlwj9wnqotOL6PEDYXbv6A
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61WxC98EYUClgCbli7dp4-INQHVZdudxdRqvZkbMehldrs0g1F_Cl-Y2fyYKmQ6KkHIkWKkkmUiT_PZ0_GMwCvlExUYtOI41sGHBnKcmNcwk0oVJbF0gtnqmITyXCYHhyo8QL8atfCUFhlaxMrQ51NHPnIu1RtLaBkbOG76TdOVaPo72pbQqOGxY7_-QOnbLO3_U1s39dSbr3f29jmTVUB7tBgl9yqJFc4CHAuRHaKsgCVEDLO0YQ7nA86FVmJuwuNCSKvjI1s3hPOhoKSeqNG-NxFWAoJ7B1YGvd3x4et7Q9wS-olmJIjt6dtRBlOM5tzKu4KHCJ1RZeyqdFy_z_4cPF4Mv2LFCqm27rzv32ju3C7GVOztboT3IMFX9yHm1Vsq5s9gI9tdCGbFGzfH5EQG1lyQLFNX1axaAVbO_mKqpRHp2wdiT0j2drhgseHo8HoPJiLPITP16LPI-gUk8I_BoYGUOTO5rlRSDKRtUkQO9freYOnYpmvQNy2p3ZNmnWq9nGiq9_9aaoJCJqAoAkIWugaCCvQ-33jtM40cvUtbxAwurE6s6vFX14S_zDe-HRZQk8zVGC1BddcdI6sJ_--_AJube_tDvSgP9x5CsuSvBOVz2oVOuXZd_8Mbrjz8nh29rzpOgy-XDcSLwBJjEz1
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3rS8MwED90PvCLb3E6taAfrW36zse5OXyMbeL7U0jSVoXZja3u7_fShzJERLBQCOV3TbhL7y7p5Q7giFo-9UXg6jhKW0cLJXTOpa9zh9Aw9KyISJ4Vm_A7neDxkfZmoPV5FmYwLFT_CTbzRME5C4uAuMBAH9rSPZd6BkFfwyCGSkvmmsYwjGdhTqUrUbO7az-UGtnGy88PRirCICjjvH5-2ZSVmsWRfFPVmf1prfzXyFdhufBAtXpOtQYzUbIOC1kkqBxvwHUZi6cNEu0-elEgrSvUdo3WjNIscivR6v3nweg1fXnTTtEMhgqbb09g-6nb7k7sL8gm3LXObhvnelF3QZdo0lJdUD-m6CZJ6aD9dkMbxUwsL0YjJ3HFLKkrLLylw7ntRpQLV8QmkcIhKu05ynwLKskgibZBQ3VBYinimFNUya4Qvu1JaZoRx0eeFVfBK_nMZJGUXNXG6LPs53gQMMUzpnjGFM8YYTnPqmB-Eg7zvBy_kxyjYFjxjY5_hx9OwS97jZtpBEO5VaFWzosvqKoMaKvEgc7O3_o8gMVes8XaF52rXViy1NI-2_CpQSUdvUd7MC8n6et4tJ_N7w8ppvEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Vehicle+Object+Detection+Algorithm+Based+on+Improved+YOLOv3+Algorithm&rft.jtitle=Journal+of+physics.+Conference+series&rft.au=Liu%2C+Jin&rft.au=Zhang%2C+Dongquan&rft.date=2020-06-01&rft.pub=IOP+Publishing&rft.issn=1742-6588&rft.eissn=1742-6596&rft.volume=1575&rft.issue=1&rft_id=info:doi/10.1088%2F1742-6596%2F1575%2F1%2F012150&rft.externalDocID=JPCS_1575_1_012150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-6588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-6588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-6588&client=summon