Rapid Lignin Thermal Property Prediction through Attenuated Total Reflectance‐Infrared Spectroscopy and Chemometrics
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be pre...
Uloženo v:
| Vydáno v: | ChemSusChem Ročník 17; číslo 9; s. e202301464 - n/a |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
08.05.2024
|
| Témata: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.
The variable nature of technical lignins and their suitability for materials applications, necessitates detailed characterisation of their structural and material performance properties, such as glass transition temperature. This typically requires a suite of high‐end analytical equipment for analysis. We show that readily‐accessible attenuated total reflectance‐FTIR combined with partial least squares regression analysis, provides rapid access to this important parameter. |
|---|---|
| AbstractList | To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature ( T g ), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of T g than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the T g as well as the degree of allylation (% allyl ) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and % allyl on T g . Finally, the method provided accurate determinations of % allyl with RMSEP of 5.2 %. To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %. To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %. To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %. The variable nature of technical lignins and their suitability for materials applications, necessitates detailed characterisation of their structural and material performance properties, such as glass transition temperature. This typically requires a suite of high‐end analytical equipment for analysis. We show that readily‐accessible attenuated total reflectance‐FTIR combined with partial least squares regression analysis, provides rapid access to this important parameter. To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (T ), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of T than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the T as well as the degree of allylation (% ) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and % on T . Finally, the method provided accurate determinations of % with RMSEP of 5.2 %. |
| Author | Riddell, Luke A. Meirer, Florian Lindner, Jean‐Pierre B. Peinder, Peter Bruijnincx, Pieter C. A. |
| Author_xml | – sequence: 1 givenname: Luke A. surname: Riddell fullname: Riddell, Luke A. organization: Utrecht University – sequence: 2 givenname: Jean‐Pierre B. surname: Lindner fullname: Lindner, Jean‐Pierre B. organization: Group Research – sequence: 3 givenname: Peter surname: Peinder fullname: Peinder, Peter organization: Utrecht University – sequence: 4 givenname: Florian surname: Meirer fullname: Meirer, Florian email: f.meirer@uu.nl organization: Utrecht University – sequence: 5 givenname: Pieter C. A. orcidid: 0000-0001-8134-0530 surname: Bruijnincx fullname: Bruijnincx, Pieter C. A. email: P.C.A.Bruijnincx@uu.nl organization: Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38194292$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9rHCEYh6UkNH_aa49loJdedquOus4xDGkaWGjJbqE3cZx3soYZnarTsrd8hH7GfpK6bLKFQMjJF30eX31_Z-jIeQcIvSN4TjCmn0yMZk4xLTFhgr1Cp0QKNuOC_Tg61CU5QWcx3mEscCXEa3RSSlIxWtFT9OtGj7YtlvbWWVesNxAG3Rffgh8hpG0uoLUmWe-KtAl-ut0UFymBm3SCtlj7lOEb6HowSTsDf-__XLsu6GwVqzFvBh-NH7eFdm1Rb2DwA6RgTXyDjjvdR3j7sJ6j758v1_WX2fLr1XV9sZwZRko2oy2XUErRCElEK1jVSEopEMIJASyajjeG85JKLKBpucASBDVNPlpQbkRbnqOP-3vH4H9OEJMabDTQ99qBn6KiFaGclosFzuiHJ-idn4LLr1Ml5mwhpZAiU-8fqKkZoFVjsIMOW_U40QzM94DJf48BugNCsNpFpnaRqUNkWWBPBGOT3o08BW3757Vqr_22PWxfaKLq1ar-7_4DiiisqQ |
| CitedBy_id | crossref_primary_10_3390_polym16233325 crossref_primary_10_1002_cssc_202400938 crossref_primary_10_1016_j_chemolab_2025_105467 crossref_primary_10_1038_s41596_025_01139_7 |
| Cites_doi | 10.1002/app.1970.070140518 10.1021/acs.analchem.7b02632 10.1021/jf035282b 10.1021/acssuschemeng.6b01048 10.1002/cssc.201802809 10.1016/j.indcrop.2018.11.067 10.1016/j.indcrop.2004.04.022 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D 10.1515/hfsg.1991.45.s1.21 10.1080/00401706.1969.10490666 10.1039/C7CS00566K 10.1002/app.40799 10.1039/D1GC04171A 10.1021/acsapm.9b01007 10.1002/jrs.5588 10.1039/C8AN00599K 10.1080/02773810802124928 10.1021/acssuschemeng.9b06027 10.1021/acs.jafc.8b06707 10.1039/C5GC03043A 10.1021/jacs.7b13620 10.1002/jrs.5808 10.1039/C7EE01298E 10.1016/j.carbpol.2021.118887 10.1016/j.mtchem.2022.100793 10.1039/C4GC01759E 10.1104/pp.110.155119 10.1039/D3GC01055D 10.1039/D0GC01606C 10.1021/sc400545d 10.1002/app.1992.070441022 10.1021/acssuschemeng.6b01475 10.1126/science.1246843 10.1002/cssc.202001976 10.1039/C9GC03890F 10.1021/acssuschemeng.0c05364 10.1016/j.indcrop.2014.09.019 10.1021/acssuschemeng.0c07580 10.1016/j.indcrop.2020.112152 10.1016/j.indcrop.2014.08.013 10.1063/1.1699711 10.1515/HF.2007.074 10.1021/jo01073a026 10.1021/acssuschemeng.7b01130 10.1021/acssuschemeng.3c00617 10.3183/npprj-1997-12-03-p140-144 10.1039/C7GC01812F 10.1002/pol.1955.120158006 10.1080/02773819408003085 10.1002/cssc.202101853 10.1038/s41598-019-42837-z 10.1021/ac60361a009 10.1039/C8SC02000K 10.1021/acssuschemeng.7b02822 10.1002/mas.10072 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH – notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. – notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.202301464 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | n/a |
| ExternalDocumentID | 38194292 10_1002_cssc_202301464 CSSC202301464 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Netherlands Organisation for Scientific Research funderid: ENPPS.LIFT.019.17 – fundername: BASF SE – fundername: Netherlands Organisation for Scientific Research grantid: ENPPS.LIFT.019.17 |
| GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR XV2 ZZTAW ~S- AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4134-2d58e386b6816d649b8222e11511e06bf5bc5532806ebd5608e62cbe06725c6d3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Thu Jul 10 19:28:33 EDT 2025 Sat Nov 29 14:46:28 EST 2025 Mon Jul 21 06:01:09 EDT 2025 Tue Nov 18 22:25:21 EST 2025 Sat Nov 29 07:13:05 EST 2025 Sun Jul 06 04:45:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4134-2d58e386b6816d649b8222e11511e06bf5bc5532806ebd5608e62cbe06725c6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8134-0530 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301464 |
| PMID | 38194292 |
| PQID | 3054788686 |
| PQPubID | 986333 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2912523770 proquest_journals_3054788686 pubmed_primary_38194292 crossref_primary_10_1002_cssc_202301464 crossref_citationtrail_10_1002_cssc_202301464 wiley_primary_10_1002_cssc_202301464_CSSC202301464 |
| PublicationCentury | 2000 |
| PublicationDate | May 8, 2024 2024-05-08 2024-May-08 20240508 |
| PublicationDateYYYYMMDD | 2024-05-08 |
| PublicationDate_xml | – month: 05 year: 2024 text: May 8, 2024 day: 08 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2004; 20 2019; 50 1950; 21 2019; 12 2004; 23 2017; 89 2022; 24 2019; 129 2014; 62 2014; 131 2018; 47 2020; 8 2018; 9 1955; 15 2023; 25 2020; 2 2014; 2 1991; 45 2020; 51 2019; 67 2008; 28 1997; 12 2010; 153 1975; 47 2007; 61 1992; 44 2021; 9 2019; 9 2018; 143 2015; 17 2018; 140 2023; 11 1969; 11 2020; 145 2004 2016; 18 1970; 14 2022; 278 2016; 4 2021; 14 2004; 52 1960; 25 2017; 10 1994; 14 2017; 19 2020; 22 1999; 71 2014; 344 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Boeriu C. G. (e_1_2_7_18_1) 2004 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 4 start-page: 5136 year: 2016 end-page: 5151 publication-title: ACS Sustainable Chem. Eng. – volume: 344 year: 2014 publication-title: Science (80). – volume: 24 year: 2022 publication-title: Mater. Today Chem. – volume: 14 start-page: 5517 year: 2021 end-page: 5524 publication-title: ChemSusChem – volume: 14 start-page: 387 year: 2021 end-page: 397 publication-title: ChemSusChem – volume: 11 start-page: 6070 year: 2023 end-page: 6080 publication-title: ACS Sustainable Chem. Eng. – volume: 14 start-page: 1323 year: 1970 end-page: 1337 publication-title: J. Appl. Polym. Sci. – volume: 62 start-page: 67 year: 2014 end-page: 76 publication-title: Ind. Crops Prod. – volume: 22 start-page: 4722 year: 2020 end-page: 4746 publication-title: Green Chem. – start-page: 205 year: 2004 end-page: 218 – volume: 5 start-page: 10918 year: 2017 end-page: 10925 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 6940 year: 2017 end-page: 6949 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 1 year: 2019 end-page: 11 publication-title: Sci. Rep. – volume: 18 start-page: 2651 year: 2016 end-page: 2665 publication-title: Green Chem. – volume: 47 start-page: 1810 year: 1975 end-page: 1813 publication-title: Anal. Chem. – volume: 10 start-page: 1551 year: 2017 end-page: 1557 publication-title: Energy Environ. Sci. – volume: 11 start-page: 137 year: 1969 publication-title: Technomet – volume: 2 start-page: 668 year: 2020 end-page: 676 publication-title: ACS Appl. Polym. Mater. – volume: 51 start-page: 422 year: 2020 end-page: 431 publication-title: J. Raman Spectrosc. – volume: 2 start-page: 959 year: 2014 end-page: 968 publication-title: ACS Sustainable Chem. Eng. – volume: 89 start-page: 10907 year: 2017 end-page: 10916 publication-title: Anal. Chem. – volume: 67 start-page: 4367 year: 2019 end-page: 4374 publication-title: J. Agric. Food Chem. – volume: 278 year: 2022 publication-title: Carbohydr. Polym. – volume: 24 start-page: 1211 year: 2022 end-page: 1223 publication-title: Green Chem. – volume: 145 year: 2020 publication-title: Ind. Crops Prod. – volume: 19 start-page: 4104 year: 2017 end-page: 4121 publication-title: Green Chem. – volume: 50 start-page: 778 year: 2019 end-page: 792 publication-title: J. Raman Spectrosc. – volume: 143 start-page: 3526 year: 2018 end-page: 3539 publication-title: Analyst – volume: 25 start-page: 6051 year: 2023 end-page: 6056 publication-title: Green Chem. – volume: 71 start-page: 1969 year: 1999 end-page: 1975 publication-title: J. Appl. Polym. Sci. – volume: 45 start-page: 21 year: 1991 end-page: 28 publication-title: Holzforschung – volume: 8 start-page: 1112 year: 2020 end-page: 1120 publication-title: ACS Sustainable Chem. Eng. – volume: 153 start-page: 895 year: 2010 end-page: 905 publication-title: Plant Physiol. – volume: 8 start-page: 10983 year: 2020 end-page: 10994 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 1692 year: 2021 end-page: 1702 publication-title: ACS Sustainable Chem. Eng. – volume: 140 start-page: 4054 year: 2018 end-page: 4061 publication-title: J. Am. Chem. Soc. – volume: 52 start-page: 1850 year: 2004 end-page: 1860 publication-title: J. Agric. Food Chem. – volume: 15 start-page: 371 year: 1955 end-page: 390 publication-title: J. Polym. Sci. – volume: 62 start-page: 481 year: 2014 end-page: 490 publication-title: Ind. Crops Prod. – volume: 9 start-page: 6348 year: 2018 end-page: 6360 publication-title: Chem. Sci. – volume: 22 start-page: 1671 year: 2020 end-page: 1680 publication-title: Green Chem. – volume: 12 start-page: 140 year: 1997 end-page: 144 publication-title: Nord. Pulp Pap. Res. J. – volume: 4 start-page: 5238 year: 2016 end-page: 5247 publication-title: ACS Sustainable Chem. Eng. – volume: 21 start-page: 581 year: 1950 end-page: 591 publication-title: J. Appl. Phys. – volume: 44 start-page: 1869 year: 1992 end-page: 1871 publication-title: J. Appl. Polym. Sci. – volume: 12 start-page: 1139 year: 2019 end-page: 1146 publication-title: ChemSusChem – volume: 47 start-page: 852 year: 2018 end-page: 908 publication-title: Chem. Soc. Rev. – volume: 129 start-page: 123 year: 2019 end-page: 134 publication-title: Ind. Crops Prod. – volume: 14 start-page: 45 year: 1994 end-page: 63 publication-title: J. Wood Chem. Technol. – volume: 28 start-page: 106 year: 2008 end-page: 121 publication-title: J. Wood Chem. Technol. – volume: 17 start-page: 1077 year: 2015 end-page: 1087 publication-title: Green Chem. – volume: 61 start-page: 459 year: 2007 end-page: 468 publication-title: Holzforschung – volume: 20 start-page: 205 year: 2004 end-page: 218 publication-title: Ind. Crops Prod. – volume: 8 start-page: 16803 year: 2020 end-page: 16813 publication-title: ACS Sustainable Chem. Eng. – volume: 131 start-page: 9505 year: 2014 end-page: 9515 publication-title: J. Appl. Polym. Sci. – volume: 25 start-page: 405 year: 1960 end-page: 413 publication-title: J. Org. Chem. – volume: 23 start-page: 87 year: 2004 end-page: 126 publication-title: Mass Spectrom. Rev. – ident: e_1_2_7_29_1 doi: 10.1002/app.1970.070140518 – ident: e_1_2_7_23_1 doi: 10.1021/acs.analchem.7b02632 – ident: e_1_2_7_19_1 doi: 10.1021/jf035282b – ident: e_1_2_7_31_1 doi: 10.1021/acssuschemeng.6b01048 – ident: e_1_2_7_43_1 doi: 10.1002/cssc.201802809 – ident: e_1_2_7_12_1 doi: 10.1016/j.indcrop.2018.11.067 – ident: e_1_2_7_52_1 doi: 10.1016/j.indcrop.2004.04.022 – ident: e_1_2_7_53_1 doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D – ident: e_1_2_7_55_1 doi: 10.1515/hfsg.1991.45.s1.21 – ident: e_1_2_7_48_1 doi: 10.1080/00401706.1969.10490666 – ident: e_1_2_7_6_1 doi: 10.1039/C7CS00566K – ident: e_1_2_7_28_1 doi: 10.1002/app.40799 – ident: e_1_2_7_40_1 doi: 10.1039/D1GC04171A – ident: e_1_2_7_39_1 doi: 10.1021/acsapm.9b01007 – ident: e_1_2_7_20_1 doi: 10.1002/jrs.5588 – ident: e_1_2_7_49_1 doi: 10.1039/C8AN00599K – ident: e_1_2_7_30_1 doi: 10.1080/02773810802124928 – ident: e_1_2_7_7_1 doi: 10.1021/acssuschemeng.9b06027 – start-page: 205 volume-title: Ind. Crops Prod. year: 2004 ident: e_1_2_7_18_1 – ident: e_1_2_7_22_1 doi: 10.1021/acs.jafc.8b06707 – ident: e_1_2_7_4_1 doi: 10.1039/C5GC03043A – ident: e_1_2_7_13_1 doi: 10.1021/jacs.7b13620 – ident: e_1_2_7_21_1 doi: 10.1002/jrs.5808 – ident: e_1_2_7_36_1 doi: 10.1021/acssuschemeng.9b06027 – ident: e_1_2_7_5_1 doi: 10.1039/C7EE01298E – ident: e_1_2_7_41_1 doi: 10.1016/j.carbpol.2021.118887 – ident: e_1_2_7_15_1 doi: 10.1016/j.mtchem.2022.100793 – ident: e_1_2_7_56_1 doi: 10.1039/C4GC01759E – ident: e_1_2_7_2_1 doi: 10.1104/pp.110.155119 – ident: e_1_2_7_9_1 doi: 10.1039/D3GC01055D – ident: e_1_2_7_10_1 doi: 10.1039/D0GC01606C – ident: e_1_2_7_25_1 doi: 10.1021/sc400545d – ident: e_1_2_7_35_1 doi: 10.1002/app.1992.070441022 – ident: e_1_2_7_47_1 doi: 10.1021/acssuschemeng.6b01475 – ident: e_1_2_7_1_1 doi: 10.1126/science.1246843 – ident: e_1_2_7_46_1 doi: 10.1002/cssc.202001976 – ident: e_1_2_7_57_1 doi: 10.1039/C9GC03890F – ident: e_1_2_7_37_1 doi: 10.1021/acssuschemeng.0c05364 – ident: e_1_2_7_44_1 doi: 10.1016/j.indcrop.2014.09.019 – ident: e_1_2_7_45_1 doi: 10.1021/acssuschemeng.0c07580 – ident: e_1_2_7_16_1 doi: 10.1016/j.indcrop.2020.112152 – ident: e_1_2_7_27_1 doi: 10.1016/j.indcrop.2014.08.013 – ident: e_1_2_7_34_1 doi: 10.1063/1.1699711 – ident: e_1_2_7_26_1 doi: 10.1515/HF.2007.074 – ident: e_1_2_7_54_1 doi: 10.1021/jo01073a026 – ident: e_1_2_7_32_1 doi: 10.1021/acssuschemeng.7b01130 – ident: e_1_2_7_14_1 doi: 10.1021/acssuschemeng.3c00617 – ident: e_1_2_7_38_1 doi: 10.3183/npprj-1997-12-03-p140-144 – ident: e_1_2_7_8_1 doi: 10.1039/C7GC01812F – ident: e_1_2_7_33_1 doi: 10.1002/pol.1955.120158006 – ident: e_1_2_7_17_1 doi: 10.1080/02773819408003085 – ident: e_1_2_7_51_1 doi: 10.1002/cssc.202101853 – ident: e_1_2_7_42_1 doi: 10.1038/s41598-019-42837-z – ident: e_1_2_7_50_1 doi: 10.1021/ac60361a009 – ident: e_1_2_7_3_1 doi: 10.1039/C8SC02000K – ident: e_1_2_7_11_1 doi: 10.1021/acssuschemeng.7b02822 – ident: e_1_2_7_24_1 doi: 10.1002/mas.10072 |
| SSID | ssj0060966 |
| Score | 2.4577644 |
| Snippet | To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202301464 |
| SubjectTerms | Allyl compounds Chemical reactions Chemometrics Glass transition temperature Lignin Physicochemical properties Regression models Thermodynamic properties |
| Title | Rapid Lignin Thermal Property Prediction through Attenuated Total Reflectance‐Infrared Spectroscopy and Chemometrics |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301464 https://www.ncbi.nlm.nih.gov/pubmed/38194292 https://www.proquest.com/docview/3054788686 https://www.proquest.com/docview/2912523770 |
| Volume | 17 |
| WOSCitedRecordID | wos001149795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB7apNBe-t_GaRpUKPQkspZlWXsMmywthLBsEtibkWS5LKT2svYGcssj9Bn7JJ3xX7uEUmgvRsaSJaQZ6RuNNB_Ax0QlxqMScelDxWVmPcdlxHAtY5GrsfRi3JJNJOfnerEYz367xd_Ghxg23EgzmvmaFNzY6uhX0FBXVRSCUJBNoORD2A3DSBN5g5Czfi5WCNCb-0VaSR6rKOzDNo7E0Xb57WXpHtbchq7N2jN99v-tfg5PO9zJjltBeQEPfPESHk96urdXcDM3q2XGzpZfi2XBUHpwxr5mM9qrX9e3mCCPDo0i66h92HGNeHuDWDVjlyVieDb3OTkBSI5-3H3_UuRrOt3OiOK-pqCZ5eqWmSJjVGv5jai8XPUarqanl5PPvCNl4A7XO8lFFmsfaWWVDlWm5NgSxPAILMPQj5TNY-viOCKHrbcZ4intlXDWk8s3diqL3sBOURZ-D9goN5jHekM_ts4aBIMmkvgPjYZM5ALg_ZikrotYTsQZ12kba1mk1Jvp0JsBfBryr9pYHX_MedAPcdrpbJXizEdcAkqrAD4Mn3EUyIViCl9uqhQlV6DpniSjAN62ojFURbYvkX8FIBoJ-Esb0snFxWR42_-XQu_gCaZlc_5SH8BOvd749_DI3dTLan3YaAI-k4U-hN2T-fTq7CcoUgvp |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7atJBemr7rNm1VKPRkspZlWXsMS0JCt8uSbCE3IclyWEjtZe0N5Naf0N_YX9IZv8oSSqD05odeSDOaTxppPoBPqUyNRyUKhY9kKDLrQzQjJlQi4bkcC8_HLdlEOpupi4vxvDtNSHdh2vgQw4YbaUYzX5OC04b0wZ-ooa6qKAYhp0WBFPfhgUBTQ6LOxbyfjCUi9OaCkZIiTGQc9XEbR_xgO_-2XboFNrexa2N8jvf-Q7OfwOMOebLDVlSewj1fPIPdSU_49hyuz8xqmbHp8rJYFgzlB-fsKzan3fp1fYMP5NOhcWQduQ87rBFxbxCtZmxRIopnZz4nNwBJ0q8fP0-LfE3n2xmR3NcUNrNc3TBTZIxqLb8TmZerXsC346PF5CTsaBlChxZPhDxLlI-VtFJFMpNibAlkeISWUeRH0uaJdUkSk8vW2wwRlfKSO-vJ6Zs4mcUvYacoC_8a2Cg3mMZ6QwVbZw3CQRMLLEPhUiZ2AYT9oGjXxSwn6owr3UZb5pp6Uw-9GcDnIf2qjdbx15T7_RjrTmsrjXMfsQlIJQP4OPzGUSAniil8uak0yi7HxXuajgJ41crGUBWtfon-KwDeiMAdbdCT8_PJ8PbmXzJ9gN2Txdepnp7OvryFR_hdNKcx1T7s1OuNfwcP3XW9rNbvG7X4DW2_DUw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFD5s6dj2svs6r92mwWBPprEsy8pjSRtWFkJIW-ibkWS5BDo7xE6hb_0J_Y39JTvHtxHGGIy9-SJLwjqXTzrS-QC-xDLWDpXIFy6QvkiN89GNaF-JiGdyJBwfNWQT8WymLi5G83Y3IZ2FafJD9AtupBm1vSYFd6s0O_iVNdSWJeUg5DQpkOIh7AhikhnAztFicj7tzLFEjF4fMVJS-JEMgy5z45AfbNew7Zl-g5vb6LV2P5Pn_6HjL-BZiz3ZYSMsL-GBy1_Bk3FH-fYarhd6tUzZdHmZL3OGEoRW-4rNab1-Xd3gBUV1aCRZS-_DDivE3BvEqyk7KxDHs4XLKBBAsnR_e3eSZ2va4c6I5r6ixJnF6obpPGXUavGD6Lxs-QbOJ8dn429-S8zgW_R5wudppFyopJEqkKkUI0MwwyG4DAI3lCaLjI2ikIK2zqSIqZST3BpHYd_IyjR8C4O8yN07YMNMYxnjNFVsrNEICHUosA6Fk5nQeuB3g5LYNms5kWdcJU2-ZZ7Q30z6v-nB1778qsnX8ceS-90YJ63elglaP-ITkEp68Ll_jaNAYRSdu2JTJii9HKfvcTz0YLeRjb4pmv8SAZgHvBaBv_QhGZ-ejvu79__y0Sd4PD-aJNOT2fc9eIqPRb0dU-3DoFpv3Ad4ZK-rZbn-2OrFT9G1DmI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Lignin+Thermal+Property+Prediction+through+Attenuated+Total+Reflectance%E2%80%90Infrared+Spectroscopy+and+Chemometrics&rft.jtitle=ChemSusChem&rft.au=Riddell%2C+Luke+A.&rft.au=Lindner%2C+Jean%E2%80%90Pierre+B.&rft.au=Peinder%2C+Peter&rft.au=Meirer%2C+Florian&rft.date=2024-05-08&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fcssc.202301464&rft.externalDBID=10.1002%252Fcssc.202301464&rft.externalDocID=CSSC202301464 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |