Rapid Lignin Thermal Property Prediction through Attenuated Total Reflectance‐Infrared Spectroscopy and Chemometrics

To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 17; H. 9; S. e202301464 - n/a
Hauptverfasser: Riddell, Luke A., Lindner, Jean‐Pierre B., Peinder, Peter, Meirer, Florian, Bruijnincx, Pieter C. A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 08.05.2024
Schlagworte:
ISSN:1864-5631, 1864-564X, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %. The variable nature of technical lignins and their suitability for materials applications, necessitates detailed characterisation of their structural and material performance properties, such as glass transition temperature. This typically requires a suite of high‐end analytical equipment for analysis. We show that readily‐accessible attenuated total reflectance‐FTIR combined with partial least squares regression analysis, provides rapid access to this important parameter.
AbstractList To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature ( T g ), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of T g than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the T g as well as the degree of allylation (% allyl ) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and % allyl on T g . Finally, the method provided accurate determinations of % allyl with RMSEP of 5.2 %.
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory‐Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process‐diverse set of lignins, and 6.2 °C for kraft‐only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %. The variable nature of technical lignins and their suitability for materials applications, necessitates detailed characterisation of their structural and material performance properties, such as glass transition temperature. This typically requires a suite of high‐end analytical equipment for analysis. We show that readily‐accessible attenuated total reflectance‐FTIR combined with partial least squares regression analysis, provides rapid access to this important parameter.
To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (T ), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of T than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the T as well as the degree of allylation (% ) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and % on T . Finally, the method provided accurate determinations of % with RMSEP of 5.2 %.
Author Riddell, Luke A.
Meirer, Florian
Lindner, Jean‐Pierre B.
Peinder, Peter
Bruijnincx, Pieter C. A.
Author_xml – sequence: 1
  givenname: Luke A.
  surname: Riddell
  fullname: Riddell, Luke A.
  organization: Utrecht University
– sequence: 2
  givenname: Jean‐Pierre B.
  surname: Lindner
  fullname: Lindner, Jean‐Pierre B.
  organization: Group Research
– sequence: 3
  givenname: Peter
  surname: Peinder
  fullname: Peinder, Peter
  organization: Utrecht University
– sequence: 4
  givenname: Florian
  surname: Meirer
  fullname: Meirer, Florian
  email: f.meirer@uu.nl
  organization: Utrecht University
– sequence: 5
  givenname: Pieter C. A.
  orcidid: 0000-0001-8134-0530
  surname: Bruijnincx
  fullname: Bruijnincx, Pieter C. A.
  email: P.C.A.Bruijnincx@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38194292$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9rHCEYh6UkNH_aa49loJdedquOus4xDGkaWGjJbqE3cZx3soYZnarTsrd8hH7GfpK6bLKFQMjJF30eX31_Z-jIeQcIvSN4TjCmn0yMZk4xLTFhgr1Cp0QKNuOC_Tg61CU5QWcx3mEscCXEa3RSSlIxWtFT9OtGj7YtlvbWWVesNxAG3Rffgh8hpG0uoLUmWe-KtAl-ut0UFymBm3SCtlj7lOEb6HowSTsDf-__XLsu6GwVqzFvBh-NH7eFdm1Rb2DwA6RgTXyDjjvdR3j7sJ6j758v1_WX2fLr1XV9sZwZRko2oy2XUErRCElEK1jVSEopEMIJASyajjeG85JKLKBpucASBDVNPlpQbkRbnqOP-3vH4H9OEJMabDTQ99qBn6KiFaGclosFzuiHJ-idn4LLr1Ml5mwhpZAiU-8fqKkZoFVjsIMOW_U40QzM94DJf48BugNCsNpFpnaRqUNkWWBPBGOT3o08BW3757Vqr_22PWxfaKLq1ar-7_4DiiisqQ
CitedBy_id crossref_primary_10_3390_polym16233325
crossref_primary_10_1002_cssc_202400938
crossref_primary_10_1016_j_chemolab_2025_105467
crossref_primary_10_1038_s41596_025_01139_7
Cites_doi 10.1002/app.1970.070140518
10.1021/acs.analchem.7b02632
10.1021/jf035282b
10.1021/acssuschemeng.6b01048
10.1002/cssc.201802809
10.1016/j.indcrop.2018.11.067
10.1016/j.indcrop.2004.04.022
10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
10.1515/hfsg.1991.45.s1.21
10.1080/00401706.1969.10490666
10.1039/C7CS00566K
10.1002/app.40799
10.1039/D1GC04171A
10.1021/acsapm.9b01007
10.1002/jrs.5588
10.1039/C8AN00599K
10.1080/02773810802124928
10.1021/acssuschemeng.9b06027
10.1021/acs.jafc.8b06707
10.1039/C5GC03043A
10.1021/jacs.7b13620
10.1002/jrs.5808
10.1039/C7EE01298E
10.1016/j.carbpol.2021.118887
10.1016/j.mtchem.2022.100793
10.1039/C4GC01759E
10.1104/pp.110.155119
10.1039/D3GC01055D
10.1039/D0GC01606C
10.1021/sc400545d
10.1002/app.1992.070441022
10.1021/acssuschemeng.6b01475
10.1126/science.1246843
10.1002/cssc.202001976
10.1039/C9GC03890F
10.1021/acssuschemeng.0c05364
10.1016/j.indcrop.2014.09.019
10.1021/acssuschemeng.0c07580
10.1016/j.indcrop.2020.112152
10.1016/j.indcrop.2014.08.013
10.1063/1.1699711
10.1515/HF.2007.074
10.1021/jo01073a026
10.1021/acssuschemeng.7b01130
10.1021/acssuschemeng.3c00617
10.3183/npprj-1997-12-03-p140-144
10.1039/C7GC01812F
10.1002/pol.1955.120158006
10.1080/02773819408003085
10.1002/cssc.202101853
10.1038/s41598-019-42837-z
10.1021/ac60361a009
10.1039/C8SC02000K
10.1021/acssuschemeng.7b02822
10.1002/mas.10072
ContentType Journal Article
Copyright 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH
2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH
– notice: 2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202301464
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage n/a
ExternalDocumentID 38194292
10_1002_cssc_202301464
CSSC202301464
Genre article
Journal Article
GrantInformation_xml – fundername: Netherlands Organisation for Scientific Research
  funderid: ENPPS.LIFT.019.17
– fundername: BASF SE
– fundername: Netherlands Organisation for Scientific Research
  grantid: ENPPS.LIFT.019.17
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
XV2
ZZTAW
~S-
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4134-2d58e386b6816d649b8222e11511e06bf5bc5532806ebd5608e62cbe06725c6d3
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001149795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Thu Jul 10 19:28:33 EDT 2025
Sat Nov 29 14:46:28 EST 2025
Mon Jul 21 06:01:09 EDT 2025
Tue Nov 18 22:25:21 EST 2025
Sat Nov 29 07:13:05 EST 2025
Sun Jul 06 04:45:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
2024 The Authors. ChemSusChem published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4134-2d58e386b6816d649b8222e11511e06bf5bc5532806ebd5608e62cbe06725c6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8134-0530
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301464
PMID 38194292
PQID 3054788686
PQPubID 986333
PageCount 9
ParticipantIDs proquest_miscellaneous_2912523770
proquest_journals_3054788686
pubmed_primary_38194292
crossref_primary_10_1002_cssc_202301464
crossref_citationtrail_10_1002_cssc_202301464
wiley_primary_10_1002_cssc_202301464_CSSC202301464
PublicationCentury 2000
PublicationDate May 8, 2024
2024-05-08
2024-May-08
20240508
PublicationDateYYYYMMDD 2024-05-08
PublicationDate_xml – month: 05
  year: 2024
  text: May 8, 2024
  day: 08
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2004; 20
2019; 50
1950; 21
2019; 12
2004; 23
2017; 89
2022; 24
2019; 129
2014; 62
2014; 131
2018; 47
2020; 8
2018; 9
1955; 15
2023; 25
2020; 2
2014; 2
1991; 45
2020; 51
2019; 67
2008; 28
1997; 12
2010; 153
1975; 47
2007; 61
1992; 44
2021; 9
2019; 9
2018; 143
2015; 17
2018; 140
2023; 11
1969; 11
2020; 145
2004
2016; 18
1970; 14
2022; 278
2016; 4
2021; 14
2004; 52
1960; 25
2017; 10
1994; 14
2017; 19
2020; 22
1999; 71
2014; 344
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Boeriu C. G. (e_1_2_7_18_1) 2004
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 4
  start-page: 5136
  year: 2016
  end-page: 5151
  publication-title: ACS Sustainable Chem. Eng.
– volume: 344
  year: 2014
  publication-title: Science (80).
– volume: 24
  year: 2022
  publication-title: Mater. Today Chem.
– volume: 14
  start-page: 5517
  year: 2021
  end-page: 5524
  publication-title: ChemSusChem
– volume: 14
  start-page: 387
  year: 2021
  end-page: 397
  publication-title: ChemSusChem
– volume: 11
  start-page: 6070
  year: 2023
  end-page: 6080
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 1323
  year: 1970
  end-page: 1337
  publication-title: J. Appl. Polym. Sci.
– volume: 62
  start-page: 67
  year: 2014
  end-page: 76
  publication-title: Ind. Crops Prod.
– volume: 22
  start-page: 4722
  year: 2020
  end-page: 4746
  publication-title: Green Chem.
– start-page: 205
  year: 2004
  end-page: 218
– volume: 5
  start-page: 10918
  year: 2017
  end-page: 10925
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 6940
  year: 2017
  end-page: 6949
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 11
  publication-title: Sci. Rep.
– volume: 18
  start-page: 2651
  year: 2016
  end-page: 2665
  publication-title: Green Chem.
– volume: 47
  start-page: 1810
  year: 1975
  end-page: 1813
  publication-title: Anal. Chem.
– volume: 10
  start-page: 1551
  year: 2017
  end-page: 1557
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 137
  year: 1969
  publication-title: Technomet
– volume: 2
  start-page: 668
  year: 2020
  end-page: 676
  publication-title: ACS Appl. Polym. Mater.
– volume: 51
  start-page: 422
  year: 2020
  end-page: 431
  publication-title: J. Raman Spectrosc.
– volume: 2
  start-page: 959
  year: 2014
  end-page: 968
  publication-title: ACS Sustainable Chem. Eng.
– volume: 89
  start-page: 10907
  year: 2017
  end-page: 10916
  publication-title: Anal. Chem.
– volume: 67
  start-page: 4367
  year: 2019
  end-page: 4374
  publication-title: J. Agric. Food Chem.
– volume: 278
  year: 2022
  publication-title: Carbohydr. Polym.
– volume: 24
  start-page: 1211
  year: 2022
  end-page: 1223
  publication-title: Green Chem.
– volume: 145
  year: 2020
  publication-title: Ind. Crops Prod.
– volume: 19
  start-page: 4104
  year: 2017
  end-page: 4121
  publication-title: Green Chem.
– volume: 50
  start-page: 778
  year: 2019
  end-page: 792
  publication-title: J. Raman Spectrosc.
– volume: 143
  start-page: 3526
  year: 2018
  end-page: 3539
  publication-title: Analyst
– volume: 25
  start-page: 6051
  year: 2023
  end-page: 6056
  publication-title: Green Chem.
– volume: 71
  start-page: 1969
  year: 1999
  end-page: 1975
  publication-title: J. Appl. Polym. Sci.
– volume: 45
  start-page: 21
  year: 1991
  end-page: 28
  publication-title: Holzforschung
– volume: 8
  start-page: 1112
  year: 2020
  end-page: 1120
  publication-title: ACS Sustainable Chem. Eng.
– volume: 153
  start-page: 895
  year: 2010
  end-page: 905
  publication-title: Plant Physiol.
– volume: 8
  start-page: 10983
  year: 2020
  end-page: 10994
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 1692
  year: 2021
  end-page: 1702
  publication-title: ACS Sustainable Chem. Eng.
– volume: 140
  start-page: 4054
  year: 2018
  end-page: 4061
  publication-title: J. Am. Chem. Soc.
– volume: 52
  start-page: 1850
  year: 2004
  end-page: 1860
  publication-title: J. Agric. Food Chem.
– volume: 15
  start-page: 371
  year: 1955
  end-page: 390
  publication-title: J. Polym. Sci.
– volume: 62
  start-page: 481
  year: 2014
  end-page: 490
  publication-title: Ind. Crops Prod.
– volume: 9
  start-page: 6348
  year: 2018
  end-page: 6360
  publication-title: Chem. Sci.
– volume: 22
  start-page: 1671
  year: 2020
  end-page: 1680
  publication-title: Green Chem.
– volume: 12
  start-page: 140
  year: 1997
  end-page: 144
  publication-title: Nord. Pulp Pap. Res. J.
– volume: 4
  start-page: 5238
  year: 2016
  end-page: 5247
  publication-title: ACS Sustainable Chem. Eng.
– volume: 21
  start-page: 581
  year: 1950
  end-page: 591
  publication-title: J. Appl. Phys.
– volume: 44
  start-page: 1869
  year: 1992
  end-page: 1871
  publication-title: J. Appl. Polym. Sci.
– volume: 12
  start-page: 1139
  year: 2019
  end-page: 1146
  publication-title: ChemSusChem
– volume: 47
  start-page: 852
  year: 2018
  end-page: 908
  publication-title: Chem. Soc. Rev.
– volume: 129
  start-page: 123
  year: 2019
  end-page: 134
  publication-title: Ind. Crops Prod.
– volume: 14
  start-page: 45
  year: 1994
  end-page: 63
  publication-title: J. Wood Chem. Technol.
– volume: 28
  start-page: 106
  year: 2008
  end-page: 121
  publication-title: J. Wood Chem. Technol.
– volume: 17
  start-page: 1077
  year: 2015
  end-page: 1087
  publication-title: Green Chem.
– volume: 61
  start-page: 459
  year: 2007
  end-page: 468
  publication-title: Holzforschung
– volume: 20
  start-page: 205
  year: 2004
  end-page: 218
  publication-title: Ind. Crops Prod.
– volume: 8
  start-page: 16803
  year: 2020
  end-page: 16813
  publication-title: ACS Sustainable Chem. Eng.
– volume: 131
  start-page: 9505
  year: 2014
  end-page: 9515
  publication-title: J. Appl. Polym. Sci.
– volume: 25
  start-page: 405
  year: 1960
  end-page: 413
  publication-title: J. Org. Chem.
– volume: 23
  start-page: 87
  year: 2004
  end-page: 126
  publication-title: Mass Spectrom. Rev.
– ident: e_1_2_7_29_1
  doi: 10.1002/app.1970.070140518
– ident: e_1_2_7_23_1
  doi: 10.1021/acs.analchem.7b02632
– ident: e_1_2_7_19_1
  doi: 10.1021/jf035282b
– ident: e_1_2_7_31_1
  doi: 10.1021/acssuschemeng.6b01048
– ident: e_1_2_7_43_1
  doi: 10.1002/cssc.201802809
– ident: e_1_2_7_12_1
  doi: 10.1016/j.indcrop.2018.11.067
– ident: e_1_2_7_52_1
  doi: 10.1016/j.indcrop.2004.04.022
– ident: e_1_2_7_53_1
  doi: 10.1002/(SICI)1097-4628(19990321)71:12<1969::AID-APP6>3.0.CO;2-D
– ident: e_1_2_7_55_1
  doi: 10.1515/hfsg.1991.45.s1.21
– ident: e_1_2_7_48_1
  doi: 10.1080/00401706.1969.10490666
– ident: e_1_2_7_6_1
  doi: 10.1039/C7CS00566K
– ident: e_1_2_7_28_1
  doi: 10.1002/app.40799
– ident: e_1_2_7_40_1
  doi: 10.1039/D1GC04171A
– ident: e_1_2_7_39_1
  doi: 10.1021/acsapm.9b01007
– ident: e_1_2_7_20_1
  doi: 10.1002/jrs.5588
– ident: e_1_2_7_49_1
  doi: 10.1039/C8AN00599K
– ident: e_1_2_7_30_1
  doi: 10.1080/02773810802124928
– ident: e_1_2_7_7_1
  doi: 10.1021/acssuschemeng.9b06027
– start-page: 205
  volume-title: Ind. Crops Prod.
  year: 2004
  ident: e_1_2_7_18_1
– ident: e_1_2_7_22_1
  doi: 10.1021/acs.jafc.8b06707
– ident: e_1_2_7_4_1
  doi: 10.1039/C5GC03043A
– ident: e_1_2_7_13_1
  doi: 10.1021/jacs.7b13620
– ident: e_1_2_7_21_1
  doi: 10.1002/jrs.5808
– ident: e_1_2_7_36_1
  doi: 10.1021/acssuschemeng.9b06027
– ident: e_1_2_7_5_1
  doi: 10.1039/C7EE01298E
– ident: e_1_2_7_41_1
  doi: 10.1016/j.carbpol.2021.118887
– ident: e_1_2_7_15_1
  doi: 10.1016/j.mtchem.2022.100793
– ident: e_1_2_7_56_1
  doi: 10.1039/C4GC01759E
– ident: e_1_2_7_2_1
  doi: 10.1104/pp.110.155119
– ident: e_1_2_7_9_1
  doi: 10.1039/D3GC01055D
– ident: e_1_2_7_10_1
  doi: 10.1039/D0GC01606C
– ident: e_1_2_7_25_1
  doi: 10.1021/sc400545d
– ident: e_1_2_7_35_1
  doi: 10.1002/app.1992.070441022
– ident: e_1_2_7_47_1
  doi: 10.1021/acssuschemeng.6b01475
– ident: e_1_2_7_1_1
  doi: 10.1126/science.1246843
– ident: e_1_2_7_46_1
  doi: 10.1002/cssc.202001976
– ident: e_1_2_7_57_1
  doi: 10.1039/C9GC03890F
– ident: e_1_2_7_37_1
  doi: 10.1021/acssuschemeng.0c05364
– ident: e_1_2_7_44_1
  doi: 10.1016/j.indcrop.2014.09.019
– ident: e_1_2_7_45_1
  doi: 10.1021/acssuschemeng.0c07580
– ident: e_1_2_7_16_1
  doi: 10.1016/j.indcrop.2020.112152
– ident: e_1_2_7_27_1
  doi: 10.1016/j.indcrop.2014.08.013
– ident: e_1_2_7_34_1
  doi: 10.1063/1.1699711
– ident: e_1_2_7_26_1
  doi: 10.1515/HF.2007.074
– ident: e_1_2_7_54_1
  doi: 10.1021/jo01073a026
– ident: e_1_2_7_32_1
  doi: 10.1021/acssuschemeng.7b01130
– ident: e_1_2_7_14_1
  doi: 10.1021/acssuschemeng.3c00617
– ident: e_1_2_7_38_1
  doi: 10.3183/npprj-1997-12-03-p140-144
– ident: e_1_2_7_8_1
  doi: 10.1039/C7GC01812F
– ident: e_1_2_7_33_1
  doi: 10.1002/pol.1955.120158006
– ident: e_1_2_7_17_1
  doi: 10.1080/02773819408003085
– ident: e_1_2_7_51_1
  doi: 10.1002/cssc.202101853
– ident: e_1_2_7_42_1
  doi: 10.1038/s41598-019-42837-z
– ident: e_1_2_7_50_1
  doi: 10.1021/ac60361a009
– ident: e_1_2_7_3_1
  doi: 10.1039/C8SC02000K
– ident: e_1_2_7_11_1
  doi: 10.1021/acssuschemeng.7b02822
– ident: e_1_2_7_24_1
  doi: 10.1002/mas.10072
SSID ssj0060966
Score 2.4577644
Snippet To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202301464
SubjectTerms Allyl compounds
Chemical reactions
Chemometrics
Glass transition temperature
Lignin
Physicochemical properties
Regression models
Thermodynamic properties
Title Rapid Lignin Thermal Property Prediction through Attenuated Total Reflectance‐Infrared Spectroscopy and Chemometrics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202301464
https://www.ncbi.nlm.nih.gov/pubmed/38194292
https://www.proquest.com/docview/3054788686
https://www.proquest.com/docview/2912523770
Volume 17
WOSCitedRecordID wos001149795900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oK-iLd220lhEEn0J3rpk8ltVFoZRl28K-hcwlslCTZZMt9K0_wd_oL3FObrqICPoSJmSGDHPOmfnOnJnzAbyzjjlqJY-VkHksEp7GqfRFnOS54TzRqfeTlmwiOTvTy2U6_-UWf5cfYtxwQ8to52s08NzUxz-Thtq6xhSEDH0CJe7CPqVcI3kDE_NhLlYBoLf3i7QSsVScDmkbJ-x4t_3usvQb1tyFru3aM3v0_71-DA973ElOOkV5And8-RTuTwe6t2dwvcjXK0dOV1_KVUmC9oQZ-4rMca9-09yEAkZ0UIqkp_YhJ03A29uAVR25qAKGJwtfYBAA9ej77bfPZbHB0-0EKe4bTJpZrW9IXjqCf62-IpWXrZ_D5ezjxfRT3JMyxDasdyJmTmrPtTJKU-WUSA1CDB-AJaV-okwhjZWSY8DWGxfwlPaKWeMx5CutcvwF7JVV6Q-ACGqdYsGfdCkXKWW5zG0hLVcqMSaRPoJ4kElm-4zlSJxxlXW5llmGo5mNoxnB-7H-usvV8ceah4OIs95m6yzMfMgloLSK4O34OUgBQyh56attnbHQzeC6J8kkgpedaoy_Qt8Xyb8iYK0G_KUP2fT8fDq-vfqXRq_hQSiL9vylPoS9ZrP1b-CevW5W9eaotYTwTJb6CPY_LGaXpz8AM_0L1w
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oFeqL98to1QiCT0N3cpvMY1ksLa7L0q7QtzC5TFmoM8vObKFv_gR_o7_EnLnJIiKIb3NJSMg5J_lOTnI-gPfWUZdYwWLJRR7zlGVxJnwRp3luGEtV5v2kJZtI53N1cZEt-tOEeBemyw8xbrihZbTzNRo4bkgf_soaausacxBSdAokvw13eFhqUNUpXwyTsQwIvb1gpCSPhWTJkLdxQg936--uS7-BzV3s2i4-xw_-Q7cfwv0eeZKjTlUewS1fPob96UD49gSuz_L1ypHZ6rJclSToT5izr8gCd-s3zU14wJgOypH05D7kqAmIexvQqiPLKqB4cuYLDAOgJv349v20LDZ4vp0gyX2DaTOr9Q3JS0ew1eorknnZ-il8Of64nJ7EPS1DbMOKx2PqhPJMSSNVIp3kmUGQ4QO0TBI_kaYQxgrBMGTrjQuISnlJrfEY9BVWOvYM9sqq9C-A8MQ6SYNH6TLGs4TmIreFsEzK1JhU-AjiQSja9jnLkTrjSnfZlqnG0dTjaEbwYSy_7rJ1_LHkwSBj3VttrcPch2wCUskI3o2_gxQwiJKXvtrWmoZuBuc9TScRPO90Y2wKvV-k_4qAtirwlz7o6fn5dHx7-S-V3sL-yfLzTM9O559ewb3wnbenMdUB7DWbrX8Nd-11s6o3b1qz-Al6rA06
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFD7oVtQX79Zo1REEn4Zu5pbksWxdLC7Lsm2hbyFzSVmoybLJFvrWn-Bv9Jc4JzdZRATxLZdJZphzzsx35sycD-CjscyGRnKqhMyoiHhCE-lyGmWZ5jyKE-fGDdlENJ_HFxfJottNiGdh2vwQw4IbWkYzXqOBu7XND39lDTVVhTkIGToFStyFPYFMMiPYO15Oz2f9cKw8Rm-OGMVKUKl42GduHLPD3T_szky_wc1d9NpMP9PH_6HhT-BRhz3JUassT-GOK57Bg0lP-fYcrpfZemXJbHVZrAriNciP2ldkgev1m_rGX2BUByVJOnofclR7zL31eNWSs9LjeLJ0OQYCUJd-3H4_KfIN7nAnSHNfY-LMcn1DssISrLX8hnRepnoB59PPZ5MvtCNmoMbPeYIyK2PHY6VVHCqrRKIRZjgPLsPQjZXOpTZScgzaOm09poqdYkY7DPtKoyx_CaOiLNwrICI0VjHvU9qEiyRkmcxMLg1XKtI6ki4A2gslNV3WciTPuErbfMssxd5Mh94M4NNQft3m6_hjyYNexmlnt1XqRz_kE1CxCuDD8NpLAcMoWeHKbZUy30zvvkfROID9VjeGqtD_RQKwAFijAn9pQzo5PZ0Md6__5aP3cH9xPE1nJ_Ovb-Chfyya7ZjxAYzqzda9hXvmul5Vm3edXfwE364OUA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+Lignin+Thermal+Property+Prediction+through+Attenuated+Total+Reflectance%E2%80%90Infrared+Spectroscopy+and+Chemometrics&rft.jtitle=ChemSusChem&rft.au=Riddell%2C+Luke+A&rft.au=Lindner%2C+Jean%E2%80%90Pierre+B&rft.au=Peinder%2C+Peter&rft.au=Meirer%2C+Florian&rft.date=2024-05-08&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=17&rft.issue=9&rft_id=info:doi/10.1002%2Fcssc.202301464&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon