A Real‐Time Self‐Adaptive Thermal Metasurface

Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advanced materials (Weinheim) Ročník 34; číslo 24; s. e2201093 - n/a
Hlavní autori: Guo, Jun, Xu, Guoqiang, Tian, Di, Qu, Zhiguo, Qiu, Cheng‐Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 01.06.2022
Predmet:
ISSN:0935-9648, 1521-4095, 1521-4095
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation. A self‐adaptive metasurface platform for real‐time thermal regulation is presented. The proof‐of‐concept platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. The thermal pixel matrix and feedback control system are integrated into a universal system. This work may pave the way for real‐time thermal management in programming formations.
AbstractList Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation.
Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real-time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self-adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real-time control of the driven voltage is reported. The proof-of-concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self-adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real-time thermal management in a programming formation.Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real-time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self-adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real-time control of the driven voltage is reported. The proof-of-concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self-adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real-time thermal management in a programming formation.
Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation. A self‐adaptive metasurface platform for real‐time thermal regulation is presented. The proof‐of‐concept platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. The thermal pixel matrix and feedback control system are integrated into a universal system. This work may pave the way for real‐time thermal management in programming formations.
Author Xu, Guoqiang
Tian, Di
Qu, Zhiguo
Guo, Jun
Qiu, Cheng‐Wei
Author_xml – sequence: 1
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  organization: National University of Singapore
– sequence: 2
  givenname: Guoqiang
  surname: Xu
  fullname: Xu, Guoqiang
  organization: National University of Singapore
– sequence: 3
  givenname: Di
  surname: Tian
  fullname: Tian, Di
  organization: Xi'an Jiaotong University
– sequence: 4
  givenname: Zhiguo
  surname: Qu
  fullname: Qu, Zhiguo
  email: zgqu@mail.xjtu.edu.cn
  organization: Xi'an Jiaotong University
– sequence: 5
  givenname: Cheng‐Wei
  orcidid: 0000-0002-6605-500X
  surname: Qiu
  fullname: Qiu, Cheng‐Wei
  email: chengwei.qiu@nus.edu.sg
  organization: National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35415933$$D View this record in MEDLINE/PubMed
BookMark eNqFkMlKxEAQhhtRdFyuHmXAi5eM1VuSPgZ3UAQdz6GmU42RLGN3oszNR_AZfRIj4wKCeKqi-L6q4t9kq03bEGO7HCYcQBxiUeNEgBDAwcgVNuJa8EiB0atsNEx0ZGKVbrDNEB4AwMQQr7MNqRXXRsoR49n4hrB6e3mdljWNb6lyQ58VOO_KJxpP78nXWI2vqMPQe4eWttmawyrQzmfdYnenJ9Oj8-jy-uziKLuMrOJSRs6Aso7SOKVkBjRLFHearDVYWA0kKBXSYQoy0ThzRYISuEnQ8rSQQKDlFjtY7p379rGn0OV1GSxVFTbU9iEXsTLGaKP5gO7_Qh_a3jfDdwOVxEmSxkIN1N4n1c9qKvK5L2v0i_wrjAGYLAHr2xA8uW-EQ_6Rdv6Rdv6d9iCoX4ItO-zKtuk8ltXfmllqz2VFi3-O5NnxVfbjvgPfFpM8
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314
crossref_primary_10_1002_adfm_202509862
crossref_primary_10_1002_adma_202412414
crossref_primary_10_1016_j_amf_2024_200141
crossref_primary_10_1039_D5CP01823D
crossref_primary_10_1002_admt_202400522
crossref_primary_10_1088_0256_307X_40_9_094401
crossref_primary_10_1016_j_eng_2024_07_021
crossref_primary_10_1016_j_scib_2022_06_017
crossref_primary_10_1038_s41467_024_46984_4
crossref_primary_10_1002_smtd_202500469
crossref_primary_10_1080_17452759_2023_2224298
crossref_primary_10_1063_5_0208656
crossref_primary_10_1063_5_0157847
crossref_primary_10_1002_adma_202210981
crossref_primary_10_1002_sstr_202500352
crossref_primary_10_1073_pnas_2217068120
crossref_primary_10_1002_adma_202305791
crossref_primary_10_1088_1361_665X_ad97fe
crossref_primary_10_1002_advs_202505155
crossref_primary_10_1002_adfm_202406799
crossref_primary_10_1016_j_icheatmasstransfer_2024_107898
crossref_primary_10_1016_j_applthermaleng_2023_122247
crossref_primary_10_1360_TB_2025_0058
crossref_primary_10_1016_j_optlastec_2024_110676
crossref_primary_10_1103_bk7q_6r9d
crossref_primary_10_1109_JPROC_2024_3391232
crossref_primary_10_1103_PhysRevApplied_19_054096
crossref_primary_10_3390_mi14112006
crossref_primary_10_1002_adom_202303139
crossref_primary_10_1002_adom_202301378
crossref_primary_10_1002_advs_202203747
crossref_primary_10_1002_adfm_202401909
crossref_primary_10_1515_nanoph_2024_0423
crossref_primary_10_3389_fphy_2022_924890
crossref_primary_10_1002_adom_202201975
crossref_primary_10_1002_sstr_202500364
crossref_primary_10_1002_aisy_202400986
crossref_primary_10_1039_D5NR00385G
crossref_primary_10_34133_research_0820
Cites_doi 10.1002/adma.201804019
10.1002/adma.201904069
10.1103/PhysRevLett.112.054302
10.1515/nanoph-2019-0318
10.1002/adma.202003084
10.1126/science.abf7136
10.1103/PhysRevE.97.022129
10.1038/s41563-018-0239-6
10.1038/s42254-018-0018-y
10.1364/OE.426187
10.1038/s41467-017-02678-8
10.1103/PhysRevApplied.11.034056
10.1002/adma.201502513
10.1038/s41467-018-06802-0
10.1016/j.ijheatmasstransfer.2019.03.162
10.1016/j.enconman.2018.03.070
10.1002/adma.201304448
10.1038/s41467-020-19909-0
10.1038/nphys4287
10.1103/PhysRevApplied.11.024053
10.1063/1.2951600
10.1016/j.ijheatmasstransfer.2018.07.035
10.1016/0017-9310(95)00059-I
10.1103/PhysRevE.99.022107
10.1103/PhysRevLett.112.054301
10.1002/adfm.202002061
10.1002/adma.201807849
10.1103/PhysRevLett.115.195503
10.1002/adma.201707237
10.1016/j.ijheatmasstransfer.2014.06.061
10.1038/s41928-020-0380-5
10.1063/1.4930989
10.1016/j.enconman.2019.03.056
10.1038/498440a
10.1126/science.1125907
10.1117/1.AP.3.1.016001
10.1038/s41578-021-00283-2
10.1002/adma.202003823
ContentType Journal Article
Copyright 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202201093
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 35415933
10_1002_adma_202201093
ADMA202201093
Genre article
Journal Article
GrantInformation_xml – fundername: China Scholarship Council
  funderid: 202006280279
– fundername: Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China
  funderid: 51888103
– fundername: National Science Foundation for Distinguished Young Scholars
  funderid: 52025065
– fundername: Ministry of Education, Republic of Singapore
  funderid: A‐0005143‐01‐00 | R‐263‐000‐E19‐114
– fundername: National Science Foundation for Distinguished Young Scholars
  grantid: 52025065
– fundername: Ministry of Education, Republic of Singapore
  grantid: A-0005143-01-00 | R-263-000-E19-114
– fundername: China Scholarship Council
  grantid: 202006280279
– fundername: Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China
  grantid: 51888103
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
O8X
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4133-f904cfe868e7b0eb741f5ecc9adc50e2e823fa80375abfd7a30197ac18d30e053
IEDL.DBID 24P
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795012700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:39:19 EDT 2025
Wed Oct 29 02:29:42 EDT 2025
Wed Feb 19 02:26:49 EST 2025
Sat Nov 29 07:17:47 EST 2025
Tue Nov 18 21:43:28 EST 2025
Wed Jan 22 16:23:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords real-time regulation
thermal metasurfaces
spatial evolution
thermal camouflage
Language English
License Attribution
2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4133-f904cfe868e7b0eb741f5ecc9adc50e2e823fa80375abfd7a30197ac18d30e053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6605-500X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201093
PMID 35415933
PQID 2676778624
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_miscellaneous_2649995951
proquest_journals_2676778624
pubmed_primary_35415933
crossref_primary_10_1002_adma_202201093
crossref_citationtrail_10_1002_adma_202201093
wiley_primary_10_1002_adma_202201093_ADMA202201093
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 6
2018; 165
2019; 9
2019; 31
2018; 127
1995; 38
2019; 11
2019; 99
2019; 1
2021; 29
2014; 26
2019; 18
2020; 11
2020; 32
2015; 107
2008; 92
2006; 312
2014; 112
2019; 187
2020; 7
2018; 9
2020; 3
2015; 27
2021; 33
2015; 115
2017; 14
2020; 30
2021
2019; 137
2013; 498
2018; 30
2021; 374
2018; 97
2014; 78
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Guo J. (e_1_2_8_40_1) 2021
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
Guo J. (e_1_2_8_19_1) 2020; 7
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. E
– volume: 92
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 48
  year: 2019
  publication-title: Nat. Mater.
– volume: 27
  start-page: 7752
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 71
  year: 2020
  publication-title: ES Energy Environ.
– volume: 6
  start-page: 488
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 9
  start-page: 4334
  year: 2018
  publication-title: Nat. Commun.
– volume: 78
  start-page: 1
  year: 2014
  publication-title: Int. J. Heat Mass Transfer
– volume: 38
  start-page: 3433
  year: 1995
  publication-title: Int. J. Heat Mass Transfer
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 9
  start-page: 273
  year: 2018
  publication-title: Nat. Commun.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 187
  start-page: 546
  year: 2019
  publication-title: Energy Convers. Manage.
– volume: 26
  start-page: 1731
  year: 2014
  publication-title: Adv. Mater.
– volume: 165
  start-page: 253
  year: 2018
  publication-title: Energy Convers. Manage.
– volume: 498
  start-page: 440
  year: 2013
  publication-title: Nature
– volume: 1
  start-page: 198
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. E
– volume: 3
  start-page: 165
  year: 2020
  publication-title: Nat. Electron.
– start-page: 173
  year: 2021
  publication-title: Int. J. Heat Mass Transfer
– volume: 127
  start-page: 1212
  year: 2018
  publication-title: Int. J. Heat Mass Transfer
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 374
  start-page: 1504
  year: 2021
  publication-title: Science
– volume: 137
  start-page: 1312
  year: 2019
  publication-title: Int. J. Heat Mass Transfer
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 9
  start-page: 611
  year: 2019
  publication-title: Nanophotonics
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 3
  year: 2020
  publication-title: Adv. Photonics
– volume: 14
  start-page: 8
  year: 2017
  publication-title: Nat. Phys.
– volume: 11
  start-page: 6028
  year: 2020
  publication-title: Nat. Commun.
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.201804019
– ident: e_1_2_8_9_1
  doi: 10.1002/adma.201904069
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.112.054302
– ident: e_1_2_8_38_1
  doi: 10.1515/nanoph-2019-0318
– ident: e_1_2_8_13_1
  doi: 10.1002/adma.202003084
– ident: e_1_2_8_6_1
  doi: 10.1126/science.abf7136
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevE.97.022129
– ident: e_1_2_8_21_1
  doi: 10.1038/s41563-018-0239-6
– ident: e_1_2_8_4_1
  doi: 10.1038/s42254-018-0018-y
– ident: e_1_2_8_8_1
  doi: 10.1364/OE.426187
– ident: e_1_2_8_3_1
  doi: 10.1038/s41467-017-02678-8
– ident: e_1_2_8_24_1
  doi: 10.1103/PhysRevApplied.11.034056
– ident: e_1_2_8_17_1
  doi: 10.1002/adma.201502513
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-018-06802-0
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ijheatmasstransfer.2019.03.162
– ident: e_1_2_8_22_1
  doi: 10.1016/j.enconman.2018.03.070
– ident: e_1_2_8_15_1
  doi: 10.1002/adma.201304448
– ident: e_1_2_8_23_1
  doi: 10.1038/s41467-020-19909-0
– ident: e_1_2_8_5_1
  doi: 10.1038/nphys4287
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevApplied.11.024053
– ident: e_1_2_8_31_1
  doi: 10.1063/1.2951600
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ijheatmasstransfer.2018.07.035
– ident: e_1_2_8_39_1
  doi: 10.1016/0017-9310(95)00059-I
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevE.99.022107
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.112.054301
– ident: e_1_2_8_14_1
  doi: 10.1002/adfm.202002061
– ident: e_1_2_8_2_1
  doi: 10.1002/adma.201807849
– volume: 7
  start-page: 71
  year: 2020
  ident: e_1_2_8_19_1
  publication-title: ES Energy Environ.
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevLett.115.195503
– ident: e_1_2_8_25_1
  doi: 10.1002/adma.201707237
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ijheatmasstransfer.2014.06.061
– ident: e_1_2_8_10_1
  doi: 10.1038/s41928-020-0380-5
– ident: e_1_2_8_35_1
  doi: 10.1063/1.4930989
– ident: e_1_2_8_26_1
  doi: 10.1016/j.enconman.2019.03.056
– start-page: 173
  year: 2021
  ident: e_1_2_8_40_1
  publication-title: Int. J. Heat Mass Transfer
– ident: e_1_2_8_18_1
  doi: 10.1038/498440a
– ident: e_1_2_8_30_1
  doi: 10.1126/science.1125907
– ident: e_1_2_8_7_1
  doi: 10.1117/1.AP.3.1.016001
– ident: e_1_2_8_1_1
  doi: 10.1038/s41578-021-00283-2
– ident: e_1_2_8_16_1
  doi: 10.1002/adma.202003823
SSID ssj0009606
Score 2.5922005
Snippet Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2201093
SubjectTerms Circuit boards
Feedback control
Functionals
Heat sources
Materials science
Metamaterials
Metasurfaces
Phase transitions
real‐time regulation
spatial evolution
Switching
thermal camouflage
Thermal management
thermal metasurfaces
Thermodynamic properties
Thermoelectricity
Title A Real‐Time Self‐Adaptive Thermal Metasurface
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201093
https://www.ncbi.nlm.nih.gov/pubmed/35415933
https://www.proquest.com/docview/2676778624
https://www.proquest.com/docview/2649995951
Volume 34
WOSCitedRecordID wos000795012700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-4095
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009606
  issn: 0935-9648
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgvowbFQRPxTZpm_RY1MGDM4gLzK2kWUAYZoaZ0bM_wd_oL_G9dqY6iAh6KSlN2vC2fEma7wGcKsMj4ZhADZjEj6zjfspC7bPYxrGO0DcTVSabEO227HTS2y-n-Ct-iHrBjTyjjNfk4KoYnX-ShipT8gYx2s5N-TwshiEXZNcsuv2k3U3K7Jq02-enSSSntI0BO59tPzssfcOas9C1HHuaa__v9TqsTnCnl1WGsgFztrcJK1_YCLcgzLw7hI3vr290LsS7t12H5cyoAYVEDw0Kg3jXa9kxLSs6pe02PDavHi6u_UlGBR_Fzrnv0iDSzspEWlEEtkA44WJUYqqMjgPLrGTcKUl5cVXhjFDo_qlQOpSGB5REYgcWev2e3QPPFEnkiqJgDkGYEYHiBmN4opgMuXZB0AB_KtBcT-jGKetFN6-IkllOoshrUTTgrK4_qIg2fqx5ONVPPnG4Uc6IeE7QaZcGnNSP0VVo_0P1bP-Z6tD0LkZM2YDdSq_1p3iMSCbl-HJWqu-XPuTZZSur7_b_0ugAlqlc_XZ2CAvj4bM9giX9Mn4aDY9LM8ar6MhjWLy8az7efADL4vM4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH5oK6gH96VaNYLgKTSdyXoMalFsi2gFb2EyCwilLdp69if4G_0lvpek0SIiiLcsk8nwtvlm-x7AiVDcDQwLUAPKt11tuB2xprSZpz1PuuibvsiSTQTdbvjwEN0UuwnpLEzOD1FOuJFnZPGaHJwmpBufrKFCZcRBjNZzIz4PVRdtyatA9fy2dd_-ZN71swSbtOBnR74bTpkbHdaYrWG2Z_oGN2fRa9b9tFb_oeFrsFJgTyvOjWUd5vRgA5a_MBJuQjO2bhE6vr--0dkQ6073DV7HSowoLFpoVBjI-1ZHj2lq0Qipt-C-ddE7u7SLrAo2ip5z20SOK40O_VAHqaNThBTGQ0VGQknP0UyHjBsRUm5ckRoVCAwBUSBkM1TcoUQS21AZDAd6FyyV-q5J05QZBGIqcARXGMd9wcIml8ZxamBPJZrIgnKcMl_0k5wsmSUkiqQURQ1Oy_KjnGzjx5L1qYKSwumeE0bkcwGdeKnBcfka3YXWQMRADydUhoZ4HuLKGuzkii1_xT1EMxHHylmmv1_akMTnnbi82_vLR0eweNnrtJP2Vfd6H5boeb4NrQ6V8dNEH8CCfBk_Pj8dFlb9AW0o9i0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB68EH3wPupZQfCpbJv0fCzqoqjL4gG-lTQHCEt30dVnf4K_0V_iTNutLiKC-NYjacNMZvIlk3wDcCgU9yPDItSACh1fG-4kzJMOC3QQSB9tMxRlsomo04nv75NuvZuQzsJU_BDNghtZRumvycD1QJnWJ2uoUCVxEKN4bsInYdoP0NESubPf_eTdDcv0mhTuc5LQj0e8jS5rjdcfH5e-gc1x7FoOPu3Ff2j2EizUyNNOq66yDBO6WIH5L3yEq-Cl9jUCx_fXNzoZYt_onsHrVIkBOUUbuxS68Z59pYe0sGiE1Gtw1z69PT5z6pwKDgqec8ckri-NjsNYR7mrcwQUJkA1JkLJwNVMx4wbEVNmXJEbFQl0AEkkpBcr7lIaiXWYKvqF3gRb5aFv8jxnBmGYilzBFXrxULDY49K4rgXOSKKZrAnHKe9FL6uokllGosgaUVhw1JQfVFQbP5bcGSkoq03uKWNEPRfReRcLDprXaCwUARGF7j9TGZrgBYgqLdioFNv8igeIZRKOH2el_n5pQ5aeXKXN3dZfKu3DbPeknV2edy62YY4eV3vQdmBq-Pisd2FGvgwfnh73yi79AZnO9BY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Self-Adaptive+Thermal+Metasurface&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%2C+Jun&rft.au=Xu%2C+Guoqiang&rft.au=Tian%2C+Di&rft.au=Qu%2C+Zhiguo&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=24&rft.spage=e2201093&rft_id=info:doi/10.1002%2Fadma.202201093&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon