Reference Trajectory Optimization Under Constrained Predictive Control

Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Canadian journal of chemical engineering Ročník 85; číslo 4; s. 454 - 464
Hlavní autori: Lam, David K., Baker, Rhoda, Le Swartz, Christopher
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.08.2007
Wiley
Blackwell Publishing Limited, a company of John Wiley & Sons, Inc
Predmet:
ISSN:0008-4034, 1939-019X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in the presence of disturbances and plant/model mismatch. This paper considers reference trajectory optimization of processes controlled by constrained model predictive control (MPC). Consideration of the closed‐loop dynamics of the MPC‐controlled process in the reference trajectory optimization results in a multi‐level optimization problem. A solution strategy is applied in which the MPC quadratic programming subproblems are replaced by their Karush‐Kuhn‐Tucker optimality conditions, resulting in a single‐level mathematical program with complementarity constraints (MPCC). The performance of the method is illustrated through application to two case studies, the second of which considers economically optimal grade transitions in a polymerization process. Les systèmes de procédés chimiques doivent souvent répondre à des changements de production fréquents. Ceci motive la détermination de transitions optimales, soumises à des contraintes de spécification et de fonctionnement. Toutefois, l'implantation directe de trajectoires d'entrée optimales entraîne, en général, un décalage en présence de perturbations et d'une incompatibilité installation/modèle. Cet article porte sur l'optimisation des trajectoires pour des procédés contrôlés par le contrôle prédictif par modèle contraint (MPC). Le fait de considérer la dynamique en boucle fermée du procédé contrôlé par MPC dans l'optimisation des trajectoires de référence cause un problème d'optimisation à plusieurs niveaux. Une stratégie de solution est appliquée dans laquelle les sous‐problèmes de programmation quadratique du MPC sont remplacés par des conditions d'optimalité de Karush‐Kuhn‐Tucker. On obtient ainsi un programme mathématique à niveau unique associé à des contraintes de complémentarité (MPCC). La performance de la méthode est illustrée par l'application de deux études de cas, le second considérant les transitions de grade optimales en termes économiques dans un procédé de polymérisation.
AbstractList Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in the presence of disturbances and plant/model mismatch. This paper considers reference trajectory optimization of processes controlled by constrained model predictive control (MPC). Consideration of the closed‐loop dynamics of the MPC‐controlled process in the reference trajectory optimization results in a multi‐level optimization problem. A solution strategy is applied in which the MPC quadratic programming subproblems are replaced by their Karush‐Kuhn‐Tucker optimality conditions, resulting in a single‐level mathematical program with complementarity constraints (MPCC). The performance of the method is illustrated through application to two case studies, the second of which considers economically optimal grade transitions in a polymerization process. Les systèmes de procédés chimiques doivent souvent répondre à des changements de production fréquents. Ceci motive la détermination de transitions optimales, soumises à des contraintes de spécification et de fonctionnement. Toutefois, l'implantation directe de trajectoires d'entrée optimales entraîne, en général, un décalage en présence de perturbations et d'une incompatibilité installation/modèle. Cet article porte sur l'optimisation des trajectoires pour des procédés contrôlés par le contrôle prédictif par modèle contraint (MPC). Le fait de considérer la dynamique en boucle fermée du procédé contrôlé par MPC dans l'optimisation des trajectoires de référence cause un problème d'optimisation à plusieurs niveaux. Une stratégie de solution est appliquée dans laquelle les sous‐problèmes de programmation quadratique du MPC sont remplacés par des conditions d'optimalité de Karush‐Kuhn‐Tucker. On obtient ainsi un programme mathématique à niveau unique associé à des contraintes de complémentarité (MPCC). La performance de la méthode est illustrée par l'application de deux études de cas, le second considérant les transitions de grade optimales en termes économiques dans un procédé de polymérisation.
Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in the presence of disturbances and plant/model mismatch. This paper considers reference trajectory optimization of processes controlled by constrained model predictive control (MPC). Consideration of the closed-loop dynamics of the MPC-controlled process in the reference trajectory optimization results in a multi-level optimization problem. A solution strategy is applied in which the MPC quadratic programming subproblems are replaced by their Karush-Kuhn-Tucker optimality conditions, resulting in a single-level mathematical program with complementarity constraints (MPCC). The performance of the method is illustrated through application to two case studies, the second of which considers economically optimal grade transitions in a polymerization process. Les systemes de procedes chimiques doivent souvent repondre a des changements de production frequents. Ceci motive la determination de transitions optimales, soumises a des contraintes de specification et de fonctionnement. Toutefois, l'implantation directe de trajectoires d'entree optimales entraine, en general, un decalage en presence de perturbations et d'une incompatibilite installation/modele. Cet article porte sur l'optimisation des trajectoires pour des procedes controles par le controle predictif par modele contraint (MPC). Le fait de considerer la dynamique en boucle fermee du procede controle par MPC dans l'optimisation des trajectoires de reference cause un probleme d'optimisation a plusieurs niveaux. Une strategie de solution est appliquee dans laquelle les sous-problemes de programmation quadratique du MPC sont remplaces par des conditions d'optimalite de Karush-Kuhn-Tucker. On obtient ainsi un programme mathematique a niveau unique associe a des contraintes de complementarite (MPCC). La performance de la methode est illustree par l'application de deux etudes de cas, le second considerant les transitions de grade optimales en termes economiques dans un procede de polymerisation. Keywords: reference trajectory optimization, model predictive control, dynamic optimization, steady state transitions
Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to specification and operational constraints. However, direct implementation of optimal input trajectories would, in general, result in offset in the presence of disturbances and plant/model mismatch. This paper considers reference trajectory optimization of processes controlled by constrained model predictive control (MPC). Consideration of the closed-loop dynamics of the MPC-controlled process in the reference trajectory optimization results in a multi-level optimization problem. A solution strategy is applied in which the MPC quadratic programming subproblems are replaced by their Karush-Kuhn-Tucker optimality conditions, resulting in a single-level mathematical program with complementarity constraints (MPCC). The performance of the method is illustrated through application to two case studies, the second of which considers economically optimal grade transitions in a polymerization process.
Audience Academic
Author Le Swartz, Christopher
Baker, Rhoda
Lam, David K.
Author_xml – sequence: 1
  givenname: David K.
  surname: Lam
  fullname: Lam, David K.
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4L7
– sequence: 2
  givenname: Rhoda
  surname: Baker
  fullname: Baker, Rhoda
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4L7
– sequence: 3
  givenname: Christopher
  surname: Le Swartz
  fullname: Le Swartz, Christopher
  email: swartzc@mcmaster.ca
  organization: Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4L7
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19064225$$DView record in Pascal Francis
BookMark eNqFkc1v0zAUwC00JLrBmWuExIFDumfHTmJxGmFdh6YNjU3bzXLtl8klTTrbfJS_HpcgRhEC-2D56fez38c-2euHHgl5TmFKAdihWRqcCi6gFsChfkQmVBYyBypv98gEAOqcQ8GfkP0QlunKgNMJmV1iix57g9mV10s0cfCb7GId3cp909ENfXbdW_RZM_Qheu16tNl7j9aZ6D7jNhz90D0lj1vdBXz28zwg17Pjq2aen12cnDZHZ7nhtKjz2hpmrZSGaVbZEmlaC8m4BFFZsViw2ugSoTLAUCBlNYMWGLXWaFpLzooD8mJ89053qFzfDiknY9buXlHJWAlUlAma_gVK2-LKmdS11qX40e_Cqx0hMRG_xjv9KQR1-uF8l305smsdjO5ar3vjglp7t9J-k7KAkjMmEnc4csYPIXhsHxBQ24Gp7cDUw8CSIf4wjIs_RrDte_cP7_XofUllbf73jWreNcc7dj7aLqSaf9naf1RlVVRC3ZyfqFt-OX8ze3uj5sV316S6ZQ
CODEN CJCEA7
CitedBy_id crossref_primary_10_1002_apj_200
crossref_primary_10_1016_j_ifacol_2015_09_085
crossref_primary_10_1002_aic_15752
Cites_doi 10.1080/10556780410001709439
10.1016/0098-1354(90)87012-E
10.1016/S0009-2509(03)00223-9
10.1016/0098-1354(94)E0013-D
10.1109/ACC.2001.945924
10.1002/aic.690390208
10.1109/CCA.1998.721558
10.1002/aic.690381008
10.1016/S0098-1354(03)00092-9
10.1016/S0098-1354(00)00550-0
10.1002/aic.11085
10.1002/aic.690390514
10.1002/aic.690450813
10.1016/j.ces.2005.12.012
10.1137/1.9781611971453
10.1016/S0098-1354(01)00743-8
10.1109/9.557577
10.1016/S0005-1098(97)00213-6
10.1016/S0967-0661(02)00186-7
10.1016/0005-1098(96)00086-6
10.1021/ie051140q
ContentType Journal Article
Copyright Copyright © 2007 Canadian Society for Chemical Engineering
2007 INIST-CNRS
COPYRIGHT 2007 Blackwell Publishing Limited, a company of John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 2007 Canadian Society for Chemical Engineering
– notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 Blackwell Publishing Limited, a company of John Wiley & Sons, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
ISN
DOI 10.1002/cjce.5450850408
DatabaseName Istex
CrossRef
Pascal-Francis
Gale In Context: Canada
DatabaseTitle CrossRef
DatabaseTitleList CrossRef




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1939-019X
EndPage 464
ExternalDocumentID A192260156
19064225
10_1002_cjce_5450850408
CJCE5450850408
ark_67375_WNG_X4RHBFDW_H
Genre article
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABJIA
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAHHS
ABTAH
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
ISR
RWI
WSB
AAYXX
CITATION
O8X
IQODW
ID FETCH-LOGICAL-c4138-8dc2dd99c2a27d6e1111b9249057d5bb28ca6e07c02e5e12820f021ddca189423
IEDL.DBID DRFUL
ISSN 0008-4034
IngestDate Tue Jun 10 15:39:41 EDT 2025
Mon Nov 24 15:41:41 EST 2025
Wed Nov 26 10:42:32 EST 2025
Mon Jul 21 09:11:37 EDT 2025
Sat Nov 29 08:18:15 EST 2025
Tue Nov 18 22:12:33 EST 2025
Wed Jan 22 16:46:40 EST 2025
Tue Nov 11 03:32:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords model predictive control
Closed loop
steady state transitions
Polymerization
dynamic optimization
Forecast model
Quadratic programming
Modeling
Steady state
Optimization
Offset
reference trajectory optimization
Mathematical programming
Predictive control
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4138-8dc2dd99c2a27d6e1111b9249057d5bb28ca6e07c02e5e12820f021ddca189423
Notes istex:57DC58E6F739026A00F2DEEC13C850399812CAEF
ark:/67375/WNG-X4RHBFDW-H
ArticleID:CJCE5450850408
PageCount 11
ParticipantIDs gale_infotraccpiq_192260156
gale_infotracacademiconefile_A192260156
gale_incontextgauss_ISN_A192260156
pascalfrancis_primary_19064225
crossref_primary_10_1002_cjce_5450850408
crossref_citationtrail_10_1002_cjce_5450850408
wiley_primary_10_1002_cjce_5450850408_CJCE5450850408
istex_primary_ark_67375_WNG_X4RHBFDW_H
PublicationCentury 2000
PublicationDate August 2007
PublicationDateYYYYMMDD 2007-08-01
PublicationDate_xml – month: 08
  year: 2007
  text: August 2007
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Malden, MA
PublicationTitle Canadian journal of chemical engineering
PublicationTitleAlternate Can. J. Chem. Eng
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley
Blackwell Publishing Limited, a company of John Wiley & Sons, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley
– name: Blackwell Publishing Limited, a company of John Wiley & Sons, Inc
References Muske, K. R. and J. B., Rawlings, "Model Predictive Control with Linear Models," AIChE J. 39 (2), 262-287 (1993).
Bemporad, A., A., Casavola and E. Mosca, "Nonlinear Control of Constrained Linear Systems via Predictive Reference Management," IEEE Trans. Auto. Control 42 (3), 340-349 (1997).
Bemporad, A. and E., Mosca, "Fulfilling Hard Constraints in Uncertain Linear Systems by Reference Managing," Automatica 34 (4), 451-461 (1998).
Asteasuain, M., A., Bandoni, C. Sarmoria and A. Brandolin, "Simultaneous Process and Control System Design for Grade Transition in Styrene Polymerization," Chem. Eng. Sci. 61, 3362-3378 (2006).
Chatzidoukas, C., J. D., Perkins, E. N. Pistikopoulos and C. Kiparissides, "Optimal Grade Transition and Selection of Closed-Loop Controllers in a Gas-Phase Olefin Polymerization Fluidized Bed Reactor," Chem. Eng. Sci. 58, 3643-3658 (2003).
Qin, S. J. and T. A., Badgwell, "A Survey of Industrial Model Predictive Control Technology," Control Eng. Prac. 11, 733-764 (2003).
Ralph, D. and S. J., Wright, "Some Properties of Regularization and Penalization Schemes for MPECs," Optimization Methods and Software 19 (5), 527-556 (2004).
Wang, Y., H., Seki, S. Ohyama, K. Akamatsu, M. Ogawa and M. Ohshima, "Optimal Grade Transition Control for Polymerization Reactors," Comp. Chem. Eng. 24, 1555-1561 (2000).
Maciejowski, J. M., "Predictive Control with Constraints," Prentice Hall (2002).
McAuley, K. B. and J. F., MacGregor, "Nonlinear Product Property Control in Industrial Gas-Phase Polyethylene Reactors," AIChE J. 39 (5), 855-866 (1993).
Luyben, M. L. and C. A., Floudas, "Analyzing the Interaction of Design and Control - 1. A Multiobjective Framework and Application to Binary Distillation Synthesis," Comp. Chem. Eng. 18 (10), 933-969 (1994).
Zafiriou, E., "Robust Model Predictive Control of Processes with Hard Constraints," Comp. Chem. Eng. 14, 359-371 (1990).
Maner, B. R., F. J. Doyle III, B. A. Ogunnaike and R. K. Pearson, "Nonlinear Model Predictive Control of a Simulated Multivariable Polymerization Reactor using Second-Order Volterra Models," Automatica 32 (9), 1285-1301 (1996).
Flores-Tlacuahuac, A., L. T., Biegler and E. Saldivar-Guerra, "Optimal Grade Transitions in the High-Impact Polystyrene Polymerization Process," Ind. Eng. Chem. Res. 45, 6175-6189 (2006).
McAuley, K. B. and J. F., MacGregor, "Optimal Grade Transitions in a Gas Phase Polyethylene Reactor," AIChE J. 38 (10), 1564-1576 (1992).
Takeda, M. and W. H., Ray, "Optimal-Grade Transition Strategies for Multistage Polyolefin Reactors," AIChE J. 45 (8), 1776-1793 (1999).
Cervantes, A. M., S., Tonelli, A. Brandolin, J. A. Bandoni and L. T. Biegler, "Large-Scale Dynamic Optimization for Grade Transitions in a Low Density Polyethylene Plant," Comp. Chem. Eng. 26, 227-237 (2002).
Wright, S. J., "Primal-Dual Interior Point Methods," SIAM, Philadelphia, PA (1997).
Kadam, J. V., W., Marquardt, B. Srinivasan and D. Bonvin, "Optimal Grade Transition in Industrial Polymerization Processes via NCO Tracking," AIChE J. 53 (3), 627-639 (2007).
Raghunathan, A. U. and L. T., Biegler, "Mathematical Programs with Equlibrium Constraints (MPECs) in Process Engineering," Comp. Chem. Eng. 27, 1381-1392 (2003).
2002; 26
2006; 61
1993; 39
1990; 14
2006; 45
2001
2004; 19
1997; 42
2000; 24
1998
2003; 58
1999; 45
1997
2003; 27
2005
2003
1994; 18
2002
1992; 38
2007; 53
1998; 34
1996; 32
1979
2003; 11
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_25_1
Maciejowski J. M. (e_1_2_1_14_1) 2002
e_1_2_1_26_1
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – reference: Chatzidoukas, C., J. D., Perkins, E. N. Pistikopoulos and C. Kiparissides, "Optimal Grade Transition and Selection of Closed-Loop Controllers in a Gas-Phase Olefin Polymerization Fluidized Bed Reactor," Chem. Eng. Sci. 58, 3643-3658 (2003).
– reference: Asteasuain, M., A., Bandoni, C. Sarmoria and A. Brandolin, "Simultaneous Process and Control System Design for Grade Transition in Styrene Polymerization," Chem. Eng. Sci. 61, 3362-3378 (2006).
– reference: Muske, K. R. and J. B., Rawlings, "Model Predictive Control with Linear Models," AIChE J. 39 (2), 262-287 (1993).
– reference: Bemporad, A. and E., Mosca, "Fulfilling Hard Constraints in Uncertain Linear Systems by Reference Managing," Automatica 34 (4), 451-461 (1998).
– reference: Flores-Tlacuahuac, A., L. T., Biegler and E. Saldivar-Guerra, "Optimal Grade Transitions in the High-Impact Polystyrene Polymerization Process," Ind. Eng. Chem. Res. 45, 6175-6189 (2006).
– reference: McAuley, K. B. and J. F., MacGregor, "Nonlinear Product Property Control in Industrial Gas-Phase Polyethylene Reactors," AIChE J. 39 (5), 855-866 (1993).
– reference: Luyben, M. L. and C. A., Floudas, "Analyzing the Interaction of Design and Control - 1. A Multiobjective Framework and Application to Binary Distillation Synthesis," Comp. Chem. Eng. 18 (10), 933-969 (1994).
– reference: Kadam, J. V., W., Marquardt, B. Srinivasan and D. Bonvin, "Optimal Grade Transition in Industrial Polymerization Processes via NCO Tracking," AIChE J. 53 (3), 627-639 (2007).
– reference: Zafiriou, E., "Robust Model Predictive Control of Processes with Hard Constraints," Comp. Chem. Eng. 14, 359-371 (1990).
– reference: Wang, Y., H., Seki, S. Ohyama, K. Akamatsu, M. Ogawa and M. Ohshima, "Optimal Grade Transition Control for Polymerization Reactors," Comp. Chem. Eng. 24, 1555-1561 (2000).
– reference: Raghunathan, A. U. and L. T., Biegler, "Mathematical Programs with Equlibrium Constraints (MPECs) in Process Engineering," Comp. Chem. Eng. 27, 1381-1392 (2003).
– reference: Ralph, D. and S. J., Wright, "Some Properties of Regularization and Penalization Schemes for MPECs," Optimization Methods and Software 19 (5), 527-556 (2004).
– reference: Bemporad, A., A., Casavola and E. Mosca, "Nonlinear Control of Constrained Linear Systems via Predictive Reference Management," IEEE Trans. Auto. Control 42 (3), 340-349 (1997).
– reference: McAuley, K. B. and J. F., MacGregor, "Optimal Grade Transitions in a Gas Phase Polyethylene Reactor," AIChE J. 38 (10), 1564-1576 (1992).
– reference: Maciejowski, J. M., "Predictive Control with Constraints," Prentice Hall (2002).
– reference: Maner, B. R., F. J. Doyle III, B. A. Ogunnaike and R. K. Pearson, "Nonlinear Model Predictive Control of a Simulated Multivariable Polymerization Reactor using Second-Order Volterra Models," Automatica 32 (9), 1285-1301 (1996).
– reference: Takeda, M. and W. H., Ray, "Optimal-Grade Transition Strategies for Multistage Polyolefin Reactors," AIChE J. 45 (8), 1776-1793 (1999).
– reference: Cervantes, A. M., S., Tonelli, A. Brandolin, J. A. Bandoni and L. T. Biegler, "Large-Scale Dynamic Optimization for Grade Transitions in a Low Density Polyethylene Plant," Comp. Chem. Eng. 26, 227-237 (2002).
– reference: Qin, S. J. and T. A., Badgwell, "A Survey of Industrial Model Predictive Control Technology," Control Eng. Prac. 11, 733-764 (2003).
– reference: Wright, S. J., "Primal-Dual Interior Point Methods," SIAM, Philadelphia, PA (1997).
– volume: 32
  start-page: 1285
  issue: 9
  year: 1996
  end-page: 1301
  article-title: Nonlinear Model Predictive Control of a Simulated Multivariable Polymerization Reactor using Second‐Order Volterra Models
  publication-title: Automatica
– volume: 53
  start-page: 627
  issue: 3
  year: 2007
  end-page: 639
  article-title: Optimal Grade Transition in Industrial Polymerization Processes via NCO Tracking
  publication-title: AIChE J.
– volume: 39
  start-page: 855
  issue: 5
  year: 1993
  end-page: 866
  article-title: Nonlinear Product Property Control in Industrial Gas‐Phase Polyethylene Reactors
  publication-title: AIChE J.
– year: 2005
– volume: 42
  start-page: 340
  issue: 3
  year: 1997
  end-page: 349
  article-title: Nonlinear Control of Constrained Linear Systems via Predictive Reference Management
  publication-title: IEEE Trans. Auto. Control
– year: 2001
– volume: 45
  start-page: 6175
  year: 2006
  end-page: 6189
  article-title: Optimal Grade Transitions in the High‐Impact Polystyrene Polymerization Process
  publication-title: Ind. Eng. Chem. Res.
– volume: 11
  start-page: 733
  year: 2003
  end-page: 764
  article-title: A Survey of Industrial Model Predictive Control Technology
  publication-title: Control Eng. Prac.
– year: 1979
– volume: 27
  start-page: 1381
  year: 2003
  end-page: 1392
  article-title: Mathematical Programs with Equlibrium Constraints (MPECs) in Process Engineering
  publication-title: Comp. Chem. Eng.
– year: 1998
– volume: 39
  start-page: 262
  issue: 2
  year: 1993
  end-page: 287
  article-title: Model Predictive Control with Linear Models
  publication-title: AIChE J.
– volume: 19
  start-page: 527
  issue: 5
  year: 2004
  end-page: 556
  article-title: Some Properties of Regularization and Penalization Schemes for MPECs
  publication-title: Optimization Methods and Software
– volume: 45
  start-page: 1776
  issue: 8
  year: 1999
  end-page: 1793
  article-title: Optimal‐Grade Transition Strategies for Multistage Polyolefin Reactors
  publication-title: AIChE J.
– volume: 34
  start-page: 451
  issue: 4
  year: 1998
  end-page: 461
  article-title: Fulfilling Hard Constraints in Uncertain Linear Systems by Reference Managing
  publication-title: Automatica
– volume: 58
  start-page: 3643
  year: 2003
  end-page: 3658
  article-title: Optimal Grade Transition and Selection of Closed‐Loop Controllers in a Gas‐Phase Olefin Polymerization Fluidized Bed Reactor
  publication-title: Chem. Eng. Sci.
– year: 2002
– volume: 61
  start-page: 3362
  year: 2006
  end-page: 3378
  article-title: Simultaneous Process and Control System Design for Grade Transition in Styrene Polymerization
  publication-title: Chem. Eng. Sci.
– volume: 14
  start-page: 359
  year: 1990
  end-page: 371
  article-title: Robust Model Predictive Control of Processes with Hard Constraints
  publication-title: Comp. Chem. Eng.
– year: 1997
– start-page: 593
  year: 2003
  end-page: 596
– volume: 38
  start-page: 1564
  issue: 10
  year: 1992
  end-page: 1576
  article-title: Optimal Grade Transitions in a Gas Phase Polyethylene Reactor
  publication-title: AIChE J.
– volume: 26
  start-page: 227
  year: 2002
  end-page: 237
  article-title: Large‐Scale Dynamic Optimization for Grade Transitions in a Low Density Polyethylene Plant
  publication-title: Comp. Chem. Eng.
– volume: 24
  start-page: 1555
  year: 2000
  end-page: 1561
  article-title: Optimal Grade Transition Control for Polymerization Reactors
  publication-title: Comp. Chem. Eng.
– volume: 18
  start-page: 933
  issue: 10
  year: 1994
  end-page: 969
  article-title: Analyzing the Interaction of Design and Control – 1. A Multiobjective Framework and Application to Binary Distillation Synthesis
  publication-title: Comp. Chem. Eng.
– ident: e_1_2_1_21_1
  doi: 10.1080/10556780410001709439
– ident: e_1_2_1_27_1
  doi: 10.1016/0098-1354(90)87012-E
– ident: e_1_2_1_8_1
  doi: 10.1016/S0009-2509(03)00223-9
– ident: e_1_2_1_24_1
– ident: e_1_2_1_13_1
  doi: 10.1016/0098-1354(94)E0013-D
– ident: e_1_2_1_22_1
  doi: 10.1109/ACC.2001.945924
– ident: e_1_2_1_18_1
  doi: 10.1002/aic.690390208
– ident: e_1_2_1_2_1
  doi: 10.1109/CCA.1998.721558
– ident: e_1_2_1_16_1
  doi: 10.1002/aic.690381008
– ident: e_1_2_1_20_1
  doi: 10.1016/S0098-1354(03)00092-9
– ident: e_1_2_1_25_1
  doi: 10.1016/S0098-1354(00)00550-0
– ident: e_1_2_1_4_1
– ident: e_1_2_1_12_1
  doi: 10.1002/aic.11085
– ident: e_1_2_1_17_1
  doi: 10.1002/aic.690390514
– ident: e_1_2_1_23_1
  doi: 10.1002/aic.690450813
– ident: e_1_2_1_3_1
  doi: 10.1016/j.ces.2005.12.012
– ident: e_1_2_1_26_1
  doi: 10.1137/1.9781611971453
– ident: e_1_2_1_7_1
  doi: 10.1016/S0098-1354(01)00743-8
– ident: e_1_2_1_11_1
– ident: e_1_2_1_5_1
  doi: 10.1109/9.557577
– ident: e_1_2_1_6_1
  doi: 10.1016/S0005-1098(97)00213-6
– ident: e_1_2_1_19_1
  doi: 10.1016/S0967-0661(02)00186-7
– ident: e_1_2_1_9_1
– ident: e_1_2_1_15_1
  doi: 10.1016/0005-1098(96)00086-6
– volume-title: Predictive Control with Constraints
  year: 2002
  ident: e_1_2_1_14_1
– ident: e_1_2_1_10_1
  doi: 10.1021/ie051140q
SSID ssj0002041
Score 1.7826631
SecondaryResourceType review_article
Snippet Chemical process systems often need to respond to frequently changing product demands. This motivates the determination of optimal transitions, subject to...
SourceID gale
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 454
SubjectTerms Applications of mathematics to chemical engineering. Modeling. Simulation. Optimization
Applied sciences
Chemical engineering
dynamic optimization
Exact sciences and technology
model predictive control
reference trajectory optimization
steady state transitions
Title Reference Trajectory Optimization Under Constrained Predictive Control
URI https://api.istex.fr/ark:/67375/WNG-X4RHBFDW-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.5450850408
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1939-019X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002041
  issn: 0008-4034
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEF5VSQ_l0CcIA40sVLW9ODhrb2wfIYmbVlEaUdLktlrvo4KWQGNA7b9nxt44uBKqhDjaHtu749l5rGe-IeQdIrZEnUx4gdHMCw0znggZ9USciG5HBSooegN-H0XjcTyfJxObTYi1MCU-RLXhhiuj0Ne4wEWWH6xBQ-WZ1G2w_4i5FmK5bxNLq0Cwm_3jdDqq1DH1Q9s2L4ZgKQhX-D4-PfjnETXTZBV0E5n9BzMmRQ5MM2W3i7onW5ii9MUjTOIleW79UPewFJxX5IlevCYbd9AJ35C0AqF1waKdFdv7f92voGPObfGmW3RNcrHpZ9FqQit3ssQ_P6hD8TRmwW-SaTo46Q0923bBk2DRYi9WkiqVJJIKGqmuRqWaYZgGrp1iWUZjKbraj6RPNdNg36hvwFNQSopOnIB7tkUai4uF3iauUkFmqJIBBDEhAwJlDBVBJiijGTiODmmvOM6lxSTH8f7iJZoy5cggvmaQQz5WN1yWcBz3k-7jJ-QIcrHALJof4jrP-edvY34Ibi1CqTEYwAdLZC7gxVLYogQYPuJi1Sh3a5Ty8vQ3v3P1fSEo1aDE8iemzEWMz8af-Dw8Hh6l_RkfOqRVk6T1LBIMBSlzSFgIzP-mx3tfeoP14c7Dbtslz8rNasxo3CONq-W1fkueypur03zZskvpFt6qG_c
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFgl44BtRNrYIIeAlW-rYTfI4umUdlIDGxvpmOf5AG9Bt7Ybgv-cu8dIGCSEhHpNcEvtyvg_n7ncAzwmxJemXKoydFSF3woWKCxaqNFODvolNXPUG_DROiiKdTLLlWpgaH6LZcKOVUelrWuC0Ib25QA3VJ9puoANAoGuc6n27HIUp6kB3ez8_HDf6mEXc981LMVqK-RXAT8Q2f3tEyzZ5Dd0lbv-glEk1R665ut1F25WtbFF-53_M4i7c9p5osFWLzj24Zqf34dYSPuEDyBsY2gBt2km1wf8zeI9a5psv3wyqvkkBtf2smk1YE3yY0b8f0qJ0mvLgH8JhvnMwHIW-8UKo0aalYWo0MybLNFMsMQNLarWkQA2dOyPKkqVaDWyU6IhZYdHCscihr2CMVv00QwftEXSmp1P7GAJj4tIxo2MMY7hAAuMcU3GpmGAluo492LhiudQelZzG-1XWeMpMEoPkgkE9eNXccFYDcvyZ9Bl9Q0kwF1PKo_msLudzufexkFvo2BKYmsABvPRE7hRfrJUvS8DhEzJWi3KlRanPjs_l0tUXlaQ0g1KzL5Q0lwh5VOzKCd8fvc63j-SoB2stUVrMIqNgkIke8Epi_jY9OXwz3FkcPvm329bhxujg3ViO94q3K3Cz3rqm_MZV6FzMLu1TuK6_XxzPZ2t-Xf0CxjMf3g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hFiF44HuiDEaEEPCSLXXsJnkc7UIHVZgGY32zHH-gDehKuyH477lLvLRBQkiIxySXxL7Yd79zzr8DeEaMLUm_VGHsrAi5Ey5UXLBQpZka9E1s4qo24MdJUhTpdJqt74Wp-SGaBTeaGZW9pglu58btrFhD9am22wgAiHSN037fLheI9jvQHR3mR5PGHrOI-7p5KUZLMb8k-InYzm-PaPkmb6G7pO0flDKplqg1V5e7aEPZyhflt_5HL27DTY9Eg9166NyBK3Z2F26s8RPeg7yhoQ3Qp51WC_w_g3doZb767ZtBVTcpoLKfVbEJa4KDBf37IStKpykP_j4c5XsfhuPQF14INfq0NEyNZsZkmWaKJWZgyayWFKghuDOiLFmq1cBGiY6YFRY9HIscYgVjtOqnGQK0DejMzmb2AQTGxKVjRscYxnCBAsY5puJSMcFKhI492L5UudSelZza-0XWfMpMkoLkSkE9eNncMK8JOf4s-pS-oSSaixnl0XxSF8ul3H9fyF0EtkSmJrABL7yQO8MXa-W3JWDziRmrJbnZktTzk29y7erzaqQ0jVKLz5Q0lwh5XLyWU344fpWPjuW4B1utobTqRUbBIBM94NWI-Vv35PDNcG91-PDfbnsC1w5GuZzsF2834Xq9ck3pjY-gc764sI_hqv5-frJcbPlp9Qs_Ch9i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+Trajectory+Optimization+Under+Constrained+Predictive+Control&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Lam%2C+David+K.&rft.au=Baker%2C+Rhoda&rft.au=Le+Swartz%2C+Christopher&rft.date=2007-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=85&rft.issue=4&rft.spage=454&rft.epage=464&rft_id=info:doi/10.1002%2Fcjce.5450850408&rft.externalDBID=10.1002%252Fcjce.5450850408&rft.externalDocID=CJCE5450850408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon