Logic Computing with Stateful Neural Networks of Resistive Switches
Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 30; číslo 38; s. e1802554 - n/a |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.09.2018
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal–oxide–semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two‐input logic operations with just one step, except for the exclusive‐OR (XOR) needing two sequential steps. 1‐bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.
The concept of a stateful neural network is introduced based on a resistive memory circuit. Thanks to the universality and flexibility of the neural network, the circuit enables one‐step operation for all linearly separable logic functions, thus extremely reducing the numbers of computing steps and devices for stateful logic computing, for instance, two steps and five devices for the 1‐bit full adder. |
|---|---|
| AbstractList | Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network. Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network.Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal-oxide-semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two-input logic operations with just one step, except for the exclusive-OR (XOR) needing two sequential steps. 1-bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network. Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial intelligent tasks. By adopting binary inputs/outputs, neural networks can be used to perform Boolean logic operations, thus potentially surpassing complementary metal–oxide–semiconductor logic in terms of area efficiency, execution time, and computing parallelism. Here, the concept of stateful neural networks consisting of resistive switches, which can perform all logic functions with the same network topology, is introduced. The neural network relies on physical computing according to Ohm's law, Kirchhoff 's law, and the ionic migration within an output switch serving as the highly nonlinear activation function. The input and output are nonvolatile resistance states of the devices, thus enabling stateful and cascadable logic operations. Applied voltages provide the synaptic weights, which enable the convenient reconfiguration of the same circuit to serve various logic functions. The neural network can solve all two‐input logic operations with just one step, except for the exclusive‐OR (XOR) needing two sequential steps. 1‐bit full adder operation is shown to take place with just two steps and five resistive switches, thus highlighting the high efficiencies of space, time, and energy of logic computing with the stateful neural network. The concept of a stateful neural network is introduced based on a resistive memory circuit. Thanks to the universality and flexibility of the neural network, the circuit enables one‐step operation for all linearly separable logic functions, thus extremely reducing the numbers of computing steps and devices for stateful logic computing, for instance, two steps and five devices for the 1‐bit full adder. |
| Author | Sun, Zhong Ielmini, Daniele Bricalli, Alessandro Ambrosi, Elia |
| Author_xml | – sequence: 1 givenname: Zhong surname: Sun fullname: Sun, Zhong organization: Politecnico di Milano and IU.NET – sequence: 2 givenname: Elia surname: Ambrosi fullname: Ambrosi, Elia organization: Politecnico di Milano and IU.NET – sequence: 3 givenname: Alessandro surname: Bricalli fullname: Bricalli, Alessandro organization: Politecnico di Milano and IU.NET – sequence: 4 givenname: Daniele orcidid: 0000-0002-1853-1614 surname: Ielmini fullname: Ielmini, Daniele email: daniele.ielmini@polimi.it organization: Politecnico di Milano and IU.NET |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30079525$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkElLxDAUgIMoOi5Xj1Lw4qXjy9Y2x2FcYVRwOYckTTXaNmPSOvjv7TAuIIind_m-9x7fNlpvfWsR2scwxgDkWJWNGhPABRDO2RoaYU5wykDwdTQCQXkqMlZsoe0YnwFAZJBtoi0KkAtO-AhNZ_7RmWTqm3nfufYxWbjuKbnrVGervk6ubR_UcnQLH15i4qvk1kYXO_dmk7uBNU827qKNStXR7n3OHfRwdno_vUhnN-eX08ksNQxTluKM5GXOdKE56NxQa4DnOc4MJYJUBVG6qhjhQlS50dyUJZRCc411yUuqLNAddLTaOw_-tbexk42Lxta1aq3voyRQMMpyVvABPfyFPvs-tMN3kmDgQHBW0IE6-KR63dhSzoNrVHiXX3kGYLwCTPAxBlt9Ixjksr9c9pff_QeB_RKMG1o633ZBufpvTay0havt-z9H5OTkavLjfgBhWJi1 |
| CitedBy_id | crossref_primary_10_1002_advs_202104107 crossref_primary_10_1002_adfm_202100144 crossref_primary_10_1002_aelm_202001182 crossref_primary_10_1002_aisy_202200028 crossref_primary_10_1016_j_nanoen_2020_104628 crossref_primary_10_1039_D0NR06719A crossref_primary_10_1109_TCSII_2023_3302235 crossref_primary_10_1002_advs_202200036 crossref_primary_10_1038_s41928_023_01053_4 crossref_primary_10_1109_TCSII_2021_3071386 crossref_primary_10_1109_TED_2021_3106234 crossref_primary_10_1088_1674_1056_ab90e7 crossref_primary_10_3389_fnano_2022_841756 crossref_primary_10_1002_advs_202103808 crossref_primary_10_1109_TED_2020_2966908 crossref_primary_10_1002_pssr_202200493 crossref_primary_10_1002_adfm_202004733 crossref_primary_10_1002_admt_201900212 crossref_primary_10_1002_aisy_202000081 crossref_primary_10_1002_sstr_202000088 crossref_primary_10_1063_5_0268483 crossref_primary_10_1109_TCSI_2021_3122327 crossref_primary_10_1002_celc_201801488 crossref_primary_10_1002_adma_202104023 crossref_primary_10_1109_TCSII_2021_3118215 crossref_primary_10_1021_acsaelm_4c02044 crossref_primary_10_1016_j_jmmm_2019_165262 crossref_primary_10_1002_aelm_202400452 crossref_primary_10_1002_adma_202007081 crossref_primary_10_1002_adma_202205402 crossref_primary_10_1145_3731245 crossref_primary_10_1016_j_nanoen_2020_105156 crossref_primary_10_1002_adma_202107811 crossref_primary_10_1109_TCSI_2024_3515011 crossref_primary_10_1109_TED_2020_2964910 crossref_primary_10_1088_1361_6463_ab83ba crossref_primary_10_1109_TCSI_2019_2926811 crossref_primary_10_1109_TCSI_2022_3206238 crossref_primary_10_1002_aelm_202200089 crossref_primary_10_1038_s41467_020_17850_w crossref_primary_10_3389_fnins_2023_1198306 crossref_primary_10_1002_admt_202100745 crossref_primary_10_1109_LED_2021_3102678 crossref_primary_10_1002_aisy_201900156 crossref_primary_10_1002_aisy_202200207 crossref_primary_10_1002_aelm_202000988 crossref_primary_10_1021_acs_analchem_4c02983 crossref_primary_10_1177_0021998320911418 crossref_primary_10_1039_D4MH01196A crossref_primary_10_3389_fnano_2021_821687 crossref_primary_10_1002_aisy_202100234 crossref_primary_10_1016_j_mee_2024_112244 crossref_primary_10_1002_adfm_201905660 crossref_primary_10_1002_pssr_201800644 crossref_primary_10_1021_acs_chemrev_4c00845 crossref_primary_10_1063_5_0136403 crossref_primary_10_1088_1674_1056_ac8f38 crossref_primary_10_1002_aisy_202000278 crossref_primary_10_1002_adfm_202414332 crossref_primary_10_1109_LED_2019_2936895 crossref_primary_10_1002_aisy_202500241 crossref_primary_10_1002_pssr_201800674 crossref_primary_10_1109_TED_2024_3406310 crossref_primary_10_1002_smsc_202100006 crossref_primary_10_1109_TED_2022_3225134 crossref_primary_10_1109_TED_2023_3327985 crossref_primary_10_1002_adma_202003014 crossref_primary_10_1109_JXCDC_2022_3219731 crossref_primary_10_1088_2634_4386_acfbf3 crossref_primary_10_1002_aisy_202200341 crossref_primary_10_1109_TED_2020_2967401 crossref_primary_10_3390_sym14112466 crossref_primary_10_1109_TED_2022_3176834 crossref_primary_10_1002_aisy_202000040 crossref_primary_10_1002_inf2_12490 crossref_primary_10_1063_5_0052589 crossref_primary_10_1038_s41467_024_52132_9 crossref_primary_10_1109_TED_2020_3037279 crossref_primary_10_1109_TETC_2023_3268137 crossref_primary_10_3390_electronics9122098 crossref_primary_10_1016_j_device_2024_100546 crossref_primary_10_1021_acsaelm_5c00131 crossref_primary_10_1134_S1063739723700555 crossref_primary_10_1073_pnas_1815682116 crossref_primary_10_1109_LED_2019_2931947 crossref_primary_10_1088_1757_899X_768_7_072101 crossref_primary_10_1007_s11837_019_03666_7 crossref_primary_10_1038_s41598_020_59121_0 crossref_primary_10_1002_advs_202205383 crossref_primary_10_1002_adom_202202105 crossref_primary_10_1088_1742_6596_1976_1_012079 crossref_primary_10_3390_mi15060770 crossref_primary_10_1049_iet_cds_2019_0422 crossref_primary_10_1109_TVLSI_2024_3370176 crossref_primary_10_1088_1757_899X_768_5_052044 crossref_primary_10_1088_1361_6528_ac7651 crossref_primary_10_1002_adfm_202006773 crossref_primary_10_1021_acsami_5c10805 crossref_primary_10_1002_pssa_202100581 crossref_primary_10_1016_j_matdes_2023_112367 crossref_primary_10_1109_TED_2020_2992435 crossref_primary_10_1002_aisy_202400735 crossref_primary_10_1002_adom_201900766 crossref_primary_10_1002_admi_201900471 crossref_primary_10_1002_advs_202501173 crossref_primary_10_1109_ACCESS_2025_3562434 crossref_primary_10_1016_j_mtphys_2024_101429 crossref_primary_10_1002_pssr_202100208 crossref_primary_10_1038_s41578_019_0159_3 crossref_primary_10_1002_adfm_202113050 crossref_primary_10_1002_batt_202100399 crossref_primary_10_1002_aelm_202300815 crossref_primary_10_1145_3451212 crossref_primary_10_1002_aisy_201900008 crossref_primary_10_1039_D1NR00148E crossref_primary_10_1002_aelm_202200282 crossref_primary_10_1049_ell2_12694 |
| Cites_doi | 10.1007/BF02478259 10.1088/1361-6463/aa9646 10.1038/nnano.2017.83 10.1109/TVLSI.2002.808446 10.1038/530144a 10.1073/pnas.1407633111 10.1109/TNN.2003.816365 10.1002/adfm.201500865 10.1038/s41563-017-0001-5 10.1109/TED.2014.2325531 10.1038/nnano.2015.29 10.1007/978-3-642-61068-4 10.1002/adma.201204572 10.1002/adma.201602418 10.1109/TED.2015.2423001 10.1021/nn405827t 10.1002/adma.201203680 10.1109/TED.2015.2422999 10.1038/nmat3510 10.1038/nature14441 10.1109/TED.2011.2167513 10.1038/srep01680 10.1109/TED.2012.2202320 10.1038/nature08940 10.1109/JPROC.2013.2252317 10.1109/TED.2014.2330200 10.1109/T-C.1973.223685 10.1038/srep15467 10.1038/nnano.2016.70 10.1007/s12274-016-1260-1 10.1088/0268-1242/31/6/063002 10.1063/1.4852995 10.1038/nature06932 10.1002/adma.201301940 10.1038/s41928-018-0092-2 10.1038/s41928-017-0002-z 10.1109/TVLSI.2013.2282132 10.1109/TNNLS.2016.2547842 |
| ContentType | Journal Article |
| Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.201802554 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 30079525 10_1002_adma_201802554 ADMA201802554 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: European Research Council funderid: 648635 – fundername: European Research Council grantid: 648635 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYOK ABTAH NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4134-1627d74b8b50b7c3ec057716c3292f82abff42599f7cb5cdd0d9b5b1bd5d3ae03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 140 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444671900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Fri Jul 11 06:51:03 EDT 2025 Sun Nov 30 05:35:34 EST 2025 Thu Apr 03 06:57:56 EDT 2025 Sat Nov 29 07:25:49 EST 2025 Tue Nov 18 21:29:36 EST 2025 Wed Jan 22 16:51:39 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 38 |
| Keywords | stateful logic in-memory computing resistive switching memory neural networks neuromorphic |
| Language | English |
| License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4134-1627d74b8b50b7c3ec057716c3292f82abff42599f7cb5cdd0d9b5b1bd5d3ae03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1853-1614 |
| OpenAccessLink | http://hdl.handle.net/11311/1072063 |
| PMID | 30079525 |
| PQID | 2105021683 |
| PQPubID | 2045203 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2084347485 proquest_journals_2105021683 pubmed_primary_30079525 crossref_primary_10_1002_adma_201802554 crossref_citationtrail_10_1002_adma_201802554 wiley_primary_10_1002_adma_201802554_ADMA201802554 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Sep |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-Sep |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1943; 5 2013; 3 2013; 25 2015; 5 2012 2015; 521 2010; 464 2002; 10 2015; 10 2013; 101 2009 2016; 31 2003; 14 2008 1996 2011; 58 2012; 59 2014; 111 2014; 61 2014; 22 2016; 11 2017; 50 2015; 25 2018; 17 1973; C‐22 2015; 62 2018; 1 2013; 12 2017; 12 2016; 530 2013; 114 2017 2015 2014 2008; 453 2016; 28 2014; 8 1969 2016; 9 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 Lehtonen E. (e_1_2_5_32_1) 2009 e_1_2_5_44_1 e_1_2_5_43_1 Chen B. (e_1_2_5_7_1) 2015 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 Waser R. (e_1_2_5_26_1) 2012 Reuben J. (e_1_2_5_31_1) 2017 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 Minsky M. L. (e_1_2_5_22_1) 1969 Horowitz M. (e_1_2_5_2_1) 2014 e_1_2_5_30_1 Pradhan D. (e_1_2_5_39_1) 1996 Lee H. Y. (e_1_2_5_46_1) 2008 |
| References_xml | – volume: 3 start-page: 1680 year: 2013 publication-title: Sci. Rep. – start-page: 1 year: 2017 – volume: 10 start-page: 191 year: 2015 publication-title: Nat. Nanotechnol. – volume: 58 start-page: 4309 year: 2011 publication-title: IEEE Trans. Electron Devices – volume: 8 start-page: 2369 year: 2014 publication-title: ACS Nano – volume: 530 start-page: 144 year: 2016 publication-title: Nature – volume: 25 start-page: 1987 year: 2013 publication-title: Adv. Mater. – volume: 453 start-page: 80 year: 2008 publication-title: Nature – volume: 5 start-page: 15467 year: 2015 publication-title: Sci. Rep. – start-page: 1 year: 2008 publication-title: IEDM Tech. Dig. – volume: 14 start-page: 1217 year: 2003 publication-title: IEEE Trans. Neural Netw. – volume: 9 start-page: 3914 year: 2016 publication-title: Nano Res. – volume: 5 start-page: 115 year: 1943 publication-title: Bull. Math. Biophys. – volume: 31 start-page: 063002 year: 2016 publication-title: Semicond. Sci. Technol. – volume: 22 start-page: 2054 year: 2014 publication-title: IEEE Trans. Very Large Scale Integr. Syst. – year: 1996 – volume: 111 start-page: 13272 year: 2014 publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 806 year: 2002 publication-title: IEEE Trans. Very Large Scale Integr. (VLSI) Syst. – volume: 61 start-page: 2912 year: 2014 publication-title: IEEE Trans. Electron Devices – volume: 25 start-page: 1774 year: 2013 publication-title: Adv. Mater. – start-page: 33 year: 2009 – year: 2012 – volume: 59 start-page: 2468 year: 2012 publication-title: IEEE Trans. Electron Devices – volume: 464 start-page: 873 year: 2010 publication-title: Nature – volume: 1 start-page: 333 year: 2018 publication-title: Nat. Electron. – volume: 12 start-page: 784 year: 2017 publication-title: Nat. Nanotechnol. – volume: 61 start-page: 2378 year: 2014 publication-title: IEEE Trans. Electron Devices – volume: 25 start-page: 6414 year: 2015 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 9758 year: 2016 publication-title: Adv. Mater. – volume: C‐22 start-page: 197 year: 1973 publication-title: IEEE Trans. Comput. – volume: 521 start-page: 61 year: 2015 publication-title: Nature – year: 1969 – volume: 12 start-page: 114 year: 2013 publication-title: Nat. Mater. – volume: 62 start-page: 1831 year: 2015 publication-title: IEEE Trans. Electron Dev. – volume: 101 start-page: 2498 year: 2013 publication-title: Proc. IEEE – volume: 50 start-page: 505102 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 25 start-page: 5975 year: 2013 publication-title: Adv. Mater. – volume: 114 start-page: 234503 year: 2013 publication-title: J. Appl. Phys. – volume: 28 start-page: 1734 year: 2016 publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 10 year: 2014 – volume: 1 start-page: 52 year: 2018 publication-title: Nat. Electron. – volume: 11 start-page: 693 year: 2016 publication-title: Nat. Nanotechnol. – volume: 62 start-page: 1839 year: 2015 publication-title: IEEE Trans. Electron Devices – start-page: 17.5.1 year: 2015 publication-title: IEDM Tech. Dig. – volume: 17 start-page: 335 year: 2018 publication-title: Nat. Mater. – ident: e_1_2_5_15_1 doi: 10.1007/BF02478259 – ident: e_1_2_5_34_1 doi: 10.1088/1361-6463/aa9646 – ident: e_1_2_5_28_1 doi: 10.1038/nnano.2017.83 – ident: e_1_2_5_23_1 doi: 10.1109/TVLSI.2002.808446 – ident: e_1_2_5_1_1 doi: 10.1038/530144a – ident: e_1_2_5_12_1 doi: 10.1073/pnas.1407633111 – ident: e_1_2_5_16_1 doi: 10.1109/TNN.2003.816365 – ident: e_1_2_5_29_1 doi: 10.1002/adfm.201500865 – ident: e_1_2_5_41_1 doi: 10.1038/s41563-017-0001-5 – ident: e_1_2_5_21_1 doi: 10.1109/TED.2014.2325531 – ident: e_1_2_5_3_1 doi: 10.1038/nnano.2015.29 – ident: e_1_2_5_14_1 doi: 10.1007/978-3-642-61068-4 – ident: e_1_2_5_40_1 doi: 10.1002/adma.201204572 – ident: e_1_2_5_9_1 doi: 10.1002/adma.201602418 – ident: e_1_2_5_27_1 doi: 10.1109/TED.2015.2423001 – ident: e_1_2_5_37_1 doi: 10.1021/nn405827t – start-page: 1 volume-title: 27th Int. Symp. Power and Timing Modeling, Optimization and Simulation (PATMOS) year: 2017 ident: e_1_2_5_31_1 – ident: e_1_2_5_45_1 doi: 10.1002/adma.201203680 – volume-title: Nanoelectronics and Information Technology year: 2012 ident: e_1_2_5_26_1 – ident: e_1_2_5_8_1 doi: 10.1109/TED.2015.2422999 – ident: e_1_2_5_18_1 doi: 10.1038/nmat3510 – ident: e_1_2_5_44_1 doi: 10.1038/nature14441 – start-page: 1 year: 2008 ident: e_1_2_5_46_1 publication-title: IEDM Tech. Dig. – ident: e_1_2_5_20_1 doi: 10.1109/TED.2011.2167513 – ident: e_1_2_5_36_1 doi: 10.1038/srep01680 – ident: e_1_2_5_35_1 doi: 10.1109/TED.2012.2202320 – ident: e_1_2_5_5_1 doi: 10.1038/nature08940 – volume-title: Perceptrons year: 1969 ident: e_1_2_5_22_1 – ident: e_1_2_5_24_1 doi: 10.1109/JPROC.2013.2252317 – ident: e_1_2_5_38_1 doi: 10.1109/TED.2014.2330200 – start-page: 10 volume-title: Int. Solid‐State Circuits Conf. Dig. Tech. Papers year: 2014 ident: e_1_2_5_2_1 – ident: e_1_2_5_25_1 doi: 10.1109/T-C.1973.223685 – start-page: 17.5.1 year: 2015 ident: e_1_2_5_7_1 publication-title: IEDM Tech. Dig. – volume-title: Fault‐Tolerant Computer System Design year: 1996 ident: e_1_2_5_39_1 – ident: e_1_2_5_30_1 doi: 10.1038/srep15467 – ident: e_1_2_5_19_1 doi: 10.1038/nnano.2016.70 – ident: e_1_2_5_33_1 doi: 10.1007/s12274-016-1260-1 – start-page: 33 volume-title: Proc. IEEE/ACM Int. Symp. Nanoscale Architectures year: 2009 ident: e_1_2_5_32_1 – ident: e_1_2_5_13_1 doi: 10.1088/0268-1242/31/6/063002 – ident: e_1_2_5_11_1 doi: 10.1063/1.4852995 – ident: e_1_2_5_4_1 doi: 10.1038/nature06932 – ident: e_1_2_5_10_1 doi: 10.1002/adma.201301940 – ident: e_1_2_5_42_1 doi: 10.1038/s41928-018-0092-2 – ident: e_1_2_5_43_1 doi: 10.1038/s41928-017-0002-z – ident: e_1_2_5_6_1 doi: 10.1109/TVLSI.2013.2282132 – ident: e_1_2_5_17_1 doi: 10.1109/TNNLS.2016.2547842 |
| SSID | ssj0009606 |
| Score | 2.6045222 |
| Snippet | Brain‐inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial... Brain-inspired neural networks can process information with high efficiency, thus providing a powerful tool for pattern recognition and other artificial... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1802554 |
| SubjectTerms | Boolean algebra Brain Computing time in‐memory computing Ion migration Logic Materials science Neural networks neuromorphic Ohm's Law Pattern recognition Reconfiguration resistive switching memory stateful logic Switches Switching theory |
| Title | Logic Computing with Stateful Neural Networks of Resistive Switches |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802554 https://www.ncbi.nlm.nih.gov/pubmed/30079525 https://www.proquest.com/docview/2105021683 https://www.proquest.com/docview/2084347485 |
| Volume | 30 |
| WOSCitedRecordID | wos000444671900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6s9aAH34_6YgXBU2iS3SSbY6kWD1qkWukt7BOE0oqx_n5nkzS2iAh6ymMnybKzs_PNbvYbgEvEGManVnpMaQxQ0Ml6GEZEnmKpDrikUhRMTM93Sb_PR6P0YWEXf8kPUU-4Ocsoxmtn4ELm7S_SUKEL3iDHYIYusQFNt7MKw6_m9aA3vPsi3o2L_Jpuvc9LY8bnxI1-2F5-w7Jj-oY2l8Fr4X16W_-v9zZsVsiTdMqusgMrZrILGwt8hHvQdZmXFSkzPeAd4mZpSYFH7WxMHJGHcIfiz_GcTC0ZmNwNEh-GPKKsS761D8PezVP31quyLKA-Asq8IA4TnTDJZeTLRFGjEMJhFKVomIaWh0JaizpMU5soGSmtfZ3KSAZSR5oKVPQBrE6mE3MExFfMMpn4AsMoRiXnMZNaMMGtijU3qgXevIkzVVGQu0wY46wkTw4z1zhZ3TgtuKrlX0vyjR8lT-cayyojzDOMZiOEMDGnLbioi9F83JqImJjpDGV8zihLGI9acFhquv4URfyURiGWhIVCf6lD1rm-79RXx3956ATW3Xn5D9sprL6_zcwZrKmP95f87RwayYifVx38E7lS-Hs |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED90CuqD3x_TqREEn8q6Jm3Tx7E5Js4hc8reSr4Kgmyyr7_fS9tVh4ggPpUm1zbkcrnfJenvAK4RYxiXJtJhSmOAgk7WwTDCdxSLdI1LKkXKxPTSCbtdPhhEj_lpQvsvTMYPUSy4WctI52tr4HZBuvrJGip0ShxkKczQJ67CGgtoyEuw1uy1njufzLtBmmDTbvg5UcD4grnR9arLb1j2TN_g5jJ6Td1Pa-cfGr4L2zn2JPVssOzBihnuw9YXRsIDaNjcy4pkuR6whNh1WpIiUnw9sVQewl7Ss-MTMkpIz0zsNDE35AllbfqtQ3hu3fYbbSfPs4AaqVHm1AIv1CGTXPquDBU1CkEcxlGKepGXcE_IJEEtRlESKukrrV0dSV_WpPY1FajqIygNR0NzAsRVLGEydAUGUoxKzgMmtWCCJyrQ3KgyOIs-jlVOQm5zYbzFGX2yF9vOiYvOKcNNIf-e0W_8KFlZqCzOzXASYzzrI4gJOC3DVVGNBmR3RcTQjGYo43JGWci4X4bjTNXFpygiqMj3sMZLNfpLG-J686Fe3J3-5aFL2Gj3Hzpx5657fwabtjw70VaB0nQ8M-ewrubT18n4Ih_nH8w4-4M |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED_WZJTuYd1Xt7TZpsFgTyaOJdnSY0gaNpaFkC0lb0afMAhJSJr-_TvZjtMwSmHsyVg620Kn0_1Okn8H8Bkxhoup1xEzFgMUdLIRhhE8MkzartBUq4KJ6WaUjcdiPpeT6jRh-Bem5IeoF9yCZRTzdTBwt7a-c2ANVbYgDgoUZugTT6DJuOSsAc3BdDgbHZh30yLBZtjwi2TKxJ65MU46x2849kx_wc1j9Fq4n-H5f2j4C3heYU_SKwfLS3jilq_g2T1GwtfQD7mXDSlzPWAJCeu0pECkfrcggcpDhUtxdnxLVp5M3TZME3eO_ETZkH7rDcyG17_6X6MqzwJqpEtZ1E2TzGZMC81jnRnqDII4jKMMTWTiRaK096hFKX1mNDfWxlZqrrvacksVqvoCGsvV0r0DEhvmmc5ihYEUo1qIlGmrmBLepFY404Jo38e5qUjIQy6MRV7SJyd56Jy87pwWfKnl1yX9xoOS7b3K8soMtznGsxxBTCpoCz7V1WhAYVdELd1qhzKxYJRlTPAWvC1VXX-KIoKSPMGapNDoI23Ie4Mfvfru8l8e-gink8EwH30bf7-Cs1BcHmhrQ-N2s3Pv4am5u_293XyohvkfXBP6_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Logic+Computing+with+Stateful+Neural+Networks+of+Resistive+Switches&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Zhong&rft.au=Ambrosi%2C+Elia&rft.au=Bricalli%2C+Alessandro&rft.au=Ielmini%2C+Daniele&rft.date=2018-09-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=38&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201802554&rft.externalDBID=10.1002%252Fadma.201802554&rft.externalDocID=ADMA201802554 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |