Oxidative Conversion of Polyethylene Towards Di‐Carboxylic Acids: A Multi‐Analytical Approach
To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped....
Gespeichert in:
| Veröffentlicht in: | ChemSusChem Jg. 17; H. 7; S. e202301198 - n/a |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
08.04.2024
|
| Schlagworte: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.
The direct conversion of polyethylene towards di‐carboxylic acids with di‐oxygen as oxidant in the absence of any catalyst has been studied with the aim to provide new mechanistic insights. Using a combination of GC, NMR and IR, a thorough product analysis was performed. This multi‐analytical approach gave new mechanistic insights and provides new handles to study and design similar (catalytic) systems for the conversion of plastic waste. |
|---|---|
| AbstractList | To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste. To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste. The direct conversion of polyethylene towards di‐carboxylic acids with di‐oxygen as oxidant in the absence of any catalyst has been studied with the aim to provide new mechanistic insights. Using a combination of GC, NMR and IR, a thorough product analysis was performed. This multi‐analytical approach gave new mechanistic insights and provides new handles to study and design similar (catalytic) systems for the conversion of plastic waste. To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste. |
| Author | Weckhuysen, Bert M. Vollmer, Ina Van der Waal, Jan C. Smak, Tom J. Peinder, Peter Altink, Rinke |
| Author_xml | – sequence: 1 givenname: Tom J. surname: Smak fullname: Smak, Tom J. organization: Utrecht University – sequence: 2 givenname: Peter surname: Peinder fullname: Peinder, Peter organization: Utrecht University – sequence: 3 givenname: Jan C. surname: Van der Waal fullname: Van der Waal, Jan C. organization: TNO, Brightsite – sequence: 4 givenname: Rinke surname: Altink fullname: Altink, Rinke organization: TNO, Brightsite – sequence: 5 givenname: Ina surname: Vollmer fullname: Vollmer, Ina email: i.vollmer@uu.nl organization: Utrecht University – sequence: 6 givenname: Bert M. orcidid: 0000-0001-5245-1426 surname: Weckhuysen fullname: Weckhuysen, Bert M. email: b.m.weckhuysen@uu.nl organization: Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38009265$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctq3DAUhkVJaS7ttssi6KabmUqWLNvdGTe9QEoKmUV3QpaOiILGmkp2Eu_yCH3GPEk0TJJCIGR1BPq-X-L8h2hvCAMg9J6SJSWk-KxT0suCFIxQ2tSv0AGtBV-Ugv_Zezwzuo8OU7ogRJBGiDdon9WENIUoD5A6vXZGje4ScBeGS4jJhQEHi38HP8N4PnsYAK_ClYom4a_u9uZfp2IfrmfvNG61M-kLbvGvyY_bu3ZQfh6dVh63m00MSp-_Ra-t8gne3c8jtPp2vOp-LE5Ov__s2pOF5pTVC6P7AqjtG85sWQpgPTOMQlUWNdRVxasKeGWpbXptKTF9nspaS3llQBjOjtCnXWx-9e8EaZRrlzR4rwYIU5JFnZMFFbzI6Mcn6EWYYv55kowwLlhTsSZTH-6pqV-DkZvo1irO8mF3GeA7QMeQUgQrtRvzKsMwRuW8pERuK5LbiuRjRVlbPtEekp8Vmp1w5TzML9CyOzvr_rt3GqCmdw |
| CitedBy_id | crossref_primary_10_1021_acsanm_5c01448 crossref_primary_10_1093_jimb_kuae050 crossref_primary_10_1007_s11426_024_2252_9 crossref_primary_10_1007_s11426_025_2748_4 crossref_primary_10_1002_aocs_70022 crossref_primary_10_1021_acscatal_4c04987 crossref_primary_10_1007_s11426_024_2522_x crossref_primary_10_1002_aocs_12919 crossref_primary_10_1007_s44339_025_00026_w crossref_primary_10_1016_j_cej_2024_158823 crossref_primary_10_1039_D4CY01384K crossref_primary_10_1360_TB_2024_0975 crossref_primary_10_1016_j_cej_2025_168475 |
| Cites_doi | 10.1021/acs.iecr.7b04091 10.1016/j.polymdegradstab.2006.03.024 10.1016/S0141-3910(98)00208-0 10.1021/ja00519a018 10.1021/acssuschemeng.1c05013 10.1126/science.abo4626 10.1021/ma60050a038 10.3389/fchem.2020.00185 10.1021/acssuschemeng.9b02092 10.1016/j.biosystemseng.2004.02.010 10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B 10.1002/pen.760342402 10.1016/j.wasman.2017.07.044 10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G 10.1016/j.polymdegradstab.2018.07.011 10.1021/ma0359638 10.1002/anie.202104110 10.1021/ma60061a010 10.1002/ejoc.202300166 10.1016/j.polymdegradstab.2023.110306 10.1021/bk-2002-0819.ch017 10.1021/ja00046a021 10.1016/j.chempr.2020.11.020 10.1016/j.polymdegradstab.2013.07.017 10.1016/j.polymdegradstab.2006.03.022 10.1002/anie.202301927 10.1016/B978-008044374-4/50007-4 10.1021/acscentsci.7b00255 10.1016/S0957-4166(00)00444-4 10.1002/anie.202110957 10.1016/S0141-3910(02)00029-0 10.1093/hesc/9780199270293.001.0001 10.1007/s11172-019-2443-1 10.1016/S0920-5861(03)00124-X 10.1021/ja00397a026 10.1002/ange.201908451 10.1016/j.polymdegradstab.2005.04.043 10.1021/acs.inorgchem.6b02322 10.1016/0021-9517(70)90244-7 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH – notice: 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.202301198 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Open Access: Wiley-Blackwell Open Access Journals url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | n/a |
| ExternalDocumentID | 38009265 10_1002_cssc_202301198 CSSC202301198 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: TNO/Brightsite – fundername: MCEC |
| GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION A00 NPM P4E WYJ 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4138-dcb2e1fb943f556e3b3d31e7528e877477e47f1f9bcf10db9bcafff147de6d43 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Fri Jul 11 11:21:49 EDT 2025 Sat Nov 29 14:28:50 EST 2025 Wed Feb 19 02:06:25 EST 2025 Tue Nov 18 21:56:35 EST 2025 Sat Nov 29 07:11:40 EST 2025 Wed Jun 11 08:25:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | chemical recycling aerobic oxidation spectroscopy di-carboxylic acids polyethylene |
| Language | English |
| License | Attribution 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4138-dcb2e1fb943f556e3b3d31e7528e877477e47f1f9bcf10db9bcafff147de6d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-5245-1426 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301198 |
| PMID | 38009265 |
| PQID | 3034639739 |
| PQPubID | 986333 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2894361642 proquest_journals_3034639739 pubmed_primary_38009265 crossref_citationtrail_10_1002_cssc_202301198 crossref_primary_10_1002_cssc_202301198 wiley_primary_10_1002_cssc_202301198_CSSC202301198 |
| PublicationCentury | 2000 |
| PublicationDate | April 8, 2024 |
| PublicationDateYYYYMMDD | 2024-04-08 |
| PublicationDate_xml | – month: 04 year: 2024 text: April 8, 2024 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 9 2019; 7 2004; 88 2021; 7 2006; 91 2017; 8 1979; 101 2003; 81 2012 2017; 69 1978; 11 2000; 3 1981; 103 2002; 76 1999; 65 2004 1976; 9 2001; 202 2016; 12 2022; 378 2020; 8 1998; 37 2023; 62 2018; 155 2013; 98 2023; 26 2019; 68 2000; 11 2004; 37 2023; 210 1992; 114 2017; 56 1994; 34 2021; 60 2019; 131 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 Yaremenko I. (e_1_2_8_33_1) 2016; 12 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 Remias J. E. (e_1_2_8_5_1) 2000; 3 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Claydan J. (e_1_2_8_43_1) 2012 Socrates G. (e_1_2_8_35_1) 2004 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
| References_xml | – volume: 7 start-page: 137 year: 2021 end-page: 145 publication-title: Chem – volume: 65 start-page: 5 year: 1999 end-page: 13 publication-title: Polym. Degrad. Stab. – volume: 60 start-page: 26506 year: 2021 end-page: 26510 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 1647 year: 2016 end-page: 1748 publication-title: J. Org. Chem. – volume: 60 start-page: 16101 year: 2021 end-page: 16108 publication-title: Angew. Chem. Int. Ed. – volume: 91 start-page: 398 year: 2006 end-page: 405 publication-title: Polym. Degrad. Stab. – volume: 37 start-page: 4484 year: 2004 end-page: 4487 publication-title: Macromolecules – volume: 103 start-page: 1742 year: 1981 end-page: 1749 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 7742 year: 1992 end-page: 7748 publication-title: J. Am. Chem. Soc. – volume: 76 start-page: 329 year: 2002 end-page: 340 publication-title: Polym. Degrad. Stab. – start-page: 961 year: 2012 – volume: 91 start-page: 2739 year: 2006 end-page: 2747 publication-title: Polym. Degrad. Stab. – volume: 155 start-page: 67 year: 2018 end-page: 83 publication-title: Polym. Degrad. Stab. – volume: 378 start-page: 207 year: 2022 end-page: 211 publication-title: G. T. Beckham, Science – start-page: 171 year: 2004 end-page: 185 – volume: 34 start-page: 1773 year: 1994 end-page: 1787 publication-title: Polym. Eng. Sci. – volume: 101 start-page: 7574 year: 1979 end-page: 7584 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 895 year: 2017 end-page: 903 publication-title: ACS Cent. Sci. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 4609 year: 2000 end-page: 4615 publication-title: Tetrahedron: Asymmetry – volume: 202 start-page: 775 year: 2001 end-page: 784 publication-title: Macromol. Chem. Phys. – volume: 9 start-page: 363 year: 1976 end-page: 365 publication-title: F. A. Macromolecules – volume: 81 start-page: 117 year: 2003 end-page: 135 publication-title: Catal. Today – start-page: 115 year: 2004 end-page: 154 – volume: 68 start-page: 480 year: 2019 end-page: 492 publication-title: Russ. Chem. Bull. – volume: 11 start-page: 50 year: 1978 end-page: 56 publication-title: Macromolecules – volume: 210 year: 2023 publication-title: Polym. Degrad. Stab. – volume: 98 start-page: 2383 year: 2013 end-page: 2390 publication-title: Polym. Degrad. Stab. – volume: 26 year: 2023 publication-title: Eur. J. Org. Chem. – volume: 69 start-page: 24 year: 2017 end-page: 58 publication-title: Waste Manage. – volume: 8 start-page: 185 year: 2020 publication-title: Front. Chem. – volume: 131 start-page: 14503 year: 2019 end-page: 14511 publication-title: Angew. Chem. – volume: 56 start-page: 1319 year: 2017 end-page: 1332 publication-title: Inorg. Chem. – volume: 37 start-page: 3306 year: 1998 end-page: 3308 publication-title: Angew. Chem. Int. Ed. – volume: 91 start-page: 2775 year: 2006 end-page: 2785 publication-title: Polym. Degrad. Stab. – volume: 9 start-page: 15722 year: 2021 end-page: 15738 publication-title: ACS Sustainable Chem. Eng. – volume: 3 start-page: 627 year: 2000 end-page: 629 publication-title: Acad. Sci. Paris – volume: 7 start-page: 11004 year: 2019 end-page: 11013 publication-title: ACS Sustainable Chem. Eng. – volume: 56 start-page: 14814 year: 2017 end-page: 14821 publication-title: Ind. Eng. Chem. Res. – volume: 88 start-page: 131 year: 2004 end-page: 143 publication-title: I. Biosyst. Eng. – volume: 3 start-page: 627 year: 2000 ident: e_1_2_8_5_1 publication-title: Acad. Sci. Paris – ident: e_1_2_8_14_1 doi: 10.1021/acs.iecr.7b04091 – ident: e_1_2_8_36_1 doi: 10.1016/j.polymdegradstab.2006.03.024 – ident: e_1_2_8_32_1 doi: 10.1016/S0141-3910(98)00208-0 – ident: e_1_2_8_20_1 – start-page: 115 volume-title: Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd year: 2004 ident: e_1_2_8_35_1 – ident: e_1_2_8_22_1 doi: 10.1021/ja00519a018 – ident: e_1_2_8_3_1 doi: 10.1021/acssuschemeng.1c05013 – ident: e_1_2_8_6_1 doi: 10.1126/science.abo4626 – ident: e_1_2_8_24_1 doi: 10.1021/ma60050a038 – ident: e_1_2_8_41_1 doi: 10.3389/fchem.2020.00185 – ident: e_1_2_8_8_1 doi: 10.1021/acssuschemeng.9b02092 – ident: e_1_2_8_12_1 doi: 10.1016/j.biosystemseng.2004.02.010 – ident: e_1_2_8_17_1 doi: 10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B – ident: e_1_2_8_13_1 doi: 10.1002/pen.760342402 – ident: e_1_2_8_2_1 doi: 10.1016/j.wasman.2017.07.044 – ident: e_1_2_8_11_1 doi: 10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G – ident: e_1_2_8_1_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.polymdegradstab.2018.07.011 – ident: e_1_2_8_34_1 doi: 10.1021/ma0359638 – ident: e_1_2_8_4_1 doi: 10.1002/anie.202104110 – ident: e_1_2_8_15_1 doi: 10.1021/ma60061a010 – ident: e_1_2_8_42_1 doi: 10.1002/ejoc.202300166 – ident: e_1_2_8_16_1 doi: 10.1016/j.polymdegradstab.2023.110306 – ident: e_1_2_8_7_1 doi: 10.1021/bk-2002-0819.ch017 – ident: e_1_2_8_19_1 – ident: e_1_2_8_23_1 doi: 10.1021/ja00046a021 – ident: e_1_2_8_27_1 doi: 10.1016/j.chempr.2020.11.020 – ident: e_1_2_8_37_1 doi: 10.1016/j.polymdegradstab.2013.07.017 – ident: e_1_2_8_10_1 doi: 10.1016/j.polymdegradstab.2006.03.022 – ident: e_1_2_8_25_1 doi: 10.1002/anie.202301927 – ident: e_1_2_8_40_1 doi: 10.1016/B978-008044374-4/50007-4 – ident: e_1_2_8_28_1 doi: 10.1021/acscentsci.7b00255 – ident: e_1_2_8_29_1 doi: 10.1016/S0957-4166(00)00444-4 – ident: e_1_2_8_31_1 doi: 10.1002/anie.202110957 – volume: 12 start-page: 1647 year: 2016 ident: e_1_2_8_33_1 publication-title: J. Org. Chem. – ident: e_1_2_8_9_1 doi: 10.1016/S0141-3910(02)00029-0 – start-page: 961 volume-title: Organic Chemistry, 2th year: 2012 ident: e_1_2_8_43_1 doi: 10.1093/hesc/9780199270293.001.0001 – ident: e_1_2_8_45_1 doi: 10.1007/s11172-019-2443-1 – ident: e_1_2_8_18_1 doi: 10.1016/S0920-5861(03)00124-X – ident: e_1_2_8_39_1 doi: 10.1021/ja00397a026 – ident: e_1_2_8_30_1 doi: 10.1002/ange.201908451 – ident: e_1_2_8_21_1 doi: 10.1016/j.polymdegradstab.2005.04.043 – ident: e_1_2_8_26_1 doi: 10.1021/acs.inorgchem.6b02322 – ident: e_1_2_8_44_1 doi: 10.1016/0021-9517(70)90244-7 |
| SSID | ssj0060966 |
| Score | 2.5039146 |
| Snippet | To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202301198 |
| SubjectTerms | Acids aerobic oxidation Carboxylic acids Catalytic converters chemical recycling Chromatography Crosslinking di-carboxylic acids Esterification Esters Flame ionization Gas chromatography Ketones Lactones Mass spectrometry Mathematical analysis NMR Nuclear magnetic resonance Polyethylene Polyethylenes Qualitative analysis Reaction products Recycling spectroscopy |
| Title | Oxidative Conversion of Polyethylene Towards Di‐Carboxylic Acids: A Multi‐Analytical Approach |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301198 https://www.ncbi.nlm.nih.gov/pubmed/38009265 https://www.proquest.com/docview/3034639739 https://www.proquest.com/docview/2894361642 |
| Volume | 17 |
| WOSCitedRecordID | wos001124455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7orqAv3tetrksEwaewTZo2iW9D18EHWQd3hHkrSZpAYZjKdFd23_Yn-Bv9JSbpRQcRQV96ISkNJyf5Tk5yvgPwmoc4Hu0U9ligMJOpxJqkBjNFLSU2D06HmGyCn52J1Uoufoni7_khJodbGBlxvg4DXOnu5CdpqOm6QEFIg4ZKcRv2CclESN5A2WKciwtvoMf4IlEwnBcZGWkbU3qy-_0uLP1ma-6arhF75g_-v9UP4f5gd6JZryiP4JbdPIa75Zju7Qmoj1dNHVnAURlOokc3GmodWrTra-u708OTRct4yrZDp833m2-l2ur26nrdGDQzTd29RTMUA3p9WSQ7iX5yNBtoy5_Ccv5uWb7HQ_4FbDy0CVwbTS1xWrLM5XlhM53VGbE8p8IKbzZybhl3xEltHElr7e_KOUcYr21Rs-wA9jbtxh4C4opQxwNTTC2Z8wtX43LtYTIV0q9Qa50AHqVfmYGbPKTIWFc9qzKtgtyqSW4JvJnqf-lZOf5Y82jszGoYnV3lYZuFDc1MJvBqKvbyDpslamPby66igZi-8ItJmsCzXgmmX3k9SyUt8gRo7Ou_tKEqz8_L6e35v3z0Au755_7IkDiCvYvtpX0Jd8zXi6bbHked91e-Esewf_pp_vnDD8uYBMg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apJBc-m7jJm1VKPQkYsmyLeW2OF1Sut2GZgu5GesFhmUd1klIbv0J_Y39JZXkR1lKKZSejC3ZFqMZzWg08w3A29zn8UhbYacLKsxELLAkscKsooYSk3qnQyg2kc_n_PxcnPbRhD4XpsOHGB1uXjLCeu0F3DukD3-hhqq29RiE1LOo4Hdhmzlecky-ffxl-nU2LMeZs9FDihHPGE6zhAzIjTE93PzCpmb6zdzctF6D-pk--A8Dfwj3e9sTTTpmeQR3zOox7BRDybcnUH2-qXVAAkeFj0YPrjTUWHTaLG-Nm1KnogxahEjbFh3XP759L6q1bG5ul7VCE1Xr9ghNUEjqdW0B8CT4ytGkhy5_Covp-0VxgvsaDFg59caxVpIaYqVgiU3TzCQy0QkxeUq54c50zHPDckuskMqSWEt3ray1hOXaZJolz2Br1azMHqC8ItTmHi1GC2bd5lXZVDpVGXPhdqlaRoAH8peqxyf3ZTKWZYesTEtPt3KkWwTvxv4XHTLHH3seDLNZ9hLalk51M3-omYgI3ozNjt7-wKRameaqLakHp8_chpJG8LzjgvFXCfdwVVkaAQ2T_ZcxlMXZWTHevfiXl17Dzsni06ycfZh_3Idd97wLIeIHsHW5vjIv4Z66vqzb9ateBH4C198Hxg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orKgvXte1umoEwaeyTZo2jW9Dx0FxGQd3hH0LzQ0Kw3SZ7i67b_4Ef6O_xCS9yCAiiE-lTdqGk5ycS875DsAb5vN4pK1iJwuqmPKExxInKqYVMQSbzDsdQrEJtlgUp6d82UcT-lyYDh9idLh5zgj7tWdwc6bt0S_UUNW2HoOQ-CXKi5uwR30lmQnszb7Mvx4P23HudPSQYlTkNM7yFA_IjQk52v3CrmT6Td3c1V6D-Jnf_w8DfwD3et0TTbvF8hBumM0juFMOJd8eQ_X5qtYBCRyVPho9uNJQY9GyWV8bN6VORBm0CpG2LZrVP759L6utbK6u17VCU1Xr9h2aopDU69oC4EnwlaNpD12-D6v5-1X5Ie5rMMTKibci1koSg63kNLVZlptUpjrFhmWkMIVTHRkzlFlsuVQWJ1q6a2WtxZRpk2uaPoHJptmYp4BYhYllHi1Gc2qd8apsJp2oTArurFQtI4gH8gvV45P7Mhlr0SErE-HpJka6RfB27H_WIXP8sefhMJui59BWONFN_aFmyiN4PTY7evsDk2pjmotWEA9OnzuDkkRw0K2C8Vdp4eGq8iwCEib7L2MQ5clJOd49-5eXXsHt5Wwujj8uPj2Hu-5xF0FUHMLkfHthXsAtdXlet9uXPQf8BFcyB0E |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Conversion+of+Polyethylene+Towards+Di%E2%80%90Carboxylic+Acids%3A+A+Multi%E2%80%90Analytical+Approach&rft.jtitle=ChemSusChem&rft.au=Smak%2C+Tom+J&rft.au=de+Peinder%2C+Peter&rft.au=Jan+C+Van+der+Waal&rft.au=Rinke+Altink&rft.date=2024-04-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=7&rft_id=info:doi/10.1002%2Fcssc.202301198&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |