High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability
Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Speci...
Uloženo v:
| Vydáno v: | Small (Weinheim an der Bergstrasse, Germany) Ročník 20; číslo 26; s. e2311735 - n/a |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
01.06.2024
|
| Témata: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.
This work shows how increasing the molecular weight of a low synthetic complexity polymer, PTQ10, when paired with different acceptors yielded a notable threefold enhancement in power conversion efficiency. These high‐efficiency blends show good thickness tolerance, and exhibited both improved stability and efficiency, underscoring the potential of cost‐effective organic solar cells. |
|---|---|
| AbstractList | Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability.Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non-fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the upscaling of organic photovoltaics. Here, the potential to address these issues by tuning donor polymer molecular weight is investigated. Specifically, the focus is on PTQ10, a polymer with low synthetic complexity, with number average molecular weights of 2.4, 6.2, 16.8, 52.9, and 54.4 kDa, in combination with three different non‐fullerene acceptors, namely Y6, Y12, and IDIC. Molecular weight, indeed, unlocks a threefold increase in power conversion efficiency for these blends. Importantly, efficiencies above 10% for blade coated devices with thicknesses between 200 and 350 nm for blends incorporating high molecular weight donor are shown. Spectroscopic, GIWAXS and charge carrier mobility data suggest that the strong photocurrent improvement with molecular weight is related to both, improved electronic transport and polymer contribution to exciton generation. Moreover, it is demonstrated that solar cells based on high molecular weight PTQ10 are more thermally stable due to a higher glass transition temperature, thus also improving device stability. This work shows how increasing the molecular weight of a low synthetic complexity polymer, PTQ10, when paired with different acceptors yielded a notable threefold enhancement in power conversion efficiency. These high‐efficiency blends show good thickness tolerance, and exhibited both improved stability and efficiency, underscoring the potential of cost‐effective organic solar cells. |
| Author | Gutiérrez‐Fernández, Edgar López‐Mir, Laura Mas‐Torrent, Marta Sanz‐Lleó, Marta Ramos, Nicolás Riera‐Galindo, Sergi Campoy‐Quiles, Mariano Martín, Jaime |
| Author_xml | – sequence: 1 givenname: Sergi orcidid: 0000-0003-4221-0367 surname: Riera‐Galindo fullname: Riera‐Galindo, Sergi email: sriera@icmab.es organization: Campus Universitat Autònoma de Barcelona (UAB) – sequence: 2 givenname: Marta orcidid: 0000-0003-2212-8673 surname: Sanz‐Lleó fullname: Sanz‐Lleó, Marta organization: Unit of Printed Electronics & Embedded Devices – sequence: 3 givenname: Edgar surname: Gutiérrez‐Fernández fullname: Gutiérrez‐Fernández, Edgar organization: University of the Basque Country UPV/EHU – sequence: 4 givenname: Nicolás surname: Ramos fullname: Ramos, Nicolás organization: University of the Basque Country UPV/EHU – sequence: 5 givenname: Marta orcidid: 0000-0002-1586-005X surname: Mas‐Torrent fullname: Mas‐Torrent, Marta organization: Campus Universitat Autònoma de Barcelona (UAB) – sequence: 6 givenname: Jaime orcidid: 0000-0002-9669-7273 surname: Martín fullname: Martín, Jaime organization: Campus Industrial de Ferrol – sequence: 7 givenname: Laura surname: López‐Mir fullname: López‐Mir, Laura email: laura.lopezm@eurecat.org organization: Unit of Printed Electronics & Embedded Devices – sequence: 8 givenname: Mariano orcidid: 0000-0002-8911-640X surname: Campoy‐Quiles fullname: Campoy‐Quiles, Mariano email: mcampoy@icmab.es organization: Campus Universitat Autònoma de Barcelona (UAB) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38279561$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1r3DAQxUVIyWevORZBLr3sVpItyTqWJW0CGxrYlNCTkOXZrIJsJZLc4P--WjZJIVB60mj4veHNvGO0P4QBEDqjZE4JYV9S7_2cEVZRKiu-h46ooNVMNEztv9WUHKLjlB4IqSir5QE6rBomFRf0CIVLd7_BN8FPPUR8HTzY0ZuI76D0M_7lwHcJr8K2twDvE352eYNXrh99NgOEMfkJX_WPMfyGDt9AXIfYm8ECNkOHbzdQfh6vsmmdd3k6RR_Wxif4-PKeoJ_fLm4Xl7Plj-9Xi6_Lma1pxWeMW2q4JCA6Zi2xpK2VYIIx3ijZcgGcWCpaIbhpiDGSMKqsoNYqS2AtRXWCPu_mFmNPI6Sse5dsWWDnWTPFFBGiqXlBz9-hD2GMQ3GnKyIZk0zVqlCfXqix7aHTj9H1Jk769ZQFqHeAjSGlCGttXTbZhSFH47ymRG8T09vE9FtiRTZ_J3ud_E-B2gmenYfpP7ReXS-Xf7V_AIuoqL8 |
| CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c03051 crossref_primary_10_1039_D5TC01473E crossref_primary_10_1002_anie_202409814 crossref_primary_10_1002_ange_202409814 crossref_primary_10_1007_s40820_025_01852_8 crossref_primary_10_1021_acsapm_5c01615 crossref_primary_10_1002_aenm_202405735 crossref_primary_10_1002_smll_202412230 crossref_primary_10_1016_j_optmat_2025_117352 crossref_primary_10_1021_polymscitech_4c00054 crossref_primary_10_1039_D5RA03067F |
| Cites_doi | 10.1002/aenm.202001864 10.1002/adfm.202005753 10.1002/aenm.202003002 10.1002/aelm.201700477 10.1021/acs.chemrev.1c00955 10.1021/acsaem.2c03265 10.1016/j.joule.2021.06.010 10.1038/nmat3722 10.1007/s11426-021-1087-8 10.1039/D1SC07269B 10.1039/D2EE00595F 10.1039/D0EE00774A 10.1039/D3TA00872J 10.1021/acsami.1c17943 10.1002/aenm.202100342 10.1002/adfm.201002502 10.1007/s11426-022-1394-y 10.1002/adfm.202102413 10.1002/aenm.201701561 10.1039/D2TA01205G 10.1002/adfm.202300981 10.1103/PhysRevB.82.245207 10.1038/nmat4645 10.1016/j.solmat.2019.109982 10.1039/C8TA02467G 10.1002/adma.202109516 10.1016/j.joule.2018.11.006 10.1021/ma201648t 10.1002/adma.201903441 10.1002/agt2.289 10.1016/j.joule.2019.01.004 10.1002/aenm.202002653 10.1002/advs.201903259 10.1002/aenm.201801001 10.1021/acs.jpclett.7b03110 10.1038/s41563-022-01244-y 10.1002/adma.201501132 10.1002/aenm.202002746 10.1002/aenm.201501400 10.1002/adma.201403080 10.1021/jacs.6b00853 10.1038/srep05286 10.1038/s41528-021-00128-6 10.1002/smll.201801793 10.1016/j.progpolymsci.2013.08.008 10.1016/j.joule.2023.03.002 10.1039/D0EE02958K 10.1038/s41467-023-39830-6 10.1038/s41467-018-03207-x 10.1002/adfm.202213220 10.1021/acsenergylett.3c01202 10.1038/s41467-019-12951-7 10.1073/pnas.1919769117 10.1039/C6TA00721J 10.1002/anie.202314420 10.1073/pnas.1501381112 10.1039/C4TA03780D 10.1007/s11426-019-9599-1 10.1063/1.4772551 10.1002/adma.201603940 10.1038/s41560-022-01155-x 10.1016/j.progpolymsci.2013.07.009 10.1021/ma501508j 10.1016/j.joule.2020.03.019 10.1021/ma501894w 10.1002/adfm.201908336 10.1002/adma.202106235 10.1002/adma.201606396 10.1002/aenm.202201076 10.1038/s41467-020-14926-5 10.1021/acsami.7b06145 10.1002/adfm.201603564 10.1016/j.joule.2021.06.006 10.1038/s41578-022-00514-0 10.1002/adfm.202202929 10.1002/adma.202102420 10.1016/j.solmat.2016.07.041 10.1002/adma.201004743 10.1016/j.polymer.2016.09.053 10.1039/C9TA07361B 10.1038/s41578-022-00497-y 10.1002/solr.202000364 10.1039/C7NR08636A 10.1021/ma0611164 10.1039/D0EE01896A 10.1016/j.nanoen.2019.103931 10.1002/sus2.10 10.1038/s41560-022-00997-9 10.1039/C7EE00619E 10.1002/adfm.201000224 10.1002/adma.202005241 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Small published by Wiley‐VCH GmbH 2024 The Authors. Small published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Small published by Wiley‐VCH GmbH – notice: 2024 The Authors. Small published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202311735 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 38279561 10_1002_smll_202311735 SMLL202311735 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Ajuntament de Barcelona funderid: 22S09542‐001 – fundername: Horizon 2020 funderid: 862492 – fundername: H2020 Marie Skłodowska‐Curie Actions funderid: 101025608 – fundername: Ministerio de Ciencia e Innovación funderid: CEX2019‐000917‐S; PID2021‐128924OB‐I00; TED2021‐131911B‐I00; PID2019‐111682RB‐100; PID2022–141393OB‐I00 – fundername: Ministerio de Ciencia e Innovación grantid: PID2019-111682RB-100 – fundername: Ministerio de Ciencia e Innovación grantid: PID2021-128924OB-I00 – fundername: Ministerio de Ciencia e Innovación grantid: PID2022-141393OB-I00 – fundername: Ministerio de Ciencia e Innovación grantid: TED2021-131911B-I00 – fundername: Horizon 2020 grantid: 862492 – fundername: Ministerio de Ciencia e Innovación grantid: CEX2019-000917-S – fundername: H2020 Marie Skłodowska-Curie Actions grantid: 101025608 – fundername: Ajuntament de Barcelona grantid: 22S09542-001 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 24P 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 31~ AAMMB AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ASPBG AVWKF AZFZN BDRZF CITATION EBD EJD EMOBN FEDTE GODZA HVGLF LH4 SV3 AAYOK NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c4135-25c1a570e6d2cc0c0b49626225897b56e50c16b665a80aa70219c61cc9c0ef763 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149802900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 13:39:26 EDT 2025 Fri Jul 25 12:02:38 EDT 2025 Thu Apr 03 07:05:22 EDT 2025 Sat Nov 29 04:11:20 EST 2025 Tue Nov 18 22:04:13 EST 2025 Wed Jan 22 17:18:13 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | molecular weight thickness tolerance upscaling stability organic photovoltaics |
| Language | English |
| License | Attribution 2024 The Authors. Small published by Wiley‐VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4135-25c1a570e6d2cc0c0b49626225897b56e50c16b665a80aa70219c61cc9c0ef763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9669-7273 0000-0002-1586-005X 0000-0003-2212-8673 0000-0002-8911-640X 0000-0003-4221-0367 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311735 |
| PMID | 38279561 |
| PQID | 3072272949 |
| PQPubID | 1046358 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2929066845 proquest_journals_3072272949 pubmed_primary_38279561 crossref_citationtrail_10_1002_smll_202311735 crossref_primary_10_1002_smll_202311735 wiley_primary_10_1002_smll_202311735_SMLL202311735 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 7 2021; 64 2023; 33 2020; 63 2023; 7 2019; 10 2023; 8 2006; 39 2020; 13 2022; 21 2020; 11 2020; 10 2016; 103 2017; 9 2019; 200 2022; 122 2020; 7 2018; 6 2023; 62 2018; 9 2015; 48 2018; 8 2010; 20 2020; 4 2021; 31 2014; 4 2023; 66 2021; 33 2014; 2 2018; 4 2019; 64 2013; 12 2022; 34 2016; 157 2011; 21 2011; 23 2022; 32 2022; 33 2019; 7 2021; 5 2023; 14 2015; 5 2019; 3 2023; 11 2012; 101 2019; 31 2017; 27 2014; 47 2017; 29 2020; 32 2021; 1 2016; 15 2010; 82 2016; 4 2021; 14 2015; 27 2021; 11 2013; 38 2022; 4 2020; 30 2022; 5 2022; 7 2022; 8 2017; 10 2015; 112 2022; 12 2022; 13 2020; 117 2022; 14 2022; 15 2016; 138 2022; 10 2012; 45 2018; 10 2018; 14 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_1_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Deledalle F. (e_1_2_8_41_1) 2015; 5 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
| References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 746 year: 2016 publication-title: Nat. Mater. – volume: 47 start-page: 7151 year: 2014 publication-title: Macromolecules – volume: 10 start-page: 5159 year: 2019 publication-title: Nat. Commun. – volume: 117 start-page: 6391 year: 2020 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 13 start-page: 2467 year: 2020 publication-title: Energy Environ. Sci. – volume: 157 start-page: 666 year: 2016 publication-title: Sol. Energy Mater. Sol. Cells – volume: 33 year: 2022 publication-title: Adv. Funct. Mater. – volume: 66 start-page: 202 year: 2023 publication-title: Sci. China: Chem. – volume: 32 year: 2022 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 836 year: 2022 publication-title: Nat. Rev. Mater. – volume: 5 year: 2022 publication-title: ACS Appl. Energy Mater. – volume: 4 start-page: 7274 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 30 year: 2021 publication-title: npj Flexible Electron. – volume: 6 start-page: 9506 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 year: 2022 publication-title: J. Mater. Chem. A – volume: 3 start-page: 443 year: 2019 publication-title: Joule – volume: 14 year: 2018 publication-title: Small – volume: 8 start-page: 186 year: 2022 publication-title: Nat. Rev. Mater. – volume: 200 year: 2019 publication-title: Sol. Energy Mater. Sol. Cells – volume: 23 start-page: 1660 year: 2011 publication-title: Adv. Mater. – volume: 64 year: 2019 publication-title: Nano Energy – volume: 5 year: 2015 publication-title: Phys. Rev. X – volume: 48 start-page: 453 year: 2015 publication-title: Macromolecules – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 138 start-page: 2973 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 11 start-page: 8719 year: 2023 publication-title: J. Mater. Chem. A – volume: 21 start-page: 656 year: 2022 publication-title: Nat. Mater. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1243 year: 2017 publication-title: Energy Environ. Sci. – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 5 start-page: 2365 year: 2021 publication-title: Joule – volume: 7 start-page: 810 year: 2023 publication-title: Joule – volume: 38 start-page: 1978 year: 2013 publication-title: Prog. Polym. Sci. – volume: 103 start-page: 132 year: 2016 publication-title: Polymer – volume: 27 start-page: 3318 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 2129 year: 2021 publication-title: Joule – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 4 start-page: 5286 year: 2014 publication-title: Sci. Rep. – volume: 7 start-page: 1180 year: 2022 publication-title: Nat. Energy – volume: 9 start-page: 743 year: 2018 publication-title: Nat. Commun. – volume: 3 start-page: 1140 year: 2019 publication-title: Joule – volume: 2 year: 2014 publication-title: J. Mater. Chem. A – volume: 4 year: 2018 publication-title: Adv. Electron. Mater. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 11 start-page: 1218 year: 2020 publication-title: Nat. Commun. – volume: 101 year: 2012 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 5692 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 4608 year: 2023 publication-title: Nat. Commun. – volume: 45 start-page: 607 year: 2012 publication-title: Macromolecules – volume: 10 start-page: 1622 year: 2018 publication-title: Nanoscale – volume: 20 start-page: 2124 year: 2010 publication-title: Adv. Funct. Mater. – volume: 4 year: 2020 publication-title: Sol. RRL – volume: 27 start-page: 702 year: 2015 publication-title: Adv. Mater. – volume: 4 start-page: 1070 year: 2020 publication-title: Joule – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 7 start-page: 352 year: 2022 publication-title: Nat. Energy – volume: 15 start-page: 2537 year: 2022 publication-title: Energy Environ. Sci. – volume: 13 start-page: 3679 year: 2020 publication-title: Energy Environ. Sci. – volume: 8 start-page: 3307 year: 2023 publication-title: ACS Energy Lett. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 62 year: 2023 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 990 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 986 year: 2021 publication-title: Energy Environ. Sci. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 112 year: 2015 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 64 start-page: 1875 year: 2021 publication-title: Sci. China: Chem. – volume: 21 start-page: 1723 year: 2011 publication-title: Adv. Funct. Mater. – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 39 start-page: 8692 year: 2006 publication-title: Macromolecules – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 1 start-page: 4 year: 2021 publication-title: SusMat – volume: 122 year: 2022 publication-title: Chem. Rev. – volume: 13 start-page: 4714 year: 2022 publication-title: Chem. Sci. – volume: 38 start-page: 1941 year: 2013 publication-title: Prog. Polym. Sci. – volume: 4 year: 2022 publication-title: Aggregate – volume: 12 start-page: 1038 year: 2013 publication-title: Nat. Mater. – volume: 63 start-page: 265 year: 2020 publication-title: Sci. China: Chem. – ident: e_1_2_8_13_1 doi: 10.1002/aenm.202001864 – ident: e_1_2_8_38_1 doi: 10.1002/adfm.202005753 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.202003002 – ident: e_1_2_8_71_1 doi: 10.1002/aelm.201700477 – ident: e_1_2_8_21_1 doi: 10.1021/acs.chemrev.1c00955 – ident: e_1_2_8_32_1 doi: 10.1021/acsaem.2c03265 – ident: e_1_2_8_45_1 doi: 10.1016/j.joule.2021.06.010 – ident: e_1_2_8_89_1 doi: 10.1038/nmat3722 – ident: e_1_2_8_22_1 doi: 10.1007/s11426-021-1087-8 – ident: e_1_2_8_26_1 doi: 10.1039/D1SC07269B – ident: e_1_2_8_8_1 doi: 10.1039/D2EE00595F – ident: e_1_2_8_23_1 doi: 10.1039/D0EE00774A – ident: e_1_2_8_37_1 doi: 10.1039/D3TA00872J – ident: e_1_2_8_39_1 doi: 10.1021/acsami.1c17943 – ident: e_1_2_8_20_1 doi: 10.1002/aenm.202100342 – ident: e_1_2_8_28_1 doi: 10.1002/adfm.201002502 – ident: e_1_2_8_33_1 doi: 10.1007/s11426-022-1394-y – ident: e_1_2_8_57_1 doi: 10.1002/adfm.202102413 – ident: e_1_2_8_63_1 doi: 10.1002/aenm.201701561 – ident: e_1_2_8_75_1 doi: 10.1039/D2TA01205G – ident: e_1_2_8_59_1 doi: 10.1002/adfm.202300981 – ident: e_1_2_8_83_1 doi: 10.1103/PhysRevB.82.245207 – ident: e_1_2_8_81_1 doi: 10.1038/nmat4645 – ident: e_1_2_8_36_1 doi: 10.1016/j.solmat.2019.109982 – ident: e_1_2_8_49_1 doi: 10.1039/C8TA02467G – ident: e_1_2_8_7_1 doi: 10.1002/adma.202109516 – ident: e_1_2_8_46_1 doi: 10.1016/j.joule.2018.11.006 – ident: e_1_2_8_42_1 doi: 10.1021/ma201648t – ident: e_1_2_8_64_1 doi: 10.1002/adma.201903441 – ident: e_1_2_8_34_1 doi: 10.1002/agt2.289 – ident: e_1_2_8_74_1 doi: 10.1016/j.joule.2019.01.004 – ident: e_1_2_8_19_1 doi: 10.1002/aenm.202002653 – ident: e_1_2_8_18_1 doi: 10.1002/advs.201903259 – ident: e_1_2_8_48_1 doi: 10.1002/aenm.201801001 – ident: e_1_2_8_91_1 doi: 10.1021/acs.jpclett.7b03110 – ident: e_1_2_8_6_1 doi: 10.1038/s41563-022-01244-y – ident: e_1_2_8_78_1 doi: 10.1002/adma.201501132 – ident: e_1_2_8_14_1 doi: 10.1002/aenm.202002746 – ident: e_1_2_8_51_1 doi: 10.1002/aenm.201501400 – ident: e_1_2_8_72_1 – ident: e_1_2_8_53_1 doi: 10.1002/adma.201403080 – ident: e_1_2_8_73_1 doi: 10.1021/jacs.6b00853 – ident: e_1_2_8_50_1 doi: 10.1038/srep05286 – ident: e_1_2_8_76_1 doi: 10.1038/s41528-021-00128-6 – ident: e_1_2_8_1_1 doi: 10.1002/smll.201801793 – ident: e_1_2_8_84_1 doi: 10.1016/j.progpolymsci.2013.08.008 – ident: e_1_2_8_61_1 doi: 10.1016/j.joule.2023.03.002 – ident: e_1_2_8_70_1 doi: 10.1039/D0EE02958K – ident: e_1_2_8_25_1 doi: 10.1038/s41467-023-39830-6 – ident: e_1_2_8_60_1 doi: 10.1038/s41467-018-03207-x – ident: e_1_2_8_4_1 doi: 10.1002/adfm.202213220 – volume: 5 year: 2015 ident: e_1_2_8_41_1 publication-title: Phys. Rev. X – ident: e_1_2_8_58_1 doi: 10.1021/acsenergylett.3c01202 – ident: e_1_2_8_79_1 doi: 10.1038/s41467-019-12951-7 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.1919769117 – ident: e_1_2_8_52_1 doi: 10.1039/C6TA00721J – ident: e_1_2_8_11_1 doi: 10.1002/anie.202314420 – ident: e_1_2_8_88_1 doi: 10.1073/pnas.1501381112 – ident: e_1_2_8_17_1 doi: 10.1039/C4TA03780D – ident: e_1_2_8_62_1 doi: 10.1007/s11426-019-9599-1 – ident: e_1_2_8_86_1 doi: 10.1063/1.4772551 – ident: e_1_2_8_12_1 doi: 10.1002/adma.201603940 – ident: e_1_2_8_16_1 doi: 10.1038/s41560-022-01155-x – ident: e_1_2_8_85_1 doi: 10.1016/j.progpolymsci.2013.07.009 – ident: e_1_2_8_87_1 doi: 10.1021/ma501508j – ident: e_1_2_8_65_1 doi: 10.1016/j.joule.2020.03.019 – ident: e_1_2_8_68_1 doi: 10.1021/ma501894w – ident: e_1_2_8_80_1 doi: 10.1002/adfm.201908336 – ident: e_1_2_8_43_1 doi: 10.1002/adma.202106235 – ident: e_1_2_8_67_1 doi: 10.1002/adma.201606396 – ident: e_1_2_8_10_1 doi: 10.1002/aenm.202201076 – ident: e_1_2_8_31_1 doi: 10.1038/s41467-020-14926-5 – ident: e_1_2_8_30_1 doi: 10.1021/acsami.7b06145 – ident: e_1_2_8_55_1 doi: 10.1002/adfm.201603564 – ident: e_1_2_8_90_1 doi: 10.1016/j.joule.2021.06.006 – ident: e_1_2_8_3_1 doi: 10.1038/s41578-022-00514-0 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.202202929 – ident: e_1_2_8_5_1 doi: 10.1002/adma.202102420 – ident: e_1_2_8_29_1 doi: 10.1016/j.solmat.2016.07.041 – ident: e_1_2_8_35_1 doi: 10.1002/adma.201004743 – ident: e_1_2_8_40_1 doi: 10.1016/j.polymer.2016.09.053 – ident: e_1_2_8_69_1 doi: 10.1039/C9TA07361B – ident: e_1_2_8_2_1 doi: 10.1038/s41578-022-00497-y – ident: e_1_2_8_27_1 doi: 10.1002/solr.202000364 – ident: e_1_2_8_66_1 doi: 10.1039/C7NR08636A – ident: e_1_2_8_82_1 doi: 10.1021/ma0611164 – ident: e_1_2_8_47_1 doi: 10.1039/D0EE01896A – ident: e_1_2_8_56_1 doi: 10.1016/j.nanoen.2019.103931 – ident: e_1_2_8_77_1 doi: 10.1002/sus2.10 – ident: e_1_2_8_9_1 doi: 10.1038/s41560-022-00997-9 – ident: e_1_2_8_54_1 doi: 10.1039/C7EE00619E – ident: e_1_2_8_93_1 doi: 10.1002/adfm.201000224 – ident: e_1_2_8_92_1 doi: 10.1002/adma.202005241 |
| SSID | ssj0031247 |
| Score | 2.505404 |
| Snippet | Simple synthetic routes, high active layer thickness tolerance as well as stable organic solar cells are relentlessly pursued as key enabling traits for the... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2311735 |
| SubjectTerms | Carrier mobility Current carriers Electron transport Energy conversion efficiency Excitons Glass transition temperature High polymers Mixtures Molecular weight organic photovoltaics Photoelectric effect Photovoltaic cells Polymers Solar cells stability Thermal stability Thickness thickness tolerance upscaling |
| Title | High Polymer Molecular Weight Yields Solar Cells with Simultaneously Improved Performance and Thermal Stability |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202311735 https://www.ncbi.nlm.nih.gov/pubmed/38279561 https://www.proquest.com/docview/3072272949 https://www.proquest.com/docview/2929066845 |
| Volume | 20 |
| WOSCitedRecordID | wos001149802900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8ahQMc2MbHKGPIkybtZJE4_oiPqFDtUFC1Dq07RY7jSEghnRpA6n_Pc9IEKoSQ4BLFih1btt-nn38P4Eccqgg11ZTKzArKTe6oDjJDHUfrQRutImvrZBPq8jKeTvX4yS3-Bh-ic7h5yqj5tSdwk1Ynj6Ch1U3hjw5QP8HuxBqsh2EU--QNjI9bXhyh9KrTq6DQoh55q4VtDNjJavtVsfRM11xVXWvZM_z4_lF_gu2l3klOm43yGT64cge2nqAR7sLMx3yQ8axY3Lg5uWjz5pK_tfeU_POxbhWZeFuYDFxRVMQ7ccnk2gclmtLN7qpiQRovhcvI-PFKAjFlRnBDYqkgqN7WAbmLPbganv8Z_KLLfAzUoqgTlAkbGqECJzNmbWCDlGu0h5AjxFqlQjoR2FCmUgoTB8YoVB-0laG12gYuR0a2D71yVroDIDwXuYuUzmSYc-l4qp31QP5ZanQe8bwPtF2OxC7Byn3OjCJpYJZZ4icy6SayDz-7-v8bmI4Xax61q5ssybVKkNExhmYG13343n1GQvOnJ80EJkx7ZHwZc_zFl2ZXdF1FMVP-hnAfWL34r4whmVyMRl3p8C2NvsImvvMmaO0IerfzO_cNNuz97XU1P66JAJ9qGh_D-tnv4dXoAZjaCZ8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0FdQH60fVs1UjCD6F7maT7OZRSkvFu-PgKtankM1mobDdk9tWuP_emf2qh4ggPmY32Q3JfGfyG4D3WZwmaKnmXBdecenKwE1UOB4keg_GmTTxvi02kc7n2cWFWfTZhHQXpsOHGANuxBmtvCYGp4D00S1qaHNV0dkBGij4P3UXdiWqGiJ1IReDME5QfbX1VVBrcYLeGnAbI3G0PX5bL_1mbG7brq3yOd37D9N-DI96y5N97EjlCdwJ9VN4-Ase4TNYUdYHW6yqzVVYs9lQOZd9beOn7BtluzVsSd4wOw5V1TAK47LlJaUlujqsbppqw7o4RSjY4vZSAnN1wZAksVUxNHDblNzNPnw5PTk_PuN9RQbuUdkpLpSPnUqjoAvhfeSjXBr0iFAmZCbNlQ4q8rHOtVYui5xL0YAwXsfeGx-FEkXZc9ipV3V4CUyWqgxJagodl1IHmZvgCcq_yJ0pE1lOgA_7YX0PV05VMyrbAS0LSwtpx4WcwIex__cOqOOPPQ-H7bU9wzYWRZ0Q6GhIM4F342tkNTo_6RbQCkPY-DqT-IkXHVmMv0oykdId4QmIdvf_Mge7nE2nY-vVvwx6C_fPzmdTO_00_3wAD_C57FLYDmHnen0TXsM9_-P6slm_aTniJ98-CwI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB_as5T2wY_W2lNbUyj0KbibTbKbx6IeLT2Pw6vUPoVsNgvCuie3Ktx_38l-6VGKIH3Mbr6YZD4ymfwG4HMSxhFaqimVmRWUm9xRFWSGOo6nB2VUHFlbJ5uIJ5Pk4kJN22hC_xamwYfoHW6eM2p57RncXWf54T1qaHVV-LsDNFBwPPEc1rjPJDOAteOz0fm4E8cRKrA6wwrqLerBtzrkxoAdrvawqpn-MjdXrdda_Yw2_sPEN2G9tT3J12azbMEzV76B1w8QCd_C3Md9kOm8WF65BTntcueSX7UHlfz28W4VmfnzMDlyRVER78gls0sfmGhKN7-tiiVpPBUuI9P7ZwnElBnBTYmlgqCJWwflLrfhfHTy8-gbbXMyUIvqTlAmbGhEHDiZMWsDG6QciS5RKiQqToV0IrChTKUUJgmMidGEUFaG1iobuByF2TsYlPPSvQfCc5G7KFaZDHMuHU-Vsx7MP0uNyiOeD4F266FtC1ju82YUuoFaZtoTUveEHMKXvv51A9Xxz5r73fLqlmUrjcKOMTxqcDWET_1vZDZ_g9IQUDPl0fFlwrGLnWZb9ENFCYv9K-EhsHr1H5mDnp2Ox31p9ymNDuDl9Hikx98nP_bgFX7mTQzbPgxuFrfuA7ywdzeX1eJjyxJ_AD7YDBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Polymer+Molecular+Weight+Yields+Solar+Cells+with+Simultaneously+Improved+Performance+and+Thermal+Stability&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Sergi+Riera%E2%80%90Galindo&rft.au=Marta+Sanz%E2%80%90Lle%C3%B3&rft.au=Edgar+Guti%C3%A9rrez%E2%80%90Fern%C3%A1ndez&rft.au=Ramos%2C+Nicol%C3%A1s&rft.date=2024-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=26&rft_id=info:doi/10.1002%2Fsmll.202311735&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |