Logic Computing with Stateful Neural Networks of Resistive Switches

Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 30; číslo 38; s. e1802554 - n/a
Hlavní autori: Sun, Zhong, Ambrosi, Elia, Bricalli, Alessandro, Ielmini, Daniele
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.09.2018
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal–oxide–semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two‐input logic operations with just one step, except for the exclusive‐OR (XOR) needing two sequential steps. 1‐bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network. The concept of a stateful neural network is introduced based on a resistive memory circuit. Thanks to the universality and flexibility of the neural network, the circuit enables one‐step operation for all linearly separable logic functions, thus extremely reducing the numbers of computing steps and devices for stateful logic computing, for instance, two steps and five devices for the 1‐bit full adder.
AbstractList Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.
Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.
Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal–oxide–semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two‐input logic operations with just one step, except for the exclusive‐OR (XOR) needing two sequential steps. 1‐bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network. The concept of a stateful neural network is introduced based on a resistive memory circuit. Thanks to the universality and flexibility of the neural network, the circuit enables one‐step operation for all linearly separable logic functions, thus extremely reducing the numbers of computing steps and devices for stateful logic computing, for instance, two steps and five devices for the 1‐bit full adder.
Author Sun, Zhong
Ielmini, Daniele
Bricalli, Alessandro
Ambrosi, Elia
Author_xml – sequence: 1
  givenname: Zhong
  surname: Sun
  fullname: Sun, Zhong
  organization: Politecnico di Milano and IU.NET
– sequence: 2
  givenname: Elia
  surname: Ambrosi
  fullname: Ambrosi, Elia
  organization: Politecnico di Milano and IU.NET
– sequence: 3
  givenname: Alessandro
  surname: Bricalli
  fullname: Bricalli, Alessandro
  organization: Politecnico di Milano and IU.NET
– sequence: 4
  givenname: Daniele
  orcidid: 0000-0002-1853-1614
  surname: Ielmini
  fullname: Ielmini, Daniele
  email: daniele.ielmini@polimi.it
  organization: Politecnico di Milano and IU.NET
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30079525$$D View this record in MEDLINE/PubMed
BookMark eNqFkElLxDAUgIMoOi5Xj1Lw4qXjy9Y2x2FcYVRwOYckTTXaNmPSOvjv7TAuIIind_m-9x7fNlpvfWsR2scwxgDkWJWNGhPABRDO2RoaYU5wykDwdTQCQXkqMlZsoe0YnwFAZJBtoi0KkAtO-AhNZ_7RmWTqm3nfufYxWbjuKbnrVGervk6ubR_UcnQLH15i4qvk1kYXO_dmk7uBNU827qKNStXR7n3OHfRwdno_vUhnN-eX08ksNQxTluKM5GXOdKE56NxQa4DnOc4MJYJUBVG6qhjhQlS50dyUJZRCc411yUuqLNAddLTaOw_-tbexk42Lxta1aq3voyRQMMpyVvABPfyFPvs-tMN3kmDgQHBW0IE6-KR63dhSzoNrVHiXX3kGYLwCTPAxBlt9Ixjksr9c9pff_QeB_RKMG1o633ZBufpvTay0havt-z9H5OTkavLjfgBhWJi1
CitedBy_id crossref_primary_10_1002_advs_202104107
crossref_primary_10_1002_adfm_202100144
crossref_primary_10_1002_aelm_202001182
crossref_primary_10_1002_aisy_202200028
crossref_primary_10_1016_j_nanoen_2020_104628
crossref_primary_10_1039_D0NR06719A
crossref_primary_10_1109_TCSII_2023_3302235
crossref_primary_10_1002_advs_202200036
crossref_primary_10_1038_s41928_023_01053_4
crossref_primary_10_1109_TCSII_2021_3071386
crossref_primary_10_1109_TED_2021_3106234
crossref_primary_10_1088_1674_1056_ab90e7
crossref_primary_10_3389_fnano_2022_841756
crossref_primary_10_1002_advs_202103808
crossref_primary_10_1109_TED_2020_2966908
crossref_primary_10_1002_pssr_202200493
crossref_primary_10_1002_adfm_202004733
crossref_primary_10_1002_admt_201900212
crossref_primary_10_1002_aisy_202000081
crossref_primary_10_1002_sstr_202000088
crossref_primary_10_1063_5_0268483
crossref_primary_10_1109_TCSI_2021_3122327
crossref_primary_10_1002_celc_201801488
crossref_primary_10_1002_adma_202104023
crossref_primary_10_1109_TCSII_2021_3118215
crossref_primary_10_1021_acsaelm_4c02044
crossref_primary_10_1016_j_jmmm_2019_165262
crossref_primary_10_1002_aelm_202400452
crossref_primary_10_1002_adma_202007081
crossref_primary_10_1002_adma_202205402
crossref_primary_10_1145_3731245
crossref_primary_10_1016_j_nanoen_2020_105156
crossref_primary_10_1002_adma_202107811
crossref_primary_10_1109_TCSI_2024_3515011
crossref_primary_10_1109_TED_2020_2964910
crossref_primary_10_1088_1361_6463_ab83ba
crossref_primary_10_1109_TCSI_2019_2926811
crossref_primary_10_1109_TCSI_2022_3206238
crossref_primary_10_1002_aelm_202200089
crossref_primary_10_1038_s41467_020_17850_w
crossref_primary_10_3389_fnins_2023_1198306
crossref_primary_10_1002_admt_202100745
crossref_primary_10_1109_LED_2021_3102678
crossref_primary_10_1002_aisy_201900156
crossref_primary_10_1002_aisy_202200207
crossref_primary_10_1002_aelm_202000988
crossref_primary_10_1021_acs_analchem_4c02983
crossref_primary_10_1177_0021998320911418
crossref_primary_10_1039_D4MH01196A
crossref_primary_10_3389_fnano_2021_821687
crossref_primary_10_1002_aisy_202100234
crossref_primary_10_1016_j_mee_2024_112244
crossref_primary_10_1002_adfm_201905660
crossref_primary_10_1002_pssr_201800644
crossref_primary_10_1021_acs_chemrev_4c00845
crossref_primary_10_1063_5_0136403
crossref_primary_10_1088_1674_1056_ac8f38
crossref_primary_10_1002_aisy_202000278
crossref_primary_10_1002_adfm_202414332
crossref_primary_10_1109_LED_2019_2936895
crossref_primary_10_1002_aisy_202500241
crossref_primary_10_1002_pssr_201800674
crossref_primary_10_1109_TED_2024_3406310
crossref_primary_10_1002_smsc_202100006
crossref_primary_10_1109_TED_2022_3225134
crossref_primary_10_1109_TED_2023_3327985
crossref_primary_10_1002_adma_202003014
crossref_primary_10_1109_JXCDC_2022_3219731
crossref_primary_10_1088_2634_4386_acfbf3
crossref_primary_10_1002_aisy_202200341
crossref_primary_10_1109_TED_2020_2967401
crossref_primary_10_3390_sym14112466
crossref_primary_10_1109_TED_2022_3176834
crossref_primary_10_1002_aisy_202000040
crossref_primary_10_1002_inf2_12490
crossref_primary_10_1063_5_0052589
crossref_primary_10_1038_s41467_024_52132_9
crossref_primary_10_1109_TED_2020_3037279
crossref_primary_10_1109_TETC_2023_3268137
crossref_primary_10_3390_electronics9122098
crossref_primary_10_1016_j_device_2024_100546
crossref_primary_10_1021_acsaelm_5c00131
crossref_primary_10_1134_S1063739723700555
crossref_primary_10_1073_pnas_1815682116
crossref_primary_10_1109_LED_2019_2931947
crossref_primary_10_1088_1757_899X_768_7_072101
crossref_primary_10_1007_s11837_019_03666_7
crossref_primary_10_1038_s41598_020_59121_0
crossref_primary_10_1002_advs_202205383
crossref_primary_10_1002_adom_202202105
crossref_primary_10_1088_1742_6596_1976_1_012079
crossref_primary_10_3390_mi15060770
crossref_primary_10_1049_iet_cds_2019_0422
crossref_primary_10_1109_TVLSI_2024_3370176
crossref_primary_10_1088_1757_899X_768_5_052044
crossref_primary_10_1088_1361_6528_ac7651
crossref_primary_10_1002_adfm_202006773
crossref_primary_10_1021_acsami_5c10805
crossref_primary_10_1002_pssa_202100581
crossref_primary_10_1016_j_matdes_2023_112367
crossref_primary_10_1109_TED_2020_2992435
crossref_primary_10_1002_aisy_202400735
crossref_primary_10_1002_adom_201900766
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1002_advs_202501173
crossref_primary_10_1109_ACCESS_2025_3562434
crossref_primary_10_1016_j_mtphys_2024_101429
crossref_primary_10_1002_pssr_202100208
crossref_primary_10_1038_s41578_019_0159_3
crossref_primary_10_1002_adfm_202113050
crossref_primary_10_1002_batt_202100399
crossref_primary_10_1002_aelm_202300815
crossref_primary_10_1145_3451212
crossref_primary_10_1002_aisy_201900008
crossref_primary_10_1039_D1NR00148E
crossref_primary_10_1002_aelm_202200282
crossref_primary_10_1049_ell2_12694
Cites_doi 10.1007/BF02478259
10.1088/1361-6463/aa9646
10.1038/nnano.2017.83
10.1109/TVLSI.2002.808446
10.1038/530144a
10.1073/pnas.1407633111
10.1109/TNN.2003.816365
10.1002/adfm.201500865
10.1038/s41563-017-0001-5
10.1109/TED.2014.2325531
10.1038/nnano.2015.29
10.1007/978-3-642-61068-4
10.1002/adma.201204572
10.1002/adma.201602418
10.1109/TED.2015.2423001
10.1021/nn405827t
10.1002/adma.201203680
10.1109/TED.2015.2422999
10.1038/nmat3510
10.1038/nature14441
10.1109/TED.2011.2167513
10.1038/srep01680
10.1109/TED.2012.2202320
10.1038/nature08940
10.1109/JPROC.2013.2252317
10.1109/TED.2014.2330200
10.1109/T-C.1973.223685
10.1038/srep15467
10.1038/nnano.2016.70
10.1007/s12274-016-1260-1
10.1088/0268-1242/31/6/063002
10.1063/1.4852995
10.1038/nature06932
10.1002/adma.201301940
10.1038/s41928-018-0092-2
10.1038/s41928-017-0002-z
10.1109/TVLSI.2013.2282132
10.1109/TNNLS.2016.2547842
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201802554
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 30079525
10_1002_adma_201802554
ADMA201802554
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
  funderid: 648635
– fundername: European Research Council
  grantid: 648635
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYOK
ABTAH
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4134-1627d74b8b50b7c3ec057716c3292f82abff42599f7cb5cdd0d9b5b1bd5d3ae03
IEDL.DBID DRFUL
ISICitedReferencesCount 140
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444671900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 06:51:03 EDT 2025
Sun Nov 30 05:35:34 EST 2025
Thu Apr 03 06:57:56 EDT 2025
Sat Nov 29 07:25:49 EST 2025
Tue Nov 18 21:29:36 EST 2025
Wed Jan 22 16:51:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords stateful logic
in-memory computing
resistive switching memory
neural networks
neuromorphic
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4134-1627d74b8b50b7c3ec057716c3292f82abff42599f7cb5cdd0d9b5b1bd5d3ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1853-1614
OpenAccessLink http://hdl.handle.net/11311/1072063
PMID 30079525
PQID 2105021683
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2084347485
proquest_journals_2105021683
pubmed_primary_30079525
crossref_primary_10_1002_adma_201802554
crossref_citationtrail_10_1002_adma_201802554
wiley_primary_10_1002_adma_201802554_ADMA201802554
PublicationCentury 2000
PublicationDate 2018-Sep
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-Sep
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1943; 5
2013; 3
2013; 25
2015; 5
2012
2015; 521
2010; 464
2002; 10
2015; 10
2013; 101
2009
2016; 31
2003; 14
2008
1996
2011; 58
2012; 59
2014; 111
2014; 61
2014; 22
2016; 11
2017; 50
2015; 25
2018; 17
1973; C‐22
2015; 62
2018; 1
2013; 12
2017; 12
2016; 530
2013; 114
2017
2015
2014
2008; 453
2016; 28
2014; 8
1969
2016; 9
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
Lehtonen E. (e_1_2_5_32_1) 2009
e_1_2_5_44_1
e_1_2_5_43_1
Chen B. (e_1_2_5_7_1) 2015
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
Waser R. (e_1_2_5_26_1) 2012
Reuben J. (e_1_2_5_31_1) 2017
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
Minsky M. L. (e_1_2_5_22_1) 1969
Horowitz M. (e_1_2_5_2_1) 2014
e_1_2_5_30_1
Pradhan D. (e_1_2_5_39_1) 1996
Lee H. Y. (e_1_2_5_46_1) 2008
References_xml – volume: 3
  start-page: 1680
  year: 2013
  publication-title: Sci. Rep.
– start-page: 1
  year: 2017
– volume: 10
  start-page: 191
  year: 2015
  publication-title: Nat. Nanotechnol.
– volume: 58
  start-page: 4309
  year: 2011
  publication-title: IEEE Trans. Electron Devices
– volume: 8
  start-page: 2369
  year: 2014
  publication-title: ACS Nano
– volume: 530
  start-page: 144
  year: 2016
  publication-title: Nature
– volume: 25
  start-page: 1987
  year: 2013
  publication-title: Adv. Mater.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 5
  start-page: 15467
  year: 2015
  publication-title: Sci. Rep.
– start-page: 1
  year: 2008
  publication-title: IEDM Tech. Dig.
– volume: 14
  start-page: 1217
  year: 2003
  publication-title: IEEE Trans. Neural Netw.
– volume: 9
  start-page: 3914
  year: 2016
  publication-title: Nano Res.
– volume: 5
  start-page: 115
  year: 1943
  publication-title: Bull. Math. Biophys.
– volume: 31
  start-page: 063002
  year: 2016
  publication-title: Semicond. Sci. Technol.
– volume: 22
  start-page: 2054
  year: 2014
  publication-title: IEEE Trans. Very Large Scale Integr. Syst.
– year: 1996
– volume: 111
  start-page: 13272
  year: 2014
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 10
  start-page: 806
  year: 2002
  publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
– volume: 61
  start-page: 2912
  year: 2014
  publication-title: IEEE Trans. Electron Devices
– volume: 25
  start-page: 1774
  year: 2013
  publication-title: Adv. Mater.
– start-page: 33
  year: 2009
– year: 2012
– volume: 59
  start-page: 2468
  year: 2012
  publication-title: IEEE Trans. Electron Devices
– volume: 464
  start-page: 873
  year: 2010
  publication-title: Nature
– volume: 1
  start-page: 333
  year: 2018
  publication-title: Nat. Electron.
– volume: 12
  start-page: 784
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 61
  start-page: 2378
  year: 2014
  publication-title: IEEE Trans. Electron Devices
– volume: 25
  start-page: 6414
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 9758
  year: 2016
  publication-title: Adv. Mater.
– volume: C‐22
  start-page: 197
  year: 1973
  publication-title: IEEE Trans. Comput.
– volume: 521
  start-page: 61
  year: 2015
  publication-title: Nature
– year: 1969
– volume: 12
  start-page: 114
  year: 2013
  publication-title: Nat. Mater.
– volume: 62
  start-page: 1831
  year: 2015
  publication-title: IEEE Trans. Electron Dev.
– volume: 101
  start-page: 2498
  year: 2013
  publication-title: Proc. IEEE
– volume: 50
  start-page: 505102
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 25
  start-page: 5975
  year: 2013
  publication-title: Adv. Mater.
– volume: 114
  start-page: 234503
  year: 2013
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 1734
  year: 2016
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 10
  year: 2014
– volume: 1
  start-page: 52
  year: 2018
  publication-title: Nat. Electron.
– volume: 11
  start-page: 693
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 62
  start-page: 1839
  year: 2015
  publication-title: IEEE Trans. Electron Devices
– start-page: 17.5.1
  year: 2015
  publication-title: IEDM Tech. Dig.
– volume: 17
  start-page: 335
  year: 2018
  publication-title: Nat. Mater.
– ident: e_1_2_5_15_1
  doi: 10.1007/BF02478259
– ident: e_1_2_5_34_1
  doi: 10.1088/1361-6463/aa9646
– ident: e_1_2_5_28_1
  doi: 10.1038/nnano.2017.83
– ident: e_1_2_5_23_1
  doi: 10.1109/TVLSI.2002.808446
– ident: e_1_2_5_1_1
  doi: 10.1038/530144a
– ident: e_1_2_5_12_1
  doi: 10.1073/pnas.1407633111
– ident: e_1_2_5_16_1
  doi: 10.1109/TNN.2003.816365
– ident: e_1_2_5_29_1
  doi: 10.1002/adfm.201500865
– ident: e_1_2_5_41_1
  doi: 10.1038/s41563-017-0001-5
– ident: e_1_2_5_21_1
  doi: 10.1109/TED.2014.2325531
– ident: e_1_2_5_3_1
  doi: 10.1038/nnano.2015.29
– ident: e_1_2_5_14_1
  doi: 10.1007/978-3-642-61068-4
– ident: e_1_2_5_40_1
  doi: 10.1002/adma.201204572
– ident: e_1_2_5_9_1
  doi: 10.1002/adma.201602418
– ident: e_1_2_5_27_1
  doi: 10.1109/TED.2015.2423001
– ident: e_1_2_5_37_1
  doi: 10.1021/nn405827t
– start-page: 1
  volume-title: 27th Int. Symp. Power and Timing Modeling, Optimization and Simulation (PATMOS)
  year: 2017
  ident: e_1_2_5_31_1
– ident: e_1_2_5_45_1
  doi: 10.1002/adma.201203680
– volume-title: Nanoelectronics and Information Technology
  year: 2012
  ident: e_1_2_5_26_1
– ident: e_1_2_5_8_1
  doi: 10.1109/TED.2015.2422999
– ident: e_1_2_5_18_1
  doi: 10.1038/nmat3510
– ident: e_1_2_5_44_1
  doi: 10.1038/nature14441
– start-page: 1
  year: 2008
  ident: e_1_2_5_46_1
  publication-title: IEDM Tech. Dig.
– ident: e_1_2_5_20_1
  doi: 10.1109/TED.2011.2167513
– ident: e_1_2_5_36_1
  doi: 10.1038/srep01680
– ident: e_1_2_5_35_1
  doi: 10.1109/TED.2012.2202320
– ident: e_1_2_5_5_1
  doi: 10.1038/nature08940
– volume-title: Perceptrons
  year: 1969
  ident: e_1_2_5_22_1
– ident: e_1_2_5_24_1
  doi: 10.1109/JPROC.2013.2252317
– ident: e_1_2_5_38_1
  doi: 10.1109/TED.2014.2330200
– start-page: 10
  volume-title: Int. Solid‐State Circuits Conf. Dig. Tech. Papers
  year: 2014
  ident: e_1_2_5_2_1
– ident: e_1_2_5_25_1
  doi: 10.1109/T-C.1973.223685
– start-page: 17.5.1
  year: 2015
  ident: e_1_2_5_7_1
  publication-title: IEDM Tech. Dig.
– volume-title: Fault‐Tolerant Computer System Design
  year: 1996
  ident: e_1_2_5_39_1
– ident: e_1_2_5_30_1
  doi: 10.1038/srep15467
– ident: e_1_2_5_19_1
  doi: 10.1038/nnano.2016.70
– ident: e_1_2_5_33_1
  doi: 10.1007/s12274-016-1260-1
– start-page: 33
  volume-title: Proc. IEEE/ACM Int. Symp. Nanoscale Architectures
  year: 2009
  ident: e_1_2_5_32_1
– ident: e_1_2_5_13_1
  doi: 10.1088/0268-1242/31/6/063002
– ident: e_1_2_5_11_1
  doi: 10.1063/1.4852995
– ident: e_1_2_5_4_1
  doi: 10.1038/nature06932
– ident: e_1_2_5_10_1
  doi: 10.1002/adma.201301940
– ident: e_1_2_5_42_1
  doi: 10.1038/s41928-018-0092-2
– ident: e_1_2_5_43_1
  doi: 10.1038/s41928-017-0002-z
– ident: e_1_2_5_6_1
  doi: 10.1109/TVLSI.2013.2282132
– ident: e_1_2_5_17_1
  doi: 10.1109/TNNLS.2016.2547842
SSID ssj0009606
Score 2.6045222
Snippet Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial...
Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1802554
SubjectTerms Boolean algebra
Brain
Computing time
in‐memory computing
Ion migration
Logic
Materials science
Neural networks
neuromorphic
Ohm's Law
Pattern recognition
Reconfiguration
resistive switching memory
stateful logic
Switches
Switching theory
Title Logic Computing with Stateful Neural Networks of Resistive Switches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802554
https://www.ncbi.nlm.nih.gov/pubmed/30079525
https://www.proquest.com/docview/2105021683
https://www.proquest.com/docview/2084347485
Volume 30
WOSCitedRecordID wos000444671900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6s9aAH34_6YgXBU2iS3SSbY6kWD1qkWukt7BOE0oqx_n5nkzS2iAh6ymMnybKzs_PNbvYbgEvEGManVnpMaQxQ0Ml6GEZEnmKpDrikUhRMTM93Sb_PR6P0YWEXf8kPUU-4Ocsoxmtn4ELm7S_SUKEL3iDHYIYusQFNt7MKw6_m9aA3vPsi3o2L_Jpuvc9LY8bnxI1-2F5-w7Jj-oY2l8Fr4X16W_-v9zZsVsiTdMqusgMrZrILGwt8hHvQdZmXFSkzPeAd4mZpSYFH7WxMHJGHcIfiz_GcTC0ZmNwNEh-GPKKsS761D8PezVP31quyLKA-Asq8IA4TnTDJZeTLRFGjEMJhFKVomIaWh0JaizpMU5soGSmtfZ3KSAZSR5oKVPQBrE6mE3MExFfMMpn4AsMoRiXnMZNaMMGtijU3qgXevIkzVVGQu0wY46wkTw4z1zhZ3TgtuKrlX0vyjR8lT-cayyojzDOMZiOEMDGnLbioi9F83JqImJjpDGV8zihLGI9acFhquv4URfyURiGWhIVCf6lD1rm-79RXx3956ATW3Xn5D9sprL6_zcwZrKmP95f87RwayYifVx38E7lS-Hs
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90CuqD3x_TqREEn8q6Jm3Tx7E5Js4hc8reSr4Kgmyyr7_fS9tVh4ggPpUm1zbkcrnfJenvAK4RYxiXJtJhSmOAgk7WwTDCdxSLdI1LKkXKxPTSCbtdPhhEj_lpQvsvTMYPUSy4WctI52tr4HZBuvrJGip0ShxkKczQJ67CGgtoyEuw1uy1njufzLtBmmDTbvg5UcD4grnR9arLb1j2TN_g5jJ6Td1Pa-cfGr4L2zn2JPVssOzBihnuw9YXRsIDaNjcy4pkuR6whNh1WpIiUnw9sVQewl7Ss-MTMkpIz0zsNDE35AllbfqtQ3hu3fYbbSfPs4AaqVHm1AIv1CGTXPquDBU1CkEcxlGKepGXcE_IJEEtRlESKukrrV0dSV_WpPY1FajqIygNR0NzAsRVLGEydAUGUoxKzgMmtWCCJyrQ3KgyOIs-jlVOQm5zYbzFGX2yF9vOiYvOKcNNIf-e0W_8KFlZqCzOzXASYzzrI4gJOC3DVVGNBmR3RcTQjGYo43JGWci4X4bjTNXFpygiqMj3sMZLNfpLG-J686Fe3J3-5aFL2Gj3Hzpx5657fwabtjw70VaB0nQ8M-ewrubT18n4Ih_nH8w4-4M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_WZJTuYd1Xt7TZpsFgTyaOJdnSY0gaNpaFkC0lb0afMAhJSJr-_TvZjtMwSmHsyVg620Kn0_1Okn8H8Bkxhoup1xEzFgMUdLIRhhE8MkzartBUq4KJ6WaUjcdiPpeT6jRh-Bem5IeoF9yCZRTzdTBwt7a-c2ANVbYgDgoUZugTT6DJuOSsAc3BdDgbHZh30yLBZtjwi2TKxJ65MU46x2849kx_wc1j9Fq4n-H5f2j4C3heYU_SKwfLS3jilq_g2T1GwtfQD7mXDSlzPWAJCeu0pECkfrcggcpDhUtxdnxLVp5M3TZME3eO_ETZkH7rDcyG17_6X6MqzwJqpEtZ1E2TzGZMC81jnRnqDII4jKMMTWTiRaK096hFKX1mNDfWxlZqrrvacksVqvoCGsvV0r0DEhvmmc5ihYEUo1qIlGmrmBLepFY404Jo38e5qUjIQy6MRV7SJyd56Jy87pwWfKnl1yX9xoOS7b3K8soMtznGsxxBTCpoCz7V1WhAYVdELd1qhzKxYJRlTPAWvC1VXX-KIoKSPMGapNDoI23Ie4Mfvfru8l8e-gink8EwH30bf7-Cs1BcHmhrQ-N2s3Pv4am5u_293XyohvkfXBP6_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logic+Computing+with+Stateful+Neural+Networks+of+Resistive+Switches&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Zhong&rft.au=Ambrosi%2C+Elia&rft.au=Bricalli%2C+Alessandro&rft.au=Ielmini%2C+Daniele&rft.date=2018-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201802554&rft.externalDBID=10.1002%252Fadma.201802554&rft.externalDocID=ADMA201802554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon