Oxidative Conversion of Polyethylene Towards Di‐Carboxylic Acids: A Multi‐Analytical Approach

To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 17; H. 7; S. e202301198 - n/a
Hauptverfasser: Smak, Tom J., Peinder, Peter, Van der Waal, Jan C., Altink, Rinke, Vollmer, Ina, Weckhuysen, Bert M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 08.04.2024
Schlagworte:
ISSN:1864-5631, 1864-564X, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste. The direct conversion of polyethylene towards di‐carboxylic acids with di‐oxygen as oxidant in the absence of any catalyst has been studied with the aim to provide new mechanistic insights. Using a combination of GC, NMR and IR, a thorough product analysis was performed. This multi‐analytical approach gave new mechanistic insights and provides new handles to study and design similar (catalytic) systems for the conversion of plastic waste.
AbstractList To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.
To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di‐carboxylic acids as reaction products. A multi‐analytical approach including gas chromatography‐mass spectrometry, gas chromatography‐flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in‐situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di‐carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ‐lactones, γ‐ketones and esters. An intra‐molecular hydrogen shift seemed key in the cleavage step and the formation of late‐stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di‐carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste. The direct conversion of polyethylene towards di‐carboxylic acids with di‐oxygen as oxidant in the absence of any catalyst has been studied with the aim to provide new mechanistic insights. Using a combination of GC, NMR and IR, a thorough product analysis was performed. This multi‐analytical approach gave new mechanistic insights and provides new handles to study and design similar (catalytic) systems for the conversion of plastic waste.
To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become more evident. However, the chemical recycling toolbox for polyethylene (PE), the most abundant type of plastic waste, remains underdeveloped. In this work, analytical methods were developed to explore the possibility to oxidatively convert PE into di-carboxylic acids as reaction products. A multi-analytical approach including gas chromatography-mass spectrometry, gas chromatography-flame ionization detection, several (2D) nuclear magnetic resonance methods as well as in-situ transmission infrared spectroscopy was used. This led to a thorough qualitative and quantitative analysis on the product mixture, which extends and clarifies the existing literature. Without a catalyst (thermally) already up to 7 mol % di-carboxylic acids can be formed. Furthermore, it was found that the majority of the oxidized functionalities are carboxylic acids, (methyl) ketones, γ-lactones, γ-ketones and esters. An intra-molecular hydrogen shift seemed key in the cleavage step and the formation of late-stage side products. In addition, crosslinking reactions due to esterification reactions seem to limit the di-carboxylic acid yield. Therefore, these two handles can be taken into account to study and design similar (catalytic) systems for the oxidative conversion of plastic waste.
Author Weckhuysen, Bert M.
Vollmer, Ina
Van der Waal, Jan C.
Smak, Tom J.
Peinder, Peter
Altink, Rinke
Author_xml – sequence: 1
  givenname: Tom J.
  surname: Smak
  fullname: Smak, Tom J.
  organization: Utrecht University
– sequence: 2
  givenname: Peter
  surname: Peinder
  fullname: Peinder, Peter
  organization: Utrecht University
– sequence: 3
  givenname: Jan C.
  surname: Van der Waal
  fullname: Van der Waal, Jan C.
  organization: TNO, Brightsite
– sequence: 4
  givenname: Rinke
  surname: Altink
  fullname: Altink, Rinke
  organization: TNO, Brightsite
– sequence: 5
  givenname: Ina
  surname: Vollmer
  fullname: Vollmer, Ina
  email: i.vollmer@uu.nl
  organization: Utrecht University
– sequence: 6
  givenname: Bert M.
  orcidid: 0000-0001-5245-1426
  surname: Weckhuysen
  fullname: Weckhuysen, Bert M.
  email: b.m.weckhuysen@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38009265$$D View this record in MEDLINE/PubMed
BookMark eNqFkctq3DAUhkVJaS7ttssi6KabmUqWLNvdGTe9QEoKmUV3QpaOiILGmkp2Eu_yCH3GPEk0TJJCIGR1BPq-X-L8h2hvCAMg9J6SJSWk-KxT0suCFIxQ2tSv0AGtBV-Ugv_Zezwzuo8OU7ogRJBGiDdon9WENIUoD5A6vXZGje4ScBeGS4jJhQEHi38HP8N4PnsYAK_ClYom4a_u9uZfp2IfrmfvNG61M-kLbvGvyY_bu3ZQfh6dVh63m00MSp-_Ra-t8gne3c8jtPp2vOp-LE5Ov__s2pOF5pTVC6P7AqjtG85sWQpgPTOMQlUWNdRVxasKeGWpbXptKTF9nspaS3llQBjOjtCnXWx-9e8EaZRrlzR4rwYIU5JFnZMFFbzI6Mcn6EWYYv55kowwLlhTsSZTH-6pqV-DkZvo1irO8mF3GeA7QMeQUgQrtRvzKsMwRuW8pERuK5LbiuRjRVlbPtEekp8Vmp1w5TzML9CyOzvr_rt3GqCmdw
CitedBy_id crossref_primary_10_1021_acsanm_5c01448
crossref_primary_10_1093_jimb_kuae050
crossref_primary_10_1007_s11426_024_2252_9
crossref_primary_10_1007_s11426_025_2748_4
crossref_primary_10_1002_aocs_70022
crossref_primary_10_1021_acscatal_4c04987
crossref_primary_10_1007_s11426_024_2522_x
crossref_primary_10_1002_aocs_12919
crossref_primary_10_1007_s44339_025_00026_w
crossref_primary_10_1016_j_cej_2024_158823
crossref_primary_10_1039_D4CY01384K
crossref_primary_10_1360_TB_2024_0975
crossref_primary_10_1016_j_cej_2025_168475
Cites_doi 10.1021/acs.iecr.7b04091
10.1016/j.polymdegradstab.2006.03.024
10.1016/S0141-3910(98)00208-0
10.1021/ja00519a018
10.1021/acssuschemeng.1c05013
10.1126/science.abo4626
10.1021/ma60050a038
10.3389/fchem.2020.00185
10.1021/acssuschemeng.9b02092
10.1016/j.biosystemseng.2004.02.010
10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B
10.1002/pen.760342402
10.1016/j.wasman.2017.07.044
10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G
10.1016/j.polymdegradstab.2018.07.011
10.1021/ma0359638
10.1002/anie.202104110
10.1021/ma60061a010
10.1002/ejoc.202300166
10.1016/j.polymdegradstab.2023.110306
10.1021/bk-2002-0819.ch017
10.1021/ja00046a021
10.1016/j.chempr.2020.11.020
10.1016/j.polymdegradstab.2013.07.017
10.1016/j.polymdegradstab.2006.03.022
10.1002/anie.202301927
10.1016/B978-008044374-4/50007-4
10.1021/acscentsci.7b00255
10.1016/S0957-4166(00)00444-4
10.1002/anie.202110957
10.1016/S0141-3910(02)00029-0
10.1093/hesc/9780199270293.001.0001
10.1007/s11172-019-2443-1
10.1016/S0920-5861(03)00124-X
10.1021/ja00397a026
10.1002/ange.201908451
10.1016/j.polymdegradstab.2005.04.043
10.1021/acs.inorgchem.6b02322
10.1016/0021-9517(70)90244-7
ContentType Journal Article
Copyright 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH
2023 The Authors. ChemSusChem published by Wiley-VCH GmbH.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH
– notice: 2023 The Authors. ChemSusChem published by Wiley-VCH GmbH.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202301198
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Open Access: Wiley-Blackwell Open Access Journals
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 38009265
10_1002_cssc_202301198
CSSC202301198
Genre article
Journal Article
GrantInformation_xml – fundername: TNO/Brightsite
– fundername: MCEC
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
A00
NPM
P4E
WYJ
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4138-dcb2e1fb943f556e3b3d31e7528e877477e47f1f9bcf10db9bcafff147de6d43
IEDL.DBID 24P
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 11:21:49 EDT 2025
Sat Nov 29 14:28:50 EST 2025
Wed Feb 19 02:06:25 EST 2025
Tue Nov 18 21:56:35 EST 2025
Sat Nov 29 07:11:40 EST 2025
Wed Jun 11 08:25:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords chemical recycling
aerobic oxidation
spectroscopy
di-carboxylic acids
polyethylene
Language English
License Attribution
2023 The Authors. ChemSusChem published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4138-dcb2e1fb943f556e3b3d31e7528e877477e47f1f9bcf10db9bcafff147de6d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5245-1426
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301198
PMID 38009265
PQID 3034639739
PQPubID 986333
PageCount 11
ParticipantIDs proquest_miscellaneous_2894361642
proquest_journals_3034639739
pubmed_primary_38009265
crossref_citationtrail_10_1002_cssc_202301198
crossref_primary_10_1002_cssc_202301198
wiley_primary_10_1002_cssc_202301198_CSSC202301198
PublicationCentury 2000
PublicationDate April 8, 2024
PublicationDateYYYYMMDD 2024-04-08
PublicationDate_xml – month: 04
  year: 2024
  text: April 8, 2024
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2019; 7
2004; 88
2021; 7
2006; 91
2017; 8
1979; 101
2003; 81
2012
2017; 69
1978; 11
2000; 3
1981; 103
2002; 76
1999; 65
2004
1976; 9
2001; 202
2016; 12
2022; 378
2020; 8
1998; 37
2023; 62
2018; 155
2013; 98
2023; 26
2019; 68
2000; 11
2004; 37
2023; 210
1992; 114
2017; 56
1994; 34
2021; 60
2019; 131
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
Yaremenko I. (e_1_2_8_33_1) 2016; 12
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
Remias J. E. (e_1_2_8_5_1) 2000; 3
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Claydan J. (e_1_2_8_43_1) 2012
Socrates G. (e_1_2_8_35_1) 2004
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 7
  start-page: 137
  year: 2021
  end-page: 145
  publication-title: Chem
– volume: 65
  start-page: 5
  year: 1999
  end-page: 13
  publication-title: Polym. Degrad. Stab.
– volume: 60
  start-page: 26506
  year: 2021
  end-page: 26510
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 1647
  year: 2016
  end-page: 1748
  publication-title: J. Org. Chem.
– volume: 60
  start-page: 16101
  year: 2021
  end-page: 16108
  publication-title: Angew. Chem. Int. Ed.
– volume: 91
  start-page: 398
  year: 2006
  end-page: 405
  publication-title: Polym. Degrad. Stab.
– volume: 37
  start-page: 4484
  year: 2004
  end-page: 4487
  publication-title: Macromolecules
– volume: 103
  start-page: 1742
  year: 1981
  end-page: 1749
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 7742
  year: 1992
  end-page: 7748
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 329
  year: 2002
  end-page: 340
  publication-title: Polym. Degrad. Stab.
– start-page: 961
  year: 2012
– volume: 91
  start-page: 2739
  year: 2006
  end-page: 2747
  publication-title: Polym. Degrad. Stab.
– volume: 155
  start-page: 67
  year: 2018
  end-page: 83
  publication-title: Polym. Degrad. Stab.
– volume: 378
  start-page: 207
  year: 2022
  end-page: 211
  publication-title: G. T. Beckham, Science
– start-page: 171
  year: 2004
  end-page: 185
– volume: 34
  start-page: 1773
  year: 1994
  end-page: 1787
  publication-title: Polym. Eng. Sci.
– volume: 101
  start-page: 7574
  year: 1979
  end-page: 7584
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 895
  year: 2017
  end-page: 903
  publication-title: ACS Cent. Sci.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 4609
  year: 2000
  end-page: 4615
  publication-title: Tetrahedron: Asymmetry
– volume: 202
  start-page: 775
  year: 2001
  end-page: 784
  publication-title: Macromol. Chem. Phys.
– volume: 9
  start-page: 363
  year: 1976
  end-page: 365
  publication-title: F. A. Macromolecules
– volume: 81
  start-page: 117
  year: 2003
  end-page: 135
  publication-title: Catal. Today
– start-page: 115
  year: 2004
  end-page: 154
– volume: 68
  start-page: 480
  year: 2019
  end-page: 492
  publication-title: Russ. Chem. Bull.
– volume: 11
  start-page: 50
  year: 1978
  end-page: 56
  publication-title: Macromolecules
– volume: 210
  year: 2023
  publication-title: Polym. Degrad. Stab.
– volume: 98
  start-page: 2383
  year: 2013
  end-page: 2390
  publication-title: Polym. Degrad. Stab.
– volume: 26
  year: 2023
  publication-title: Eur. J. Org. Chem.
– volume: 69
  start-page: 24
  year: 2017
  end-page: 58
  publication-title: Waste Manage.
– volume: 8
  start-page: 185
  year: 2020
  publication-title: Front. Chem.
– volume: 131
  start-page: 14503
  year: 2019
  end-page: 14511
  publication-title: Angew. Chem.
– volume: 56
  start-page: 1319
  year: 2017
  end-page: 1332
  publication-title: Inorg. Chem.
– volume: 37
  start-page: 3306
  year: 1998
  end-page: 3308
  publication-title: Angew. Chem. Int. Ed.
– volume: 91
  start-page: 2775
  year: 2006
  end-page: 2785
  publication-title: Polym. Degrad. Stab.
– volume: 9
  start-page: 15722
  year: 2021
  end-page: 15738
  publication-title: ACS Sustainable Chem. Eng.
– volume: 3
  start-page: 627
  year: 2000
  end-page: 629
  publication-title: Acad. Sci. Paris
– volume: 7
  start-page: 11004
  year: 2019
  end-page: 11013
  publication-title: ACS Sustainable Chem. Eng.
– volume: 56
  start-page: 14814
  year: 2017
  end-page: 14821
  publication-title: Ind. Eng. Chem. Res.
– volume: 88
  start-page: 131
  year: 2004
  end-page: 143
  publication-title: I. Biosyst. Eng.
– volume: 3
  start-page: 627
  year: 2000
  ident: e_1_2_8_5_1
  publication-title: Acad. Sci. Paris
– ident: e_1_2_8_14_1
  doi: 10.1021/acs.iecr.7b04091
– ident: e_1_2_8_36_1
  doi: 10.1016/j.polymdegradstab.2006.03.024
– ident: e_1_2_8_32_1
  doi: 10.1016/S0141-3910(98)00208-0
– ident: e_1_2_8_20_1
– start-page: 115
  volume-title: Infrared and Raman Characteristic Group Frequencies. Tables and Charts, 3rd
  year: 2004
  ident: e_1_2_8_35_1
– ident: e_1_2_8_22_1
  doi: 10.1021/ja00519a018
– ident: e_1_2_8_3_1
  doi: 10.1021/acssuschemeng.1c05013
– ident: e_1_2_8_6_1
  doi: 10.1126/science.abo4626
– ident: e_1_2_8_24_1
  doi: 10.1021/ma60050a038
– ident: e_1_2_8_41_1
  doi: 10.3389/fchem.2020.00185
– ident: e_1_2_8_8_1
  doi: 10.1021/acssuschemeng.9b02092
– ident: e_1_2_8_12_1
  doi: 10.1016/j.biosystemseng.2004.02.010
– ident: e_1_2_8_17_1
  doi: 10.1002/(SICI)1521-3773(19981217)37:23<3306::AID-ANIE3306>3.0.CO;2-B
– ident: e_1_2_8_13_1
  doi: 10.1002/pen.760342402
– ident: e_1_2_8_2_1
  doi: 10.1016/j.wasman.2017.07.044
– ident: e_1_2_8_11_1
  doi: 10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-G
– ident: e_1_2_8_1_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.polymdegradstab.2018.07.011
– ident: e_1_2_8_34_1
  doi: 10.1021/ma0359638
– ident: e_1_2_8_4_1
  doi: 10.1002/anie.202104110
– ident: e_1_2_8_15_1
  doi: 10.1021/ma60061a010
– ident: e_1_2_8_42_1
  doi: 10.1002/ejoc.202300166
– ident: e_1_2_8_16_1
  doi: 10.1016/j.polymdegradstab.2023.110306
– ident: e_1_2_8_7_1
  doi: 10.1021/bk-2002-0819.ch017
– ident: e_1_2_8_19_1
– ident: e_1_2_8_23_1
  doi: 10.1021/ja00046a021
– ident: e_1_2_8_27_1
  doi: 10.1016/j.chempr.2020.11.020
– ident: e_1_2_8_37_1
  doi: 10.1016/j.polymdegradstab.2013.07.017
– ident: e_1_2_8_10_1
  doi: 10.1016/j.polymdegradstab.2006.03.022
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.202301927
– ident: e_1_2_8_40_1
  doi: 10.1016/B978-008044374-4/50007-4
– ident: e_1_2_8_28_1
  doi: 10.1021/acscentsci.7b00255
– ident: e_1_2_8_29_1
  doi: 10.1016/S0957-4166(00)00444-4
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.202110957
– volume: 12
  start-page: 1647
  year: 2016
  ident: e_1_2_8_33_1
  publication-title: J. Org. Chem.
– ident: e_1_2_8_9_1
  doi: 10.1016/S0141-3910(02)00029-0
– start-page: 961
  volume-title: Organic Chemistry, 2th
  year: 2012
  ident: e_1_2_8_43_1
  doi: 10.1093/hesc/9780199270293.001.0001
– ident: e_1_2_8_45_1
  doi: 10.1007/s11172-019-2443-1
– ident: e_1_2_8_18_1
  doi: 10.1016/S0920-5861(03)00124-X
– ident: e_1_2_8_39_1
  doi: 10.1021/ja00397a026
– ident: e_1_2_8_30_1
  doi: 10.1002/ange.201908451
– ident: e_1_2_8_21_1
  doi: 10.1016/j.polymdegradstab.2005.04.043
– ident: e_1_2_8_26_1
  doi: 10.1021/acs.inorgchem.6b02322
– ident: e_1_2_8_44_1
  doi: 10.1016/0021-9517(70)90244-7
SSID ssj0060966
Score 2.5039146
Snippet To reduce the pressure on the environment created by the increasing amount of plastic waste, the need to develop suitable plastic recycling methods has become...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202301198
SubjectTerms Acids
aerobic oxidation
Carboxylic acids
Catalytic converters
chemical recycling
Chromatography
Crosslinking
di-carboxylic acids
Esterification
Esters
Flame ionization
Gas chromatography
Ketones
Lactones
Mass spectrometry
Mathematical analysis
NMR
Nuclear magnetic resonance
Polyethylene
Polyethylenes
Qualitative analysis
Reaction products
Recycling
spectroscopy
Title Oxidative Conversion of Polyethylene Towards Di‐Carboxylic Acids: A Multi‐Analytical Approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301198
https://www.ncbi.nlm.nih.gov/pubmed/38009265
https://www.proquest.com/docview/3034639739
https://www.proquest.com/docview/2894361642
Volume 17
WOSCitedRecordID wos001124455200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9QwFD7orqAv3tetrksEwaewTZo2iW9D18EHWQd3hHkrSZpAYZjKdFd23_Yn-Bv9JSbpRQcRQV96ISkNJyf5Tk5yvgPwmoc4Hu0U9ligMJOpxJqkBjNFLSU2D06HmGyCn52J1Uoufoni7_khJodbGBlxvg4DXOnu5CdpqOm6QEFIg4ZKcRv2CclESN5A2WKciwtvoMf4IlEwnBcZGWkbU3qy-_0uLP1ma-6arhF75g_-v9UP4f5gd6JZryiP4JbdPIa75Zju7Qmoj1dNHVnAURlOokc3GmodWrTra-u708OTRct4yrZDp833m2-l2ur26nrdGDQzTd29RTMUA3p9WSQ7iX5yNBtoy5_Ccv5uWb7HQ_4FbDy0CVwbTS1xWrLM5XlhM53VGbE8p8IKbzZybhl3xEltHElr7e_KOUcYr21Rs-wA9jbtxh4C4opQxwNTTC2Z8wtX43LtYTIV0q9Qa50AHqVfmYGbPKTIWFc9qzKtgtyqSW4JvJnqf-lZOf5Y82jszGoYnV3lYZuFDc1MJvBqKvbyDpslamPby66igZi-8ItJmsCzXgmmX3k9SyUt8gRo7Ou_tKEqz8_L6e35v3z0Au755_7IkDiCvYvtpX0Jd8zXi6bbHked91e-Esewf_pp_vnDD8uYBMg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7apJBc-m7jJm1VKPQkYsmyLeW2OF1Sut2GZgu5GesFhmUd1klIbv0J_Y39JZXkR1lKKZSejC3ZFqMZzWg08w3A29zn8UhbYacLKsxELLAkscKsooYSk3qnQyg2kc_n_PxcnPbRhD4XpsOHGB1uXjLCeu0F3DukD3-hhqq29RiE1LOo4Hdhmzlecky-ffxl-nU2LMeZs9FDihHPGE6zhAzIjTE93PzCpmb6zdzctF6D-pk--A8Dfwj3e9sTTTpmeQR3zOox7BRDybcnUH2-qXVAAkeFj0YPrjTUWHTaLG-Nm1KnogxahEjbFh3XP759L6q1bG5ul7VCE1Xr9ghNUEjqdW0B8CT4ytGkhy5_Covp-0VxgvsaDFg59caxVpIaYqVgiU3TzCQy0QkxeUq54c50zHPDckuskMqSWEt3ray1hOXaZJolz2Br1azMHqC8ItTmHi1GC2bd5lXZVDpVGXPhdqlaRoAH8peqxyf3ZTKWZYesTEtPt3KkWwTvxv4XHTLHH3seDLNZ9hLalk51M3-omYgI3ozNjt7-wKRameaqLakHp8_chpJG8LzjgvFXCfdwVVkaAQ2T_ZcxlMXZWTHevfiXl17Dzsni06ycfZh_3Idd97wLIeIHsHW5vjIv4Z66vqzb9ateBH4C198Hxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFD7orKgvXte1umoEwaeyTZo2jW9Dx0FxGQd3hH0LzQ0Kw3SZ7i67b_4Ef6O_xCS9yCAiiE-lTdqGk5ycS875DsAb5vN4pK1iJwuqmPKExxInKqYVMQSbzDsdQrEJtlgUp6d82UcT-lyYDh9idLh5zgj7tWdwc6bt0S_UUNW2HoOQ-CXKi5uwR30lmQnszb7Mvx4P23HudPSQYlTkNM7yFA_IjQk52v3CrmT6Td3c1V6D-Jnf_w8DfwD3et0TTbvF8hBumM0juFMOJd8eQ_X5qtYBCRyVPho9uNJQY9GyWV8bN6VORBm0CpG2LZrVP759L6utbK6u17VCU1Xr9h2aopDU69oC4EnwlaNpD12-D6v5-1X5Ie5rMMTKibci1koSg63kNLVZlptUpjrFhmWkMIVTHRkzlFlsuVQWJ1q6a2WtxZRpk2uaPoHJptmYp4BYhYllHi1Gc2qd8apsJp2oTArurFQtI4gH8gvV45P7Mhlr0SErE-HpJka6RfB27H_WIXP8sefhMJui59BWONFN_aFmyiN4PTY7evsDk2pjmotWEA9OnzuDkkRw0K2C8Vdp4eGq8iwCEib7L2MQ5clJOd49-5eXXsHt5Wwujj8uPj2Hu-5xF0FUHMLkfHthXsAtdXlet9uXPQf8BFcyB0E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxidative+Conversion+of+Polyethylene+Towards+Di%E2%80%90Carboxylic+Acids%3A+A+Multi%E2%80%90Analytical+Approach&rft.jtitle=ChemSusChem&rft.au=Smak%2C+Tom+J&rft.au=de+Peinder%2C+Peter&rft.au=Jan+C+Van+der+Waal&rft.au=Rinke+Altink&rft.date=2024-04-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=7&rft_id=info:doi/10.1002%2Fcssc.202301198&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon