Equivalence between polyhedral projection, multiple objective linear programming and vector linear programming

Let a polyhedral convex set be given by a finite number of linear inequalities and consider the problem to project this set onto a subspace. This problem, called polyhedral projection problem, is shown to be equivalent to multiple objective linear programming. The number of objectives of the multipl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical methods of operations research (Heidelberg, Germany) Ročník 84; číslo 2; s. 411 - 426
Hlavní autoři: Lohne, Andreas, Weising, Benjamin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2016
Springer Nature B.V
Témata:
ISSN:1432-2994, 1432-5217
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let a polyhedral convex set be given by a finite number of linear inequalities and consider the problem to project this set onto a subspace. This problem, called polyhedral projection problem, is shown to be equivalent to multiple objective linear programming. The number of objectives of the multiple objective linear program is by one higher than the dimension of the projected polyhedron. The result implies that an arbitrary vector linear program (with arbitrary polyhedral ordering cone) can be solved by solving a multiple objective linear program (i.e. a vector linear program with the standard ordering cone) with one additional objective space dimension.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:1432-2994
1432-5217
DOI:10.1007/s00186-016-0554-0