High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability

Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Speci...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 26; pp. e2311735 - n/a
Main Authors: Riera‐Galindo, Sergi, Sanz‐Lleó, Marta, Gutiérrez‐Fernández, Edgar, Ramos, Nicolás, Mas‐Torrent, Marta, Martín, Jaime, López‐Mir, Laura, Campoy‐Quiles, Mariano
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01.06.2024
Subjects:
ISSN:1613-6810, 1613-6829, 1613-6829
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. This work shows how increasing the molecular weight of a low synthetic complexity polymer, PTQ10, when paired with different acceptors yielded a notable threefold enhancement in power conversion efficiency. These high‐efficiency blends show good thickness tolerance, and exhibited both improved stability and efficiency, underscoring the potential of cost‐effective organic solar cells.
AbstractList Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.
Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.
Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.
Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. This work shows how increasing the molecular weight of a low synthetic complexity polymer, PTQ10, when paired with different acceptors yielded a notable threefold enhancement in power conversion efficiency. These high‐efficiency blends show good thickness tolerance, and exhibited both improved stability and efficiency, underscoring the potential of cost‐effective organic solar cells.
Author Gutiérrez‐Fernández, Edgar
López‐Mir, Laura
Mas‐Torrent, Marta
Sanz‐Lleó, Marta
Ramos, Nicolás
Riera‐Galindo, Sergi
Campoy‐Quiles, Mariano
Martín, Jaime
Author_xml – sequence: 1
  givenname: Sergi
  orcidid: 0000-0003-4221-0367
  surname: Riera‐Galindo
  fullname: Riera‐Galindo, Sergi
  email: sriera@icmab.es
  organization: Campus Universitat Autònoma de Barcelona (UAB)
– sequence: 2
  givenname: Marta
  orcidid: 0000-0003-2212-8673
  surname: Sanz‐Lleó
  fullname: Sanz‐Lleó, Marta
  organization: Unit of Printed Electronics & Embedded Devices
– sequence: 3
  givenname: Edgar
  surname: Gutiérrez‐Fernández
  fullname: Gutiérrez‐Fernández, Edgar
  organization: University of the Basque Country UPV/EHU
– sequence: 4
  givenname: Nicolás
  surname: Ramos
  fullname: Ramos, Nicolás
  organization: University of the Basque Country UPV/EHU
– sequence: 5
  givenname: Marta
  orcidid: 0000-0002-1586-005X
  surname: Mas‐Torrent
  fullname: Mas‐Torrent, Marta
  organization: Campus Universitat Autònoma de Barcelona (UAB)
– sequence: 6
  givenname: Jaime
  orcidid: 0000-0002-9669-7273
  surname: Martín
  fullname: Martín, Jaime
  organization: Campus Industrial de Ferrol
– sequence: 7
  givenname: Laura
  surname: López‐Mir
  fullname: López‐Mir, Laura
  email: laura.lopezm@eurecat.org
  organization: Unit of Printed Electronics & Embedded Devices
– sequence: 8
  givenname: Mariano
  orcidid: 0000-0002-8911-640X
  surname: Campoy‐Quiles
  fullname: Campoy‐Quiles, Mariano
  email: mcampoy@icmab.es
  organization: Campus Universitat Autònoma de Barcelona (UAB)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38279561$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1r3DAQxUVIyWevORZBLr3sVpItyTqWJW0CGxrYlNCTkOXZrIJsJZLc4P--WjZJIVB60mj4veHNvGO0P4QBEDqjZE4JYV9S7_2cEVZRKiu-h46ooNVMNEztv9WUHKLjlB4IqSir5QE6rBomFRf0CIVLd7_BN8FPPUR8HTzY0ZuI76D0M_7lwHcJr8K2twDvE352eYNXrh99NgOEMfkJX_WPMfyGDt9AXIfYm8ECNkOHbzdQfh6vsmmdd3k6RR_Wxif4-PKeoJ_fLm4Xl7Plj-9Xi6_Lma1pxWeMW2q4JCA6Zi2xpK2VYIIx3ijZcgGcWCpaIbhpiDGSMKqsoNYqS2AtRXWCPu_mFmNPI6Sse5dsWWDnWTPFFBGiqXlBz9-hD2GMQ3GnKyIZk0zVqlCfXqix7aHTj9H1Jk769ZQFqHeAjSGlCGttXTbZhSFH47ymRG8T09vE9FtiRTZ_J3ud_E-B2gmenYfpP7ReXS-Xf7V_AIuoqL8
CitedBy_id crossref_primary_10_1021_acs_chemmater_4c03051
crossref_primary_10_1039_D5TC01473E
crossref_primary_10_1002_anie_202409814
crossref_primary_10_1002_ange_202409814
crossref_primary_10_1007_s40820_025_01852_8
crossref_primary_10_1021_acsapm_5c01615
crossref_primary_10_1002_aenm_202405735
crossref_primary_10_1002_smll_202412230
crossref_primary_10_1016_j_optmat_2025_117352
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1039_D5RA03067F
Cites_doi 10.1002/aenm.202001864
10.1002/adfm.202005753
10.1002/aenm.202003002
10.1002/aelm.201700477
10.1021/acs.chemrev.1c00955
10.1021/acsaem.2c03265
10.1016/j.joule.2021.06.010
10.1038/nmat3722
10.1007/s11426-021-1087-8
10.1039/D1SC07269B
10.1039/D2EE00595F
10.1039/D0EE00774A
10.1039/D3TA00872J
10.1021/acsami.1c17943
10.1002/aenm.202100342
10.1002/adfm.201002502
10.1007/s11426-022-1394-y
10.1002/adfm.202102413
10.1002/aenm.201701561
10.1039/D2TA01205G
10.1002/adfm.202300981
10.1103/PhysRevB.82.245207
10.1038/nmat4645
10.1016/j.solmat.2019.109982
10.1039/C8TA02467G
10.1002/adma.202109516
10.1016/j.joule.2018.11.006
10.1021/ma201648t
10.1002/adma.201903441
10.1002/agt2.289
10.1016/j.joule.2019.01.004
10.1002/aenm.202002653
10.1002/advs.201903259
10.1002/aenm.201801001
10.1021/acs.jpclett.7b03110
10.1038/s41563-022-01244-y
10.1002/adma.201501132
10.1002/aenm.202002746
10.1002/aenm.201501400
10.1002/adma.201403080
10.1021/jacs.6b00853
10.1038/srep05286
10.1038/s41528-021-00128-6
10.1002/smll.201801793
10.1016/j.progpolymsci.2013.08.008
10.1016/j.joule.2023.03.002
10.1039/D0EE02958K
10.1038/s41467-023-39830-6
10.1038/s41467-018-03207-x
10.1002/adfm.202213220
10.1021/acsenergylett.3c01202
10.1038/s41467-019-12951-7
10.1073/pnas.1919769117
10.1039/C6TA00721J
10.1002/anie.202314420
10.1073/pnas.1501381112
10.1039/C4TA03780D
10.1007/s11426-019-9599-1
10.1063/1.4772551
10.1002/adma.201603940
10.1038/s41560-022-01155-x
10.1016/j.progpolymsci.2013.07.009
10.1021/ma501508j
10.1016/j.joule.2020.03.019
10.1021/ma501894w
10.1002/adfm.201908336
10.1002/adma.202106235
10.1002/adma.201606396
10.1002/aenm.202201076
10.1038/s41467-020-14926-5
10.1021/acsami.7b06145
10.1002/adfm.201603564
10.1016/j.joule.2021.06.006
10.1038/s41578-022-00514-0
10.1002/adfm.202202929
10.1002/adma.202102420
10.1016/j.solmat.2016.07.041
10.1002/adma.201004743
10.1016/j.polymer.2016.09.053
10.1039/C9TA07361B
10.1038/s41578-022-00497-y
10.1002/solr.202000364
10.1039/C7NR08636A
10.1021/ma0611164
10.1039/D0EE01896A
10.1016/j.nanoen.2019.103931
10.1002/sus2.10
10.1038/s41560-022-00997-9
10.1039/C7EE00619E
10.1002/adfm.201000224
10.1002/adma.202005241
ContentType Journal Article
Copyright 2024 The Authors. Small published by Wiley‐VCH GmbH
2024 The Authors. Small published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Small published by Wiley‐VCH GmbH
– notice: 2024 The Authors. Small published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202311735
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID 38279561
10_1002_smll_202311735
SMLL202311735
Genre article
Journal Article
GrantInformation_xml – fundername: Ajuntament de Barcelona
  funderid: 22S09542‐001
– fundername: Horizon 2020
  funderid: 862492
– fundername: H2020 Marie Skłodowska‐Curie Actions
  funderid: 101025608
– fundername: Ministerio de Ciencia e Innovación
  funderid: CEX2019‐000917‐S; PID2021‐128924OB‐I00; TED2021‐131911B‐I00; PID2019‐111682RB‐100; PID2022–141393OB‐I00
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2019-111682RB-100
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2021-128924OB-I00
– fundername: Ministerio de Ciencia e Innovación
  grantid: PID2022-141393OB-I00
– fundername: Ministerio de Ciencia e Innovación
  grantid: TED2021-131911B-I00
– fundername: Horizon 2020
  grantid: 862492
– fundername: Ministerio de Ciencia e Innovación
  grantid: CEX2019-000917-S
– fundername: H2020 Marie Skłodowska-Curie Actions
  grantid: 101025608
– fundername: Ajuntament de Barcelona
  grantid: 22S09542-001
GroupedDBID ---
05W
0R~
123
1L6
1OC
24P
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
31~
AAMMB
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ASPBG
AVWKF
AZFZN
BDRZF
CITATION
EBD
EJD
EMOBN
FEDTE
GODZA
HVGLF
LH4
SV3
AAYOK
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c4135-25c1a570e6d2cc0c0b49626225897b56e50c16b665a80aa70219c61cc9c0ef763
IEDL.DBID 24P
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149802900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 13:39:26 EDT 2025
Fri Jul 25 12:02:38 EDT 2025
Thu Apr 03 07:05:22 EDT 2025
Sat Nov 29 04:11:20 EST 2025
Tue Nov 18 22:04:13 EST 2025
Wed Jan 22 17:18:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords molecular weight
thickness tolerance
upscaling
stability
organic photovoltaics
Language English
License Attribution
2024 The Authors. Small published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4135-25c1a570e6d2cc0c0b49626225897b56e50c16b665a80aa70219c61cc9c0ef763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9669-7273
0000-0002-1586-005X
0000-0003-2212-8673
0000-0002-8911-640X
0000-0003-4221-0367
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311735
PMID 38279561
PQID 3072272949
PQPubID 1046358
PageCount 12
ParticipantIDs proquest_miscellaneous_2929066845
proquest_journals_3072272949
pubmed_primary_38279561
crossref_citationtrail_10_1002_smll_202311735
crossref_primary_10_1002_smll_202311735
wiley_primary_10_1002_smll_202311735_SMLL202311735
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2021; 64
2023; 33
2020; 63
2023; 7
2019; 10
2023; 8
2006; 39
2020; 13
2022; 21
2020; 11
2020; 10
2016; 103
2017; 9
2019; 200
2022; 122
2020; 7
2018; 6
2023; 62
2018; 9
2015; 48
2018; 8
2010; 20
2020; 4
2021; 31
2014; 4
2023; 66
2021; 33
2014; 2
2018; 4
2019; 64
2013; 12
2022; 34
2016; 157
2011; 21
2011; 23
2022; 32
2022; 33
2019; 7
2021; 5
2023; 14
2015; 5
2019; 3
2023; 11
2012; 101
2019; 31
2017; 27
2014; 47
2017; 29
2020; 32
2021; 1
2016; 15
2010; 82
2016; 4
2021; 14
2015; 27
2021; 11
2013; 38
2022; 4
2020; 30
2022; 5
2022; 7
2022; 8
2017; 10
2015; 112
2022; 12
2022; 13
2020; 117
2022; 14
2022; 15
2016; 138
2022; 10
2012; 45
2018; 10
2018; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_1_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Deledalle F. (e_1_2_8_41_1) 2015; 5
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 746
  year: 2016
  publication-title: Nat. Mater.
– volume: 47
  start-page: 7151
  year: 2014
  publication-title: Macromolecules
– volume: 10
  start-page: 5159
  year: 2019
  publication-title: Nat. Commun.
– volume: 117
  start-page: 6391
  year: 2020
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 13
  start-page: 2467
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 157
  start-page: 666
  year: 2016
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 33
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 66
  start-page: 202
  year: 2023
  publication-title: Sci. China: Chem.
– volume: 32
  year: 2022
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 836
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 5
  year: 2022
  publication-title: ACS Appl. Energy Mater.
– volume: 4
  start-page: 7274
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 30
  year: 2021
  publication-title: npj Flexible Electron.
– volume: 6
  start-page: 9506
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2022
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 443
  year: 2019
  publication-title: Joule
– volume: 14
  year: 2018
  publication-title: Small
– volume: 8
  start-page: 186
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 200
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 23
  start-page: 1660
  year: 2011
  publication-title: Adv. Mater.
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2015
  publication-title: Phys. Rev. X
– volume: 48
  start-page: 453
  year: 2015
  publication-title: Macromolecules
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 138
  start-page: 2973
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 11
  start-page: 8719
  year: 2023
  publication-title: J. Mater. Chem. A
– volume: 21
  start-page: 656
  year: 2022
  publication-title: Nat. Mater.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1243
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 2365
  year: 2021
  publication-title: Joule
– volume: 7
  start-page: 810
  year: 2023
  publication-title: Joule
– volume: 38
  start-page: 1978
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 103
  start-page: 132
  year: 2016
  publication-title: Polymer
– volume: 27
  start-page: 3318
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 2129
  year: 2021
  publication-title: Joule
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 5286
  year: 2014
  publication-title: Sci. Rep.
– volume: 7
  start-page: 1180
  year: 2022
  publication-title: Nat. Energy
– volume: 9
  start-page: 743
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1140
  year: 2019
  publication-title: Joule
– volume: 2
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2018
  publication-title: Adv. Electron. Mater.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1218
  year: 2020
  publication-title: Nat. Commun.
– volume: 101
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 5692
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 4608
  year: 2023
  publication-title: Nat. Commun.
– volume: 45
  start-page: 607
  year: 2012
  publication-title: Macromolecules
– volume: 10
  start-page: 1622
  year: 2018
  publication-title: Nanoscale
– volume: 20
  start-page: 2124
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 4
  year: 2020
  publication-title: Sol. RRL
– volume: 27
  start-page: 702
  year: 2015
  publication-title: Adv. Mater.
– volume: 4
  start-page: 1070
  year: 2020
  publication-title: Joule
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 7
  start-page: 352
  year: 2022
  publication-title: Nat. Energy
– volume: 15
  start-page: 2537
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 3679
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 3307
  year: 2023
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  year: 2023
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 990
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 986
  year: 2021
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 112
  year: 2015
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 64
  start-page: 1875
  year: 2021
  publication-title: Sci. China: Chem.
– volume: 21
  start-page: 1723
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 39
  start-page: 8692
  year: 2006
  publication-title: Macromolecules
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 4
  year: 2021
  publication-title: SusMat
– volume: 122
  year: 2022
  publication-title: Chem. Rev.
– volume: 13
  start-page: 4714
  year: 2022
  publication-title: Chem. Sci.
– volume: 38
  start-page: 1941
  year: 2013
  publication-title: Prog. Polym. Sci.
– volume: 4
  year: 2022
  publication-title: Aggregate
– volume: 12
  start-page: 1038
  year: 2013
  publication-title: Nat. Mater.
– volume: 63
  start-page: 265
  year: 2020
  publication-title: Sci. China: Chem.
– ident: e_1_2_8_13_1
  doi: 10.1002/aenm.202001864
– ident: e_1_2_8_38_1
  doi: 10.1002/adfm.202005753
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.202003002
– ident: e_1_2_8_71_1
  doi: 10.1002/aelm.201700477
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.chemrev.1c00955
– ident: e_1_2_8_32_1
  doi: 10.1021/acsaem.2c03265
– ident: e_1_2_8_45_1
  doi: 10.1016/j.joule.2021.06.010
– ident: e_1_2_8_89_1
  doi: 10.1038/nmat3722
– ident: e_1_2_8_22_1
  doi: 10.1007/s11426-021-1087-8
– ident: e_1_2_8_26_1
  doi: 10.1039/D1SC07269B
– ident: e_1_2_8_8_1
  doi: 10.1039/D2EE00595F
– ident: e_1_2_8_23_1
  doi: 10.1039/D0EE00774A
– ident: e_1_2_8_37_1
  doi: 10.1039/D3TA00872J
– ident: e_1_2_8_39_1
  doi: 10.1021/acsami.1c17943
– ident: e_1_2_8_20_1
  doi: 10.1002/aenm.202100342
– ident: e_1_2_8_28_1
  doi: 10.1002/adfm.201002502
– ident: e_1_2_8_33_1
  doi: 10.1007/s11426-022-1394-y
– ident: e_1_2_8_57_1
  doi: 10.1002/adfm.202102413
– ident: e_1_2_8_63_1
  doi: 10.1002/aenm.201701561
– ident: e_1_2_8_75_1
  doi: 10.1039/D2TA01205G
– ident: e_1_2_8_59_1
  doi: 10.1002/adfm.202300981
– ident: e_1_2_8_83_1
  doi: 10.1103/PhysRevB.82.245207
– ident: e_1_2_8_81_1
  doi: 10.1038/nmat4645
– ident: e_1_2_8_36_1
  doi: 10.1016/j.solmat.2019.109982
– ident: e_1_2_8_49_1
  doi: 10.1039/C8TA02467G
– ident: e_1_2_8_7_1
  doi: 10.1002/adma.202109516
– ident: e_1_2_8_46_1
  doi: 10.1016/j.joule.2018.11.006
– ident: e_1_2_8_42_1
  doi: 10.1021/ma201648t
– ident: e_1_2_8_64_1
  doi: 10.1002/adma.201903441
– ident: e_1_2_8_34_1
  doi: 10.1002/agt2.289
– ident: e_1_2_8_74_1
  doi: 10.1016/j.joule.2019.01.004
– ident: e_1_2_8_19_1
  doi: 10.1002/aenm.202002653
– ident: e_1_2_8_18_1
  doi: 10.1002/advs.201903259
– ident: e_1_2_8_48_1
  doi: 10.1002/aenm.201801001
– ident: e_1_2_8_91_1
  doi: 10.1021/acs.jpclett.7b03110
– ident: e_1_2_8_6_1
  doi: 10.1038/s41563-022-01244-y
– ident: e_1_2_8_78_1
  doi: 10.1002/adma.201501132
– ident: e_1_2_8_14_1
  doi: 10.1002/aenm.202002746
– ident: e_1_2_8_51_1
  doi: 10.1002/aenm.201501400
– ident: e_1_2_8_72_1
– ident: e_1_2_8_53_1
  doi: 10.1002/adma.201403080
– ident: e_1_2_8_73_1
  doi: 10.1021/jacs.6b00853
– ident: e_1_2_8_50_1
  doi: 10.1038/srep05286
– ident: e_1_2_8_76_1
  doi: 10.1038/s41528-021-00128-6
– ident: e_1_2_8_1_1
  doi: 10.1002/smll.201801793
– ident: e_1_2_8_84_1
  doi: 10.1016/j.progpolymsci.2013.08.008
– ident: e_1_2_8_61_1
  doi: 10.1016/j.joule.2023.03.002
– ident: e_1_2_8_70_1
  doi: 10.1039/D0EE02958K
– ident: e_1_2_8_25_1
  doi: 10.1038/s41467-023-39830-6
– ident: e_1_2_8_60_1
  doi: 10.1038/s41467-018-03207-x
– ident: e_1_2_8_4_1
  doi: 10.1002/adfm.202213220
– volume: 5
  year: 2015
  ident: e_1_2_8_41_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_58_1
  doi: 10.1021/acsenergylett.3c01202
– ident: e_1_2_8_79_1
  doi: 10.1038/s41467-019-12951-7
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.1919769117
– ident: e_1_2_8_52_1
  doi: 10.1039/C6TA00721J
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.202314420
– ident: e_1_2_8_88_1
  doi: 10.1073/pnas.1501381112
– ident: e_1_2_8_17_1
  doi: 10.1039/C4TA03780D
– ident: e_1_2_8_62_1
  doi: 10.1007/s11426-019-9599-1
– ident: e_1_2_8_86_1
  doi: 10.1063/1.4772551
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201603940
– ident: e_1_2_8_16_1
  doi: 10.1038/s41560-022-01155-x
– ident: e_1_2_8_85_1
  doi: 10.1016/j.progpolymsci.2013.07.009
– ident: e_1_2_8_87_1
  doi: 10.1021/ma501508j
– ident: e_1_2_8_65_1
  doi: 10.1016/j.joule.2020.03.019
– ident: e_1_2_8_68_1
  doi: 10.1021/ma501894w
– ident: e_1_2_8_80_1
  doi: 10.1002/adfm.201908336
– ident: e_1_2_8_43_1
  doi: 10.1002/adma.202106235
– ident: e_1_2_8_67_1
  doi: 10.1002/adma.201606396
– ident: e_1_2_8_10_1
  doi: 10.1002/aenm.202201076
– ident: e_1_2_8_31_1
  doi: 10.1038/s41467-020-14926-5
– ident: e_1_2_8_30_1
  doi: 10.1021/acsami.7b06145
– ident: e_1_2_8_55_1
  doi: 10.1002/adfm.201603564
– ident: e_1_2_8_90_1
  doi: 10.1016/j.joule.2021.06.006
– ident: e_1_2_8_3_1
  doi: 10.1038/s41578-022-00514-0
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.202202929
– ident: e_1_2_8_5_1
  doi: 10.1002/adma.202102420
– ident: e_1_2_8_29_1
  doi: 10.1016/j.solmat.2016.07.041
– ident: e_1_2_8_35_1
  doi: 10.1002/adma.201004743
– ident: e_1_2_8_40_1
  doi: 10.1016/j.polymer.2016.09.053
– ident: e_1_2_8_69_1
  doi: 10.1039/C9TA07361B
– ident: e_1_2_8_2_1
  doi: 10.1038/s41578-022-00497-y
– ident: e_1_2_8_27_1
  doi: 10.1002/solr.202000364
– ident: e_1_2_8_66_1
  doi: 10.1039/C7NR08636A
– ident: e_1_2_8_82_1
  doi: 10.1021/ma0611164
– ident: e_1_2_8_47_1
  doi: 10.1039/D0EE01896A
– ident: e_1_2_8_56_1
  doi: 10.1016/j.nanoen.2019.103931
– ident: e_1_2_8_77_1
  doi: 10.1002/sus2.10
– ident: e_1_2_8_9_1
  doi: 10.1038/s41560-022-00997-9
– ident: e_1_2_8_54_1
  doi: 10.1039/C7EE00619E
– ident: e_1_2_8_93_1
  doi: 10.1002/adfm.201000224
– ident: e_1_2_8_92_1
  doi: 10.1002/adma.202005241
SSID ssj0031247
Score 2.505404
Snippet Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2311735
SubjectTerms Carrier mobility
Current carriers
Electron transport
Energy conversion efficiency
Excitons
Glass transition temperature
High polymers
Mixtures
Molecular weight
organic photovoltaics
Photoelectric effect
Photovoltaic cells
Polymers
Solar cells
stability
Thermal stability
Thickness
thickness tolerance
upscaling
Title High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311735
https://www.ncbi.nlm.nih.gov/pubmed/38279561
https://www.proquest.com/docview/3072272949
https://www.proquest.com/docview/2929066845
Volume 20
WOSCitedRecordID wos001149802900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  issn: 1613-6810
  databaseCode: DRFUL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-wwFD74Wuji-vaOLyIIropp2iTNUtTBxSiD42NclSbNwEDtyFQvzL-_J-20OogIuiktTdqQ88zJyXcAjrnVAylC7aXKBF7IBr6n08hlWSURZZpzXQZzHjry5ibq91X3wyn-Ch-iCbg5ySj1tRPwRBen76ChxXPmtg7QP_FlwOdh0feDyBVvYGG31sUBWq-yvAoaLc8hb9WwjZSdzvafNUuffM1Z17W0Pe3V3496Df5M_U5yVjHKOszZfANWPqARbsLI5XyQ7iibPNsxua7r5pLHMnpKnlyuW0F6bi1Mzm2WFcQFcUlv6JISk9yO3opsQqoohU1J9_1IAknylCBD4lNG0L0tE3InW3Dfvrw7v_Km9Rg8g6aOe4wbP-GSWpEyY6ihOlS4HkKNECmpubCcGl9oITjSOUkkug_KCN8YZahFjgi2YSEf5fYvEKUNNzqVgg5EmKhUp9QyqVFZaC2pr1vg1eSIzRSs3NXMyOIKZpnFbiLjZiJbcNK0f6lgOr5suV9TN56KaxGjomMMlxmhasFR8xoFze2eVBMYM-WQ8UUU4id2Kq5ofhVETLoTwi1gJfG_GUPcu-50mqfdn3Tag2W8D6uktX1YeB2_2QNYMv9eh8X4sBQCvMp-dAiLF7ft-85_sZkJqA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oFdQH75e1VSMIPg3NZHKZPEppqTi7LGzV-jRMMlkoTGdlpxX233vO3NpFpCA-ZiaZCTnXnJx8B-CDCm5ptHRRaX0SSbGMI1emlGVVpFw4pVwbzPmWmdksPT218z6bkO7CdPgQY8CNJKPV1yTgFJDev0INbc4rOjtAByU2iboNdySaGmJ1IeeDMk7QfLX1VdBqRQS9NeA2crG_PX7bLv3hbG77rq3xOXr0H6b9GB72nif71LHKE7gV6qfw4Boe4TNYUdYHm6-qzXlYs-lQOZd9b-On7AdluzVsQbthdhCqqmEUxmWLM0pLLOqwumyqDeviFKFk86tLCayoS4Ysia2KoYPbpuRunsPXo8OTg-Oor8gQeTR2KhLKx4UyPOhSeM89d9Lijgh1QmqNUzoo7mPttFZI6aIw6EBYr2PvrecBeSJ5ATv1qg6vgFnnlXel0XypZWFLV_IgjEN14ZzhsZtANNAj9z1cOVXNqPIOaFnktJD5uJAT-Dj2_9kBdfy1595A3rwX2CZHVScEbjSkncD78TWKGp2fdAuYC0vY-DqV-ImXHVuMv0pSYeiO8ARES_0b5pAvplk2tl7_y6B3cO_4ZJrl2efZl124j89ll8K2BzsX68vwBu76XxdnzfptKxG_AfflCws
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB_0KmIf6rc9WzWC4NPSbHaTbB6l7aG4PQ7Pan0Km4-Dwnav3LbC_fdO9qs9RATxMbvZbJjMVyaT3wC8494spEhN5JRNopQt4si4LGRZFRllhnPTBHO-5XI6zc7O1KzLJgx3YVp8iCHgFiSj0ddBwP2lWxzcoIbWF2U4O0AHJZYJvwtbaagkM4Ktoy-T07xXxwkasKbCCtqtKIBv9ciNlB1sjrBpmX5zNze918b8TB7-h4k_gp3O9yQfWmZ5DHd89QS2byESPoVlyPsgs2W5vvArctLXziXfmwgq-RHy3WoyD_thcujLsiYhkEvm5yExsaj88rou16SNVHhHZjfXEkhROYJMia2SoIvbJOWun8Hp5Pjr4ceoq8kQWTR3PGLcxgWX1AvHrKWWmhSJLlArZEoaLjynNhZGCI5rXRQSXQhlRWytstQjVyTPYVQtK78LRBnLrXFS0IVIC-WMo55JgwrDGEljM4aoXw9tO8DyUDej1C3UMtOBkHog5BjeD_0vW6iOP_bc75dXdyJba1R2jOFWI1VjeDu8RmELJygtATVTAR1fZCkO8aJli-FXScZkuCU8Btas_l_moOcneT60Xv7LR2_g_uxoovNP08978AAfp20O2z6MrlbX_hXcsz-vzuvV604kfgFXggwh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Polymer+Molecular+Weight+Yields+Solar+Cells+with+Simultaneously+Improved+Performance+and+Thermal+Stability&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Riera-Galindo%2C+Sergi&rft.au=Sanz-Lle%C3%B3%2C+Marta&rft.au=Guti%C3%A9rrez-Fern%C3%A1ndez%2C+Edgar&rft.au=Ramos%2C+Nicol%C3%A1s&rft.date=2024-06-01&rft.eissn=1613-6829&rft.volume=20&rft.issue=26&rft.spage=e2311735&rft_id=info:doi/10.1002%2Fsmll.202311735&rft_id=info%3Apmid%2F38279561&rft.externalDocID=38279561
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon