An optimal bit complexity randomized distributed MIS algorithm

We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O (log n ) with probability 1 − o ( n −1 ), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O (log n ). We assume that the graph is anonymou...

Full description

Saved in:
Bibliographic Details
Published in:Distributed computing Vol. 23; no. 5-6; pp. 331 - 340
Main Authors: Métivier, Y., Robson, J. M., Saheb-Djahromi, N., Zemmari, A.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer-Verlag 01.04.2011
Springer Nature B.V
Springer Verlag
Series:Lecture notes in computer science
Subjects:
ISSN:0178-2770, 1432-0452
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O (log n ) with probability 1 − o ( n −1 ), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O (log n ). We assume that the graph is anonymous: unique identities are not available to distinguish between the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomized distributed MIS algorithms (deduced from the randomized PRAM algorithm due to Luby (SIAM J. Comput. 15:1036–1053, 1986 )) for general graphs which is O (log 2 n ) per channel (it halts in time O (log n ) and the size of each message is log n ). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices and we provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Luby’s algorithm presented by Lynch (Distributed algorithms. Morgan Kaufman 1996 ) and by Wattenhofer ( http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf , 2007). This question remains open for the variant given by Peleg (Distributed computing—a locality-sensitive approach 2000 ).
AbstractList We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O(log n) with probability 1 - o(n -1), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O(log n). We assume that the graph is anonymous: unique identities are not available to distinguish between the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomized distributed MIS algorithms (deduced from the randomized PRAM algorithm due to Luby (SIAM J. Comput. 15:1036--1053, 1986)) for general graphs which is O(log2 n) per channel (it halts in time O(log n) and the size of each message is log n). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices and we provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Luby's algorithm presented by Lynch (Distributed algorithms. Morgan Kaufman 1996) and by Wattenhofer (http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf, 2007). This question remains open for the variant given by Peleg (Distributed computing--a locality-sensitive approach 2000).
We present a randomised distributed maximal independent set (MIS) algorithm for arbitrary graphs of size $n$ that halts in time $O(\log n)$ with probability $1-o(n^{-1})$, each message containing $1$ bit: thus its bit complexity per channel is $O(\log n)$ (the bit complexity is the number of bits we need to solve a distributed task, it measures the communication complexity). We assume that the graph is anonymous: unique identities are not available to distinguish the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomised distributed MIS algorithms (deduced from the randomised PRAM algorithm due to Luby) for general graphs which is $O(\log^2 n)$ per channel (it halts in time $O(\log n)$ and the size of each message is $\log n$). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices. We provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Luby's algorithm presented by Lynch and by Wattenhofer. This question remains open for the variant given by Peleg.
We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O (log n ) with probability 1 − o ( n −1 ), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O (log n ). We assume that the graph is anonymous: unique identities are not available to distinguish between the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomized distributed MIS algorithms (deduced from the randomized PRAM algorithm due to Luby (SIAM J. Comput. 15:1036–1053, 1986 )) for general graphs which is O (log 2 n ) per channel (it halts in time O (log n ) and the size of each message is log n ). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices and we provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Luby’s algorithm presented by Lynch (Distributed algorithms. Morgan Kaufman 1996 ) and by Wattenhofer ( http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf , 2007). This question remains open for the variant given by Peleg (Distributed computing—a locality-sensitive approach 2000 ).
We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O(log n) with probability 1 a o(n super(a1)), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O(log n). We assume that the graph is anonymous: unique identities are not available to distinguish between the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomized distributed MIS algorithms (deduced from the randomized PRAM algorithm due to Luby (SIAM J. Comput. 15:1036a1053, 1986)) for general graphs which is O(log super(2) n) per channel (it halts in time O(log n) and the size of each message is log n). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices and we provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Lubyas algorithm presented by Lynch (Distributed algorithms. Morgan Kaufman 1996) and by Wattenhofer (http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf, 2007). This question remains open for the variant given by Peleg (Distributed computingaa locality-sensitive approach 2000).
We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O(log n) with probability 1 - o(n ^sup -1^), and only needs messages containing 1 bit. Thus, its bit complexity par channel is O(log n). We assume that the graph is anonymous: unique identities are not available to distinguish between the processes; we only assume that each vertex distinguishes between its neighbours by locally known channel names. Furthermore we do not assume that the size (or an upper bound on the size) of the graph is known. This algorithm is optimal (modulo a multiplicative constant) for the bit complexity and improves the best previous randomized distributed MIS algorithms (deduced from the randomized PRAM algorithm due to Luby (SIAM J. Comput. 15:1036-1053, 1986)) for general graphs which is O(log^sup 2^ n) per channel (it halts in time O(log n) and the size of each message is log n). This result is based on a powerful and general technique for converting unrealistic exchanges of messages containing real numbers drawn at random on each vertex of a network into exchanges of bits. Then we consider a natural question: what is the impact of a vertex inclusion in the MIS on distant vertices? We prove that this impact vanishes rapidly as the distance grows for bounded-degree vertices and we provide a counter-example that shows this result does not hold in general. We prove also that these results remain valid for Luby's algorithm presented by Lynch (Distributed algorithms. Morgan Kaufman 1996) and by Wattenhofer (http://dcg.ethz.ch/lectures/fs08/distcomp/lecture/chapter4.pdf, 2007). This question remains open for the variant given by Peleg (Distributed computing--a locality-sensitive approach 2000).[PUBLICATION ABSTRACT]
Author Métivier, Y.
Zemmari, A.
Saheb-Djahromi, N.
Robson, J. M.
Author_xml – sequence: 1
  givenname: Y.
  surname: Métivier
  fullname: Métivier, Y.
  organization: Université de Bordeaux, LaBRI UMR CNRS 5800
– sequence: 2
  givenname: J. M.
  surname: Robson
  fullname: Robson, J. M.
  organization: Université de Bordeaux, LaBRI UMR CNRS 5800
– sequence: 3
  givenname: N.
  surname: Saheb-Djahromi
  fullname: Saheb-Djahromi, N.
  organization: Université de Bordeaux, LaBRI UMR CNRS 5800
– sequence: 4
  givenname: A.
  surname: Zemmari
  fullname: Zemmari, A.
  email: zemmari@labri.fr
  organization: Université de Bordeaux, LaBRI UMR CNRS 5800
BackLink https://hal.science/hal-00370970$$DView record in HAL
BookMark eNqFkctq3DAYhUWZQCdpH6A7003IwumviyV5UxiG5gJTuki6FrIsZzTY1kTShCZPHxmHFAJpF0K370jncI7RYvSjRegLhnMMIL5FAMZ4CRjyILisPqAlZpSUwCqyQEvAQpZECPiIjmPcAQDFmCzR99VY-H1yg-6LxqXC-GHf2z8uPRZBj60f3JNti9bFFFxzSHn98_qm0P2dDy5th0_oqNN9tJ9f5hP0--LH7fqq3Py6vF6vNqVhmKaSskpLg8FqyZvaMKjrxlrRMpY3DaFtRUhtO0NE2wrgrW4M7xpuKDddXfGKnqCz-d2t7tU-ZLvhUXnt1NVqo6aznEdALeABZ_Z0ZvfB3x9sTGpw0di-16P1h6hqEDUlkv-flBJ4RSo5kV_fkDt_CGOOrGS-x5JzmiE8Qyb4GIPtXp1iUFNLam5J5ZbU1JKagok3GuOSTs6PKWjX_1NJZmXMv4x3Nvy19L7oGZrNpgo
CitedBy_id crossref_primary_10_1016_j_ic_2013_10_005
crossref_primary_10_1016_j_ipl_2024_106531
crossref_primary_10_1016_j_ic_2022_104925
crossref_primary_10_1016_j_ic_2016_09_006
crossref_primary_10_1145_2678280
crossref_primary_10_1007_s00446_020_00373_4
crossref_primary_10_1137_19M1243026
crossref_primary_10_1007_s00446_016_0269_8
crossref_primary_10_1016_j_ic_2018_10_001
crossref_primary_10_1109_TVT_2023_3244043
crossref_primary_10_1016_j_tcs_2016_11_028
crossref_primary_10_1016_j_tcs_2020_09_018
crossref_primary_10_1371_journal_pcbi_1009492
crossref_primary_10_1007_s00446_025_00485_9
crossref_primary_10_1109_TBDATA_2018_2869165
Cites_doi 10.1201/9781420010848
10.1137/0215074
10.1016/0196-6774(86)90019-2
10.1137/S0097539793254571
10.1137/0221015
10.1007/s00446-008-0070-4
10.1006/inco.1994.1002
10.1109/SFCS.1989.63504
10.1145/1146381.1146387
10.1007/978-3-662-12788-9
10.1145/800135.804414
10.1007/11561927_21
10.1137/1.9780898719772
10.1017/CBO9781139168724
10.1145/1326554.1326557
10.1145/800057.808690
10.1145/1011767.1011811
ContentType Journal Article
Copyright Springer-Verlag 2010
Springer-Verlag 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag 2010
– notice: Springer-Verlag 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7RQ
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
U9A
1XC
DOI 10.1007/s00446-010-0121-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Career & Technical Education Database (ProQuest)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Career and Technical Education (Alumni Edition)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts


Computer and Information Systems Abstracts
Computer Science Database
Database_xml – sequence: 1
  dbid: 7RQ
  name: Career & Technical Education Database (ProQuest)
  url: https://search.proquest.com/career
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0452
EndPage 340
ExternalDocumentID oai:HAL:hal-00370970v1
2299333941
10_1007_s00446_010_0121_5
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
28-
29G
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7RQ
8AO
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAS
LLZTM
M0N
M4Y
MA-
N2Q
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YZZ
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZCA
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
U9A
PUEGO
1XC
ID FETCH-LOGICAL-c413t-345a8c10ea86b9c4099bee7d449c4b23d5229efc27dd706dabc6fb6c36cf95653
IEDL.DBID RSV
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288716600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-2770
IngestDate Sat Nov 29 15:10:24 EST 2025
Thu Oct 02 05:34:58 EDT 2025
Thu Sep 04 17:21:28 EDT 2025
Tue Dec 02 15:59:18 EST 2025
Tue Nov 18 21:56:24 EST 2025
Sat Nov 29 06:13:25 EST 2025
Fri Feb 21 02:40:08 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Neighbour Degree
Arbitrary Graph
Distant Vertex
Active Neighbour
Asymptotic Independence
bit complexity
Distributed graph algorithm
randomized algorithm
maximal independent set
Language English
License http://www.springer.com/tdm
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MeetingName International Colloquium on Structural Information and Communication Complexity
MergedId FETCHMERGED-LOGICAL-c413t-345a8c10ea86b9c4099bee7d449c4b23d5229efc27dd706dabc6fb6c36cf95653
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 858118663
PQPubID 23500
PageCount 10
ParticipantIDs hal_primary_oai_HAL_hal_00370970v1
proquest_miscellaneous_907932861
proquest_miscellaneous_880652581
proquest_journals_858118663
crossref_primary_10_1007_s00446_010_0121_5
crossref_citationtrail_10_1007_s00446_010_0121_5
springer_journals_10_1007_s00446_010_0121_5
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSeriesTitle Lecture notes in computer science
PublicationTitle Distributed computing
PublicationTitleAbbrev Distrib. Comput
PublicationYear 2011
Publisher Springer-Verlag
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer-Verlag
– name: Springer Nature B.V
– name: Springer Verlag
References Chalopin, Métivier (CR4) 2007; 80
Luby (CR15) 1986; 15
CR2
Moscibroda, Wattenhofer (CR17) 2008; 21
CR5
CR8
CR19
CR7
Alon, Babai, Itai (CR1) 1986; 7
CR9
CR16
Linial (CR14) 1992; 21
CR12
CR23
CR11
CR22
CR10
Ghosh (CR6) 2006
Bodlaender, Moran, Warmuth (CR3) 1994; 114
Santoro (CR20) 2007
Naor, Stockmeyer (CR18) 1995; 24
Kushilevitz, Nisan (CR13) 1999
Tel (CR21) 2000
H.L. Bodlaender (121_CR3) 1994; 114
E. Kushilevitz (121_CR13) 1999
M. Naor (121_CR18) 1995; 24
G. Tel (121_CR21) 2000
J. Chalopin (121_CR4) 2007; 80
N. Alon (121_CR1) 1986; 7
121_CR16
N. Linial (121_CR14) 1992; 21
121_CR19
T. Moscibroda (121_CR17) 2008; 21
121_CR10
121_CR5
N. Santoro (121_CR20) 2007
121_CR2
121_CR12
121_CR23
121_CR11
121_CR22
121_CR8
S. Ghosh (121_CR6) 2006
121_CR9
121_CR7
M. Luby (121_CR15) 1986; 15
References_xml – year: 2006
  ident: CR6
  publication-title: Distributed Systems—An Algorithmic Approach
  doi: 10.1201/9781420010848
– ident: CR22
– ident: CR19
– ident: CR2
– volume: 15
  start-page: 1036
  year: 1986
  end-page: 1053
  ident: CR15
  article-title: A simple parallel algorithm for the maximal independent set problem
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215074
– ident: CR16
– ident: CR12
– volume: 7
  start-page: 567
  issue: 4
  year: 1986
  end-page: 583
  ident: CR1
  article-title: A fast and simple randomized parallel algorithm for the maximal independent set
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(86)90019-2
– volume: 24
  start-page: 1259
  issue: 6
  year: 1995
  end-page: 1277
  ident: CR18
  article-title: What can be computed locally?
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793254571
– year: 2007
  ident: CR20
  publication-title: Design and Analysis of Distributed Algorithms
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 21
  start-page: 193
  year: 1992
  end-page: 201
  ident: CR14
  article-title: Locality in distributed graph algorithms
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221015
– year: 1999
  ident: CR13
  publication-title: Communication Complexity
– volume: 21
  start-page: 271
  issue: 4
  year: 2008
  end-page: 284
  ident: CR17
  article-title: Coloring unstructured radio networks
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-008-0070-4
– ident: CR5
– year: 2000
  ident: CR21
  publication-title: Introduction to Distributed Algorithms
– ident: CR7
– ident: CR8
– volume: 114
  start-page: 34
  issue: 2
  year: 1994
  end-page: 50
  ident: CR3
  article-title: The distributed bit complexity of the ring: from the anonymous case to the non-anonymous case
  publication-title: Inf. comput.
  doi: 10.1006/inco.1994.1002
– ident: CR23
– volume: 80
  start-page: 221
  issue: 1-3
  year: 2007
  end-page: 246
  ident: CR4
  article-title: An efficient message passing election algorithm based on mazurkiewicz’s algorithm
  publication-title: Fundam. Inform.
– ident: 121_CR2
  doi: 10.1109/SFCS.1989.63504
– volume-title: Design and Analysis of Distributed Algorithms
  year: 2007
  ident: 121_CR20
– volume: 114
  start-page: 34
  issue: 2
  year: 1994
  ident: 121_CR3
  publication-title: Inf. comput.
  doi: 10.1006/inco.1994.1002
– ident: 121_CR12
  doi: 10.1145/1146381.1146387
– volume: 21
  start-page: 271
  issue: 4
  year: 2008
  ident: 121_CR17
  publication-title: Distrib. Comput.
  doi: 10.1007/s00446-008-0070-4
– ident: 121_CR7
  doi: 10.1007/978-3-662-12788-9
– ident: 121_CR16
– ident: 121_CR23
  doi: 10.1145/800135.804414
– volume: 21
  start-page: 193
  year: 1992
  ident: 121_CR14
  publication-title: SIAM J. Comput.
  doi: 10.1137/0221015
– volume: 7
  start-page: 567
  issue: 4
  year: 1986
  ident: 121_CR1
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(86)90019-2
– ident: 121_CR10
  doi: 10.1007/11561927_21
– ident: 121_CR19
  doi: 10.1137/1.9780898719772
– volume-title: Introduction to Distributed Algorithms
  year: 2000
  ident: 121_CR21
  doi: 10.1017/CBO9781139168724
– volume: 80
  start-page: 221
  issue: 1-3
  year: 2007
  ident: 121_CR4
  publication-title: Fundam. Inform.
– ident: 121_CR9
– ident: 121_CR5
  doi: 10.1145/1326554.1326557
– ident: 121_CR8
  doi: 10.1145/800057.808690
– ident: 121_CR22
– volume: 24
  start-page: 1259
  issue: 6
  year: 1995
  ident: 121_CR18
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539793254571
– ident: 121_CR11
  doi: 10.1145/1011767.1011811
– volume-title: Communication Complexity
  year: 1999
  ident: 121_CR13
– volume: 15
  start-page: 1036
  year: 1986
  ident: 121_CR15
  publication-title: SIAM J. Comput.
  doi: 10.1137/0215074
– volume-title: Distributed Systems—An Algorithmic Approach
  year: 2006
  ident: 121_CR6
  doi: 10.1201/9781420010848
SSID ssj0003112
Score 2.0719297
Snippet We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O (log n ) with probability 1 − o...
We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O(log n) with probability 1 - o(n...
We present a randomized distributed maximal independent set (MIS) algorithm for arbitrary graphs of size n that halts in time O(log n) with probability 1 a o(n...
We present a randomised distributed maximal independent set (MIS) algorithm for arbitrary graphs of size $n$ that halts in time $O(\log n)$ with probability...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 331
SubjectTerms Algorithms
Channels
Complexity
Computer Communication Networks
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Distributed, Parallel, and Cluster Computing
Exchange
Graphs
Lectures
Management information systems
Messages
Software Engineering/Programming and Operating Systems
Theory of Computation
SummonAdditionalLinks – databaseName: Career & Technical Education Database (ProQuest)
  dbid: 7RQ
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEC587MGLr11xfNEsnnZpNukk3emLMoiioLK6D7yF9GN0wEnUiSL-eqsySdYV9OItjy-kSVVXVXdVvgLY1kThbWzCpVWaxzJwPE-N4MKTOXSJyevfo_8eq9PT9OJC_2xqc8ZNWWVrE2tD7UpLe-Q_0iQNiZwt2r255dQ0ipKrTQeNaZhFPy1JzdX5WWeIo7BOdlIDei6U6pKawYRDNKalNFVliZAn_7ml6SsqinwRcb5Kkta-52Dhg6NehPkm6GT9iZYswZQvlmGhbejAmvn9GXb6BSvRhowQbIYVq-vN_SMG6gxdmitHwyfvmCOuXWqThccnR79Yfn2J76yuRl_gz8H-771D3jRY4BZ9V8WjOMlTGwY-T6XRFpd62nivXBzjiRGRw-BM-4EVyjkVSJcbKwdG2kjaAa6rkmgFZoqy8KvAvEmkHgShx4gjdqEzTqAbNDaWAoMeKXsQtN83sw37ODXBuM463uRaJBmKJCORZEkPvnWP3EyoN94Df0WhdTgizT7sH2d0jSh2Aq2Ch7AH662UsmaqjrNORD1g3V2cY5Q4yQtf3iOEss8CcW9DNBENilQi5HurLP_e8eaw194d0TrMTbawqVBoA2aqu3u_CZ_sQzUc323Vyv4M6k0CVQ
  priority: 102
  providerName: ProQuest
Title An optimal bit complexity randomized distributed MIS algorithm
URI https://link.springer.com/article/10.1007/s00446-010-0121-5
https://www.proquest.com/docview/858118663
https://www.proquest.com/docview/880652581
https://www.proquest.com/docview/907932861
https://hal.science/hal-00370970
Volume 23
WOSCitedRecordID wos000288716600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: P5Z
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Career & Technical Education Database (ProQuest)
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: 7RQ
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/career
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: K7-
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0452
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003112
  issn: 0178-2770
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-tsIe9wD5FB6usaU-bLCVObMcvSGUCgWBVVzaE9hLFH4VKNJnagND--p3dJGMTTNpeonxcEuuc853zO_8O4J3yFN7acCqMVDQVkaVFphllzg-HlusiLI8-O5GjUXZ-rsbNOu5lm-3eQpJhpO4WuwXskQbwNmYx5T1YR2-X-XoNk9OzbvhN4gBx-rLzlEnZQZn3PeI3Z9S79KmQd-LMP6DR4HEONv-rrU9howkwyXD1RTyDR658Dptt8QbS2PIL2B2WpMLxYo7CelaTkFvubjEoJ-i-bDWf_XCWWM-r60ti4f6no1NSXF1Ui1l9OX8JXw_2v3w8pE0xBWrQT9U0SXmRmThyRSa0MjitU9o5adMUDzRLLAZiyk0Nk9bKSNhCGzHVwiTCTHEOxZNXsFZWpdsC4jQXahrFDqOL1MZWW4YuT5tUMAxwhOhD1Go1Nw3TuC94cZV3HMlBPznqJ_f6yXkf3ne3fF_RbPxN-C12VSfnCbIPhye5P-fpdCIlo5u4D9ttT-aNWS7zjGexZ_hL-kC6q2hPHiQpSlddo4hHmhnKPSyiPKkgywSKfGi7_9c7Hmz263-S3oYnq9_XPkloB9bqxbV7A4_NTT1bLgbQk5PPA1jf2x-NJ3h0LClux_zbIBjDTw5k_Ew
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FgAQXwiqGsLQQXEAt7LbdbR8AjYBoRjMZIRFQbo17GTJSxg4ZJ0D-Kf9IlTcWKbnlwM1LWd5ev65ylV8BPM1IwtvYhEurMh7LwPE8NYILT3ToEpPXv0d_nqrZLN3dzT6swWn3LwyVVXacWBO1Ky19I3-ZJmlI4mzRm4NvnJpGUXK166DRoGLif37HiG31avwOX-8zIbbe77wd8bapALfI1xWP4iRPbRj4PJUmsxjeZMZ75eIYV4yIHDokmZ9boZxTgXS5sXJupI2knWMsQU0ikPEvx1GqaFhNFO-JPwrr5Co1vOdCqT6JGjSapTGF7lQFJkKe_DUNXtqjIsw_PNx_krL1XLe18Z89pRtwvXWq2bAZBTdhzRe3YKNrWMFa_roNr4cFK5Ejl2hsFhWr6-n9DwxEGE7ZrlwuTrxjjrSEqQ0YLm-PP7J8_yveY7W3vAOfLuQu7sJ6URb-HjBvEpnNg9CjRxW70BkncJo3NpYCnTopBxB071PbVl2dmnzs614XuoaARghogoBOBvC8P-SgkRY5z_gJgqS3I1Hw0XCqaRtJCAWZCo7DAWx2qNAtFa10D4kBsH4vcgglhvLCl0doQtl1gXZnm2QkpChSiSYvOnD-PseZl33_3Ct6DFdHO9tTPR3PJptwrflcT0VRD2C9OjzyD-GKPa4Wq8NH9UBj8OWiMfsLy_hgdA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Zb9NAEB6VglBfKKcayrFC8AJa1V7bu_YDRRElatQQReJQxYvxHqaRGrs0bjn-Wf8dM744pPatD7w59kRZx5-_mfGMvwF4mpCEtzYRl0YlPJSe5VmsBReO6NBGOqtfj_44UdNpvL-fzFbgrHsXhtoqO06sidqWhp6Rb8VR7JM4W7CVt10Rs53Rq6OvnAZIUaG1m6bRIGTP_fiG2dvy5XgHL_UzIUZv3r_e5e2AAW6QuysehFEWG99zWSx1YjDVSbRzyoYhftAisBicJC43QlmrPGkzbWSupQmkyTGvoIERyP5XFaaY1E04iz71TiDw60Ir4h2BqFRfUPUa_dKQ0njqCBM-j_5yiVcOqCHzj2j3nwJt7fdG6__xP3YTbrTBNhs2d8ctWHHFbVjvBlmwltfuwPawYCVy5wKN9bxidZ-9-44JCkNXbsvF_KezzJLGMI0Hw-2343csO_yC51gdLO7Ch0s5i3uwWpSF2wDmdCST3PMdRlqh9a22At2_NqEUGOxJOQCvu7apaVXXafjHYdrrRddwSBEOKcEhjQbwvP_KUSM5cpHxEwRMb0di4bvDSUr7SFrIS5R36g9gs0NI2lLUMu3hMQDWH0VuoYJRVrjyBE2o6i7Q7nyThAQWRSzR5EUH1N-_ce6y71-4osdwHaGaTsbTvU1Ya57iU6_UA1itjk_cQ7hmTqv58vhRfc8x-HzZkP0FcTBpmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+bit+complexity+randomized+distributed+MIS+algorithm&rft.jtitle=Distributed+computing&rft.au=M%C3%A9tivier%2C+Y.&rft.au=Robson%2C+J.+M.&rft.au=Saheb-Djahromi%2C+N.&rft.au=Zemmari%2C+A.&rft.date=2011-04-01&rft.issn=0178-2770&rft.eissn=1432-0452&rft.volume=23&rft.issue=5-6&rft.spage=331&rft.epage=340&rft_id=info:doi/10.1007%2Fs00446-010-0121-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00446_010_0121_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2770&client=summon