Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation

Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on image processing Ročník 27; číslo 9; s. 4260 - 4273
Hlavní autoři: Li, Shuang, Song, Shiji, Huang, Gao, Ding, Zhengming, Wu, Cheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1057-7149, 1941-0042, 1941-0042
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
AbstractList Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but lying different distributions. Intuitively, to address domain shift problem, it is crucial to learn domain invariant features across domains, and most existing approaches have concentrated on it. However, they often do not directly constrain the learned features to be class discriminative for both source and target data, which is of vital importance for the final classification. Therefore, in this paper, we put forward a novel feature learning method for domain adaptation to construct both domain invariant and class discriminative representations, referred to as DICD. Specifically, DICD is to learn a latent feature space with important data properties preserved, which reduces the domain difference by jointly matching the marginal and class-conditional distributions of both domains, and simultaneously maximizes the inter-class dispersion and minimizes the intra-class scatter as much as possible. Experiments in this paper have demonstrated that the class discriminative properties will dramatically alleviate the cross-domain distribution inconsistency, which further boosts the classification performance. Moreover, we show that exploring both domain invariance and class discriminativeness of the learned representations can be integrated into one optimization framework, and the optimal solution can be derived effectively by solving a generalized eigen-decomposition problem. Comprehensive experiments on several visual cross-domain classification tasks verify that DICD can outperform the competitors significantly.
Author Cheng Wu
Shiji Song
Gao Huang
Zhengming Ding
Shuang Li
Author_xml – sequence: 1
  givenname: Shuang
  orcidid: 0000-0003-1910-7812
  surname: Li
  fullname: Li, Shuang
– sequence: 2
  givenname: Shiji
  surname: Song
  fullname: Song, Shiji
– sequence: 3
  givenname: Gao
  surname: Huang
  fullname: Huang, Gao
– sequence: 4
  givenname: Zhengming
  orcidid: 0000-0002-6994-5278
  surname: Ding
  fullname: Ding, Zhengming
– sequence: 5
  givenname: Cheng
  surname: Wu
  fullname: Wu, Cheng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29870346$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJyVdzLxSCIJdevJ2RZFs-hk3TLiy0hzQ5mrE9LgpeeSPZgfz31Xa3OeTQ0-jwe29G752JIz96FuIjwgIRqi93q58LBWgXyuoqV_adOMXKYAZg1FF6Q15mJZrqRJzF-AiAJsfiWJyoypagTXEqHm7GDTkvV_6ZgiM_SfKdXA4Uo7xxsQ1u4zxN7pnlLdM0B5ZrpuCd_y37Mch7F2ca5MHluqPtlOjRfxDvexoiXxzmufh1-_Vu-T1b__i2Wl6vs9agnrJGKbK2MYy6VMqaUuedsV1f9rZV3CJT22NPtkFobEkV5IidpfR3hRqKQp-Lz3vfbRifZo5TvUlX8zCQ53GOtUoKKPICVUKv3qCP4xx8um5HAeSV-Wt4eaDmZsNdvU0JUHip_0WWANgDbRhjDNy_Igj1rpU6tVLvWqkPrSRJ8UbSun1MUyA3_E_4aS90zPy6x-pClbnWfwBspJdS
CODEN IIPRE4
CitedBy_id crossref_primary_10_3233_IDA_215813
crossref_primary_10_1016_j_patcog_2024_111105
crossref_primary_10_1109_ACCESS_2020_3035422
crossref_primary_10_1109_JAS_2023_123342
crossref_primary_10_1109_TIP_2020_3013167
crossref_primary_10_1007_s00530_024_01339_3
crossref_primary_10_1007_s42044_023_00144_x
crossref_primary_10_1080_10255842_2021_2023809
crossref_primary_10_1109_TCSVT_2020_3013604
crossref_primary_10_1109_TNNLS_2022_3192315
crossref_primary_10_1016_j_knosys_2022_109022
crossref_primary_10_1109_TMM_2023_3251094
crossref_primary_10_1007_s11063_022_10828_3
crossref_primary_10_1016_j_image_2021_116232
crossref_primary_10_1007_s40747_022_00887_3
crossref_primary_10_3390_sym12121994
crossref_primary_10_1007_s11704_022_1283_6
crossref_primary_10_1109_TIM_2021_3050154
crossref_primary_10_1109_TIP_2023_3261758
crossref_primary_10_1016_j_neucom_2021_12_060
crossref_primary_10_1016_j_neunet_2023_02_006
crossref_primary_10_1007_s00521_024_09755_2
crossref_primary_10_1109_TCSVT_2021_3073937
crossref_primary_10_1016_j_inffus_2022_10_026
crossref_primary_10_1109_TIP_2019_2950768
crossref_primary_10_1016_j_neucom_2022_05_042
crossref_primary_10_1016_j_ins_2023_01_109
crossref_primary_10_1109_TCSS_2023_3276990
crossref_primary_10_1016_j_patcog_2023_109379
crossref_primary_10_1016_j_patcog_2023_109654
crossref_primary_10_1016_j_patcog_2021_107870
crossref_primary_10_1109_TGRS_2020_2985072
crossref_primary_10_1177_01423312241284784
crossref_primary_10_1109_TIP_2021_3066046
crossref_primary_10_1109_TNNLS_2022_3199619
crossref_primary_10_1007_s11063_024_11677_y
crossref_primary_10_1109_TIP_2021_3093393
crossref_primary_10_3390_rs16071293
crossref_primary_10_1109_TMM_2022_3145235
crossref_primary_10_1109_TNNLS_2022_3151683
crossref_primary_10_3390_s22114238
crossref_primary_10_1007_s10489_023_04706_1
crossref_primary_10_1007_s42044_019_00037_y
crossref_primary_10_1109_TNNLS_2022_3183326
crossref_primary_10_1016_j_imavis_2023_104755
crossref_primary_10_1016_j_dsp_2023_104060
crossref_primary_10_1016_j_knosys_2023_110894
crossref_primary_10_1109_TKDE_2025_3537704
crossref_primary_10_1109_TNSRE_2023_3243257
crossref_primary_10_1109_TCYB_2022_3163432
crossref_primary_10_1007_s11760_025_03909_y
crossref_primary_10_1109_TIP_2020_3018221
crossref_primary_10_3390_machines10040245
crossref_primary_10_1109_TETCI_2024_3412998
crossref_primary_10_1016_j_knosys_2022_109886
crossref_primary_10_1007_s11760_019_01587_1
crossref_primary_10_1007_s11063_019_10152_3
crossref_primary_10_1109_TPAMI_2021_3062644
crossref_primary_10_1109_TPAMI_2024_3507534
crossref_primary_10_1016_j_engappai_2024_107877
crossref_primary_10_1109_JIOT_2022_3218339
crossref_primary_10_1109_TCDS_2021_3055524
crossref_primary_10_1016_j_inffus_2023_101912
crossref_primary_10_1109_TPAMI_2020_2964173
crossref_primary_10_1109_TIM_2024_3368421
crossref_primary_10_1109_JAS_2023_123318
crossref_primary_10_1109_TIP_2018_2851067
crossref_primary_10_1007_s11280_024_01290_3
crossref_primary_10_1109_TIP_2020_3024728
crossref_primary_10_1016_j_knosys_2021_107158
crossref_primary_10_1109_TCSVT_2023_3243402
crossref_primary_10_1109_TNNLS_2022_3201623
crossref_primary_10_1109_JIOT_2024_3452670
crossref_primary_10_1109_TIP_2022_3189830
crossref_primary_10_1109_TIP_2024_3444190
crossref_primary_10_1007_s13042_023_02082_3
crossref_primary_10_1016_j_asoc_2025_113026
crossref_primary_10_1109_TNNLS_2021_3093468
crossref_primary_10_1007_s10044_021_01002_x
crossref_primary_10_1109_TNSE_2021_3139335
crossref_primary_10_1016_j_knosys_2019_03_024
crossref_primary_10_1016_j_patcog_2023_109919
crossref_primary_10_1016_j_compeleceng_2021_107041
crossref_primary_10_1109_TIP_2021_3109530
crossref_primary_10_1109_TCSVT_2022_3192135
crossref_primary_10_1016_j_patcog_2025_112286
crossref_primary_10_1109_TSMC_2022_3155145
crossref_primary_10_1016_j_knosys_2021_107309
crossref_primary_10_1007_s40747_023_01283_1
crossref_primary_10_1109_TGRS_2023_3267149
crossref_primary_10_1109_TKDE_2021_3114536
crossref_primary_10_1016_j_patcog_2025_111661
crossref_primary_10_1016_j_knosys_2023_110734
crossref_primary_10_3390_math12162564
crossref_primary_10_1109_JIOT_2024_3421536
crossref_primary_10_1109_TCSVT_2021_3104835
crossref_primary_10_1016_j_engappai_2025_110661
crossref_primary_10_1109_JSEN_2025_3528441
crossref_primary_10_1016_j_patcog_2022_108657
crossref_primary_10_1109_TAI_2023_3293077
crossref_primary_10_1016_j_neucom_2020_07_124
crossref_primary_10_1109_TNNLS_2021_3133760
crossref_primary_10_1109_TEVC_2023_3346406
crossref_primary_10_1109_TMM_2021_3073258
crossref_primary_10_1109_TIP_2022_3193758
crossref_primary_10_1587_transinf_2020EDL8074
crossref_primary_10_1016_j_dsp_2020_102906
crossref_primary_10_1016_j_ymssp_2022_110001
crossref_primary_10_1109_TIP_2024_3364500
crossref_primary_10_1016_j_engappai_2023_106172
crossref_primary_10_1016_j_ipm_2023_103339
crossref_primary_10_1002_int_22629
crossref_primary_10_1109_TAFFC_2021_3077489
crossref_primary_10_1109_TIM_2023_3301053
crossref_primary_10_1109_TNNLS_2023_3327962
crossref_primary_10_1016_j_patcog_2024_111038
crossref_primary_10_1016_j_engappai_2022_104896
crossref_primary_10_1016_j_knosys_2024_112649
crossref_primary_10_1109_TIP_2019_2928630
crossref_primary_10_1016_j_ins_2021_07_073
crossref_primary_10_1016_j_dsp_2022_103424
crossref_primary_10_1109_TNNLS_2019_2958152
crossref_primary_10_1016_j_inffus_2025_103197
crossref_primary_10_1109_TAFFC_2022_3168834
crossref_primary_10_1007_s11042_023_15683_5
crossref_primary_10_1007_s10489_019_01610_5
crossref_primary_10_1016_j_patcog_2022_108700
crossref_primary_10_1016_j_neunet_2024_106629
crossref_primary_10_3390_s24155043
crossref_primary_10_1109_TKDE_2022_3185233
crossref_primary_10_1109_TCYB_2020_2994875
crossref_primary_10_1007_s12652_021_03426_z
crossref_primary_10_1109_JAS_2022_106004
crossref_primary_10_1109_TIP_2020_3031220
crossref_primary_10_3390_rs17081395
crossref_primary_10_1016_j_patcog_2024_111270
crossref_primary_10_1109_TKDE_2024_3511714
crossref_primary_10_1016_j_neucom_2021_12_009
crossref_primary_10_1016_j_neunet_2023_08_005
crossref_primary_10_1016_j_neunet_2021_03_021
crossref_primary_10_1587_transinf_2021EDL8062
crossref_primary_10_1016_j_knosys_2021_107227
crossref_primary_10_1016_j_neucom_2020_05_098
crossref_primary_10_1109_TCYB_2020_3040763
crossref_primary_10_1016_j_patcog_2022_109127
crossref_primary_10_1016_j_neucom_2021_12_089
crossref_primary_10_1007_s10489_024_05351_y
crossref_primary_10_1007_s10489_024_05706_5
crossref_primary_10_1007_s13042_020_01200_9
crossref_primary_10_1109_JSTARS_2022_3206753
crossref_primary_10_3390_s20164367
crossref_primary_10_1109_TIP_2022_3163527
crossref_primary_10_1007_s00530_025_01959_3
crossref_primary_10_1007_s11042_019_08474_4
crossref_primary_10_1109_TGRS_2022_3201688
crossref_primary_10_1109_TAI_2023_3345805
crossref_primary_10_1109_TASE_2024_3409621
crossref_primary_10_1002_ima_23110
crossref_primary_10_1016_j_patcog_2025_111675
crossref_primary_10_1016_j_neunet_2020_01_009
crossref_primary_10_1109_TNNLS_2024_3480120
crossref_primary_10_1007_s11760_020_01745_w
crossref_primary_10_1109_TNNLS_2020_3027364
crossref_primary_10_1016_j_neunet_2020_08_016
crossref_primary_10_1109_TIP_2022_3226405
crossref_primary_10_1007_s11042_020_10193_0
crossref_primary_10_1109_TCSVT_2021_3087486
crossref_primary_10_1109_TIP_2019_2963389
crossref_primary_10_1016_j_neucom_2025_130902
crossref_primary_10_1109_TCYB_2021_3070545
crossref_primary_10_1109_TIP_2025_3526380
crossref_primary_10_1016_j_neucom_2021_01_062
crossref_primary_10_1016_j_knosys_2021_107192
crossref_primary_10_1109_ACCESS_2019_2933591
crossref_primary_10_1016_j_knosys_2023_110277
crossref_primary_10_1016_j_dsp_2023_104082
crossref_primary_10_1109_JIOT_2024_3490037
crossref_primary_10_1007_s11432_024_4273_8
crossref_primary_10_1109_TIP_2019_2929421
crossref_primary_10_1016_j_ins_2022_12_036
Cites_doi 10.1109/TKDE.2009.191
10.1137/1.9781611972771.73
10.1109/T-C.1975.224297
10.1109/TKDE.2013.111
10.1007/s11263-014-0696-6
10.1109/TNN.2010.2091281
10.1007/978-3-642-15561-1_16
10.1007/BF00994018
10.1023/A:1018628609742
10.1109/AFGR.2002.1004130
10.1109/TKDE.2009.126
10.1109/TPAMI.2009.57
10.1109/ICCV.2013.100
10.1109/CVPR.2015.7298629
10.1016/j.eswa.2011.01.061
10.1109/ICCV.2013.274
10.1109/TNNLS.2016.2538282
10.1109/TIP.2015.2510498
10.1109/CVPR.2014.183
10.1145/1291233.1291276
10.1109/TMM.2017.2724843
10.1109/TIP.2011.2134107
10.1109/TIP.2016.2609820
10.1109/TIP.2016.2631887
10.1109/CVPR.2014.318
10.1109/TPAMI.2011.114
10.1109/TIP.2016.2516952
10.1162/089976698300017467
10.1109/TCYB.2014.2307349
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2018.2839528
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4273
ExternalDocumentID 29870346
10_1109_TIP_2018_2839528
8362753
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41427806; 61273233
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2016YFB1200203
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c413t-b22a88b4e1372284735d48df7f8c2ec1eacf1fa8b10b87a90511d8a1092130663
IEDL.DBID RIE
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000434293500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1057-7149
1941-0042
IngestDate Thu Oct 02 19:27:18 EDT 2025
Mon Jun 30 10:25:33 EDT 2025
Wed Feb 19 02:40:42 EST 2025
Sat Nov 29 03:21:08 EST 2025
Tue Nov 18 22:41:40 EST 2025
Wed Aug 27 02:56:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c413t-b22a88b4e1372284735d48df7f8c2ec1eacf1fa8b10b87a90511d8a1092130663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6994-5278
0000-0003-1910-7812
PMID 29870346
PQID 2050059466
PQPubID 85429
PageCount 14
ParticipantIDs proquest_miscellaneous_2051065612
crossref_primary_10_1109_TIP_2018_2839528
pubmed_primary_29870346
crossref_citationtrail_10_1109_TIP_2018_2839528
ieee_primary_8362753
proquest_journals_2050059466
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
shen (ref31) 2017
sugiyama (ref22) 2007; 8
ref14
ref11
ref10
ref17
ref18
hsu (ref19) 2003
xia (ref24) 2013
huang (ref21) 2007
pan (ref2) 2008; 8
hoffman (ref46) 2013
ref42
ref41
ref43
ref49
ref8
chen (ref7) 2011
ref4
ref40
tan (ref5) 2017
gretton (ref16) 2007; 19
ref35
wang (ref33) 2014
ref34
ref37
ref36
gong (ref3) 2013
chang (ref6) 2017
van der maaten (ref48) 2008; 9
ref30
ref32
ref1
ref39
donahue (ref47) 2014; 32
long (ref50) 2015
weinberger (ref15) 2009; 10
jolliffe (ref38) 2002
ref23
ref26
ref25
ref20
ref28
ref27
gong (ref9) 2012
ref29
griffin (ref44) 2007
nene (ref45) 1996
References_xml – year: 2013
  ident: ref46
  publication-title: Efficient learning of domain-invariant image representations
– ident: ref1
  doi: 10.1109/TKDE.2009.191
– volume: 8
  start-page: 985
  year: 2007
  ident: ref22
  article-title: Covariate shift adaptation by importance weighted cross validation
  publication-title: J Mach Learn Res
– year: 2002
  ident: ref38
  publication-title: Principal Component Analysis
– ident: ref35
  doi: 10.1137/1.9781611972771.73
– ident: ref17
  doi: 10.1109/T-C.1975.224297
– year: 2015
  ident: ref50
  publication-title: Learning transferable features with deep adaptation networks
– start-page: 2066
  year: 2012
  ident: ref9
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref27
  doi: 10.1109/TKDE.2013.111
– ident: ref43
  doi: 10.1007/s11263-014-0696-6
– start-page: 2099
  year: 2014
  ident: ref33
  article-title: Cross-domain metric learning based on information theory
  publication-title: Proc 28th AAAI Conf Artif Intell
– ident: ref12
  doi: 10.1109/TNN.2010.2091281
– start-page: 2176
  year: 2013
  ident: ref24
  article-title: Instance selection and instance weighting for cross-domain sentiment classification via PU learning
  publication-title: Proc 23rd Int Joint Conf Artif Intell
– volume: 19
  start-page: 1
  year: 2007
  ident: ref16
  article-title: A kernel method for the two-sample-problem
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1007/978-3-642-15561-1_16
– ident: ref20
  doi: 10.1007/BF00994018
– volume: 32
  start-page: 647
  year: 2014
  ident: ref47
  article-title: DeCAF: A deep convolutional activation feature for generic visual recognition
  publication-title: Proc Int Conf Mach Learn (ICML)
– ident: ref18
  doi: 10.1023/A:1018628609742
– year: 2003
  ident: ref19
  article-title: A practical guide to support vector classification
– ident: ref42
  doi: 10.1109/AFGR.2002.1004130
– year: 2017
  ident: ref31
  publication-title: On image classification Correlation v s Causality
– ident: ref40
  doi: 10.1109/TKDE.2009.126
– volume: 10
  start-page: 207
  year: 2009
  ident: ref15
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: J Mach Learn Res
– ident: ref28
  doi: 10.1109/TPAMI.2009.57
– ident: ref8
  doi: 10.1109/ICCV.2013.100
– ident: ref34
  doi: 10.1109/CVPR.2015.7298629
– start-page: 1
  year: 2017
  ident: ref5
  article-title: Distant domain transfer learning
  publication-title: Proc AAAI
– ident: ref37
  doi: 10.1016/j.eswa.2011.01.061
– year: 2007
  ident: ref44
  article-title: Caltech-256 object category dataset
– ident: ref10
  doi: 10.1109/ICCV.2013.274
– ident: ref23
  doi: 10.1109/TNNLS.2016.2538282
– ident: ref41
  doi: 10.1109/TIP.2015.2510498
– ident: ref11
  doi: 10.1109/CVPR.2014.183
– ident: ref29
  doi: 10.1145/1291233.1291276
– volume: 8
  start-page: 677
  year: 2008
  ident: ref2
  article-title: Transfer learning via dimensionality reduction
  publication-title: Proc AAAI
– year: 1996
  ident: ref45
  article-title: Columbia object image library (coil-20)
– ident: ref30
  doi: 10.1109/TMM.2017.2724843
– ident: ref13
  doi: 10.1109/TIP.2011.2134107
– ident: ref32
  doi: 10.1109/TIP.2016.2609820
– start-page: 1
  year: 2007
  ident: ref21
  article-title: olkopf, "Correcting sample selection bias by unlabeled data
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 2456
  year: 2011
  ident: ref7
  article-title: Co-training for domain adaptation
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 222
  year: 2013
  ident: ref3
  article-title: Connecting the dots with landmarks: Discriminatively learning domain-invariant features for unsupervised domain adaptation
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref14
  doi: 10.1109/TIP.2016.2631887
– ident: ref25
  doi: 10.1109/CVPR.2014.318
– ident: ref4
  doi: 10.1109/TPAMI.2011.114
– ident: ref26
  doi: 10.1109/TIP.2016.2516952
– ident: ref39
  doi: 10.1162/089976698300017467
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref48
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1109/TCYB.2014.2307349
– start-page: 1763
  year: 2017
  ident: ref6
  article-title: Cross-domain kernel induction for transfer learning
  publication-title: Proc 31st AAAI Conf Artif Intell
SSID ssj0014516
Score 2.642993
Snippet Domain adaptation manages to build an effective target classifier or regression model for unlabeled target data by utilizing the well-labeled source data but...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4260
SubjectTerms Adaptation
Adaptation models
Classification
Data models
Domain adaptation
Feature extraction
Invariants
Learning systems
Measurement
Regression models
Representations
subspace learning
Visual discrimination
Visual tasks
Visualization
Title Domain Invariant and Class Discriminative Feature Learning for Visual Domain Adaptation
URI https://ieeexplore.ieee.org/document/8362753
https://www.ncbi.nlm.nih.gov/pubmed/29870346
https://www.proquest.com/docview/2050059466
https://www.proquest.com/docview/2051065612
Volume 27
WOSCitedRecordID wos000434293500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6qE9FAp9LAXkSr1UatjEiWPniAoILogDbfcW2c6kWolm0e6G38-M4404tJV6ixTbsfzZ88iM5wP4XGSNLMpWJSVanRSo2sQVTZ5ghq5SeZsr4wLZhL65MbNZdbsFX8e7MIgYks_wlB9DLL9Z-J5_lU1NzjV1823Y1roc7mqNEQMmnA2RTaUTTWb_JiSZVtO761vO4TKnpEorxbzrz1RQ4FT5u3kZ1Mzl7v9NcA9eR3NSnA34v4Et7PZhN5qWIh7c1T68elZ38AB-ni9-23knrrtHcpVpbYXtGhH4McX5nAUJJ8iwIBRsIvZLFLEO6y9BRq74MV_19NU4ylljH4aA_lv4fnlx9-0qiQwLiSfltU6clNYYV2CWa8mKKldNYZpWt8ZL9BlJ5TZrrXFZ6oy2XMsra4ylRZWk-8hYeQc73aLDDyBIFerWpcrJ0hcmLSuFKXonM0-uLonjCUw3i177WH6cWTDu6-CGpFVNMNUMUx1hmsCXscfDUHrjH20PGI2xXQRiAkcbXOt4NlfUT4UqNSXN6dP4mk4Vh0psh4s-tCFfmZlDJ_B-2A_j2LIiGZcX5eGfv_kRXvLMhjy0I9hZL3s8hhf-cT1fLU9o687MSdi6T2GH6D4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqNT2UFqgdIG2rtRLpYZNHDtxjoiHWJWuOGxbbpHtOGglyKLdDb-fGccbcWiRuEWK7Vgeex6Z8fcBfBNJxUVWyyhzOo-Ek3VkRJVGLnGmkGmdSmU82UQ-Hqurq-JyDX70d2Gcc774zB3So8_lVzPb0q-yoUoJUzd9ARtSCB53t7X6nAFRzvrcpsyjHB3_VVIyLoaT0SVVcalDNKaFJOb1R0bIs6r838H0huZs83lTfAdvg0PJjrod8B7WXLMFm8G5ZOHoLrbgzSPkwW34ezK71dOGjZp7DJZxdZluKuYZMtnJlFQJlciQKmTkJLZzxwIS6zVDN5f9mS5a_GoY5ajSd11Kfwd-n51Ojs-jwLEQWTRfy8hwrpUywiVpzslUpbISqqrzWlnubIJ6uU5qrUwSG5VrQvNKKqVxUTlaP3RXPsB6M2vcR2BoDPPaxNLwzAoVZ4V0sbOGJxaDXVTIAxiuFr20AYCceDBuSh-IxEWJYipJTGUQ0wC-9z3uOvCNJ9pukzT6dkEQAzhYybUMp3OB_aTHqclwTl_713iuKFmiGzdrfRuMlok7dAC73X7ox-YFarlUZHv__uYXeHU--XVRXozGP_fhNc2yq0o7gPXlvHWf4KW9X04X889-Az8AIlTqnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Invariant+and+Class+Discriminative+Feature+Learning+for+Visual+Domain+Adaptation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Li%2C+Shuang&rft.au=Song%2C+Shiji&rft.au=Huang%2C+Gao&rft.au=Ding%2C+Zhengming&rft.date=2018-09-01&rft.eissn=1941-0042&rft.volume=27&rft.issue=9&rft.spage=4260&rft_id=info:doi/10.1109%2FTIP.2018.2839528&rft_id=info%3Apmid%2F29870346&rft.externalDocID=29870346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon