A pseudo-polynomial algorithm for optimal capacitor placement on electric power distribution networks

► The paper rescues dynamic programming for solving the capacitor allocation problem. ► Optimal solutions are obtained with linear time complexity for real life networks. ► Both fixed and switched capacitors are considered. ► Case studies certify the methodology with real world applications. Allocat...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:European journal of operational research Ročník 222; číslo 1; s. 149 - 156
Hlavní autori: Vizcaino González, José Federico, Lyra, Christiano, Usberti, Fábio Luiz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.10.2012
Elsevier
Elsevier Sequoia S.A
Predmet:
ISSN:0377-2217, 1872-6860
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:► The paper rescues dynamic programming for solving the capacitor allocation problem. ► Optimal solutions are obtained with linear time complexity for real life networks. ► Both fixed and switched capacitors are considered. ► Case studies certify the methodology with real world applications. Allocation of shunt capacitor banks on radial electric power distribution networks allow reduction of energy losses and aggregated benefits. Four decades ago Durán proposed the use of dynamic programming to find optimal capacitor placement on these networks; however, with the restricting assumption of single-ended networks, which precluded its application to real capacitor allocation problems. Subsequently heuristic methods prevailed in the capacitor allocation literature. Here the Extended Dynamic Programming Approach (EDP) lifts Durán’s restricting assumption; a richer definition of state and the projection of multidimensional informations into equivalent one-dimensional representations are the supporting concepts. In addition to allow consideration of multi-ended networks, EDP deals with other requirements of capacitor allocation studies, including the use of both fixed and switched capacitors and representation of voltage drops along the networks. When switched capacitors are considered the optimization procedure also solves the capacitor control problem, obtaining the best tap adjustments for them. Case studies with real scale distribution networks put into perspective the benefits of the methodology; EDP has the appeal of providing global optimal solutions with pseudo-polynomial computational complexity in the worst-case, and with linear complexity for practical applications.
Bibliografia:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2012.03.042