A Real‐Time Self‐Adaptive Thermal Metasurface
Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching...
Uložené v:
| Vydané v: | Advanced materials (Weinheim) Ročník 34; číslo 24; s. e2201093 - n/a |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
| Predmet: | |
| ISSN: | 0935-9648, 1521-4095, 1521-4095 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation.
A self‐adaptive metasurface platform for real‐time thermal regulation is presented. The proof‐of‐concept platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. The thermal pixel matrix and feedback control system are integrated into a universal system. This work may pave the way for real‐time thermal management in programming formations. |
|---|---|
| AbstractList | Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation. Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real-time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self-adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real-time control of the driven voltage is reported. The proof-of-concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self-adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real-time thermal management in a programming formation.Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real-time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self-adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real-time control of the driven voltage is reported. The proof-of-concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self-adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real-time thermal management in a programming formation. Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal properties, and many functional thermal metadevices have been investigated. However, thermal functions are usually fixed or limited in the switching range. Thus far, real‐time thermal regulation is elusive for thermal metamaterials because of deterministic artificial metastructures and uncontrollable phase transitions, coupled with the absence of dynamic adaptability. Here, a self‐adaptive metasurface platform to implement programmable thermal functions via the automatic evolution of thermoelectric heat sources and real‐time control of the driven voltage is reported. The proof‐of‐concept smart platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. Further, thermal pixels and feedback control systems are integrated into printed circuit boards, resulting in self‐adaptability to any thermal requirements. This study sets up a new paradigm for arbitrary transitions between exquisite thermal patterns and is expected to pave the way for real‐time thermal management in a programming formation. A self‐adaptive metasurface platform for real‐time thermal regulation is presented. The proof‐of‐concept platform experimentally demonstrates arbitrary switching between elaborate thermal patterns consolidated into an active thermoelectric element matrix. The thermal pixel matrix and feedback control system are integrated into a universal system. This work may pave the way for real‐time thermal management in programming formations. |
| Author | Xu, Guoqiang Tian, Di Qu, Zhiguo Guo, Jun Qiu, Cheng‐Wei |
| Author_xml | – sequence: 1 givenname: Jun surname: Guo fullname: Guo, Jun organization: National University of Singapore – sequence: 2 givenname: Guoqiang surname: Xu fullname: Xu, Guoqiang organization: National University of Singapore – sequence: 3 givenname: Di surname: Tian fullname: Tian, Di organization: Xi'an Jiaotong University – sequence: 4 givenname: Zhiguo surname: Qu fullname: Qu, Zhiguo email: zgqu@mail.xjtu.edu.cn organization: Xi'an Jiaotong University – sequence: 5 givenname: Cheng‐Wei orcidid: 0000-0002-6605-500X surname: Qiu fullname: Qiu, Cheng‐Wei email: chengwei.qiu@nus.edu.sg organization: National University of Singapore |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35415933$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkMlKxEAQhhtRdFyuHmXAi5eM1VuSPgZ3UAQdz6GmU42RLGN3oszNR_AZfRIj4wKCeKqi-L6q4t9kq03bEGO7HCYcQBxiUeNEgBDAwcgVNuJa8EiB0atsNEx0ZGKVbrDNEB4AwMQQr7MNqRXXRsoR49n4hrB6e3mdljWNb6lyQ58VOO_KJxpP78nXWI2vqMPQe4eWttmawyrQzmfdYnenJ9Oj8-jy-uziKLuMrOJSRs6Aso7SOKVkBjRLFHearDVYWA0kKBXSYQoy0ThzRYISuEnQ8rSQQKDlFjtY7p379rGn0OV1GSxVFTbU9iEXsTLGaKP5gO7_Qh_a3jfDdwOVxEmSxkIN1N4n1c9qKvK5L2v0i_wrjAGYLAHr2xA8uW-EQ_6Rdv6Rdv6d9iCoX4ItO-zKtuk8ltXfmllqz2VFi3-O5NnxVfbjvgPfFpM8 |
| CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_124314 crossref_primary_10_1002_adfm_202509862 crossref_primary_10_1002_adma_202412414 crossref_primary_10_1016_j_amf_2024_200141 crossref_primary_10_1039_D5CP01823D crossref_primary_10_1002_admt_202400522 crossref_primary_10_1088_0256_307X_40_9_094401 crossref_primary_10_1016_j_eng_2024_07_021 crossref_primary_10_1016_j_scib_2022_06_017 crossref_primary_10_1038_s41467_024_46984_4 crossref_primary_10_1002_smtd_202500469 crossref_primary_10_1080_17452759_2023_2224298 crossref_primary_10_1063_5_0208656 crossref_primary_10_1063_5_0157847 crossref_primary_10_1002_adma_202210981 crossref_primary_10_1002_sstr_202500352 crossref_primary_10_1073_pnas_2217068120 crossref_primary_10_1002_adma_202305791 crossref_primary_10_1088_1361_665X_ad97fe crossref_primary_10_1002_advs_202505155 crossref_primary_10_1002_adfm_202406799 crossref_primary_10_1016_j_icheatmasstransfer_2024_107898 crossref_primary_10_1016_j_applthermaleng_2023_122247 crossref_primary_10_1360_TB_2025_0058 crossref_primary_10_1016_j_optlastec_2024_110676 crossref_primary_10_1103_bk7q_6r9d crossref_primary_10_1109_JPROC_2024_3391232 crossref_primary_10_1103_PhysRevApplied_19_054096 crossref_primary_10_3390_mi14112006 crossref_primary_10_1002_adom_202303139 crossref_primary_10_1002_adom_202301378 crossref_primary_10_1002_advs_202203747 crossref_primary_10_1002_adfm_202401909 crossref_primary_10_1515_nanoph_2024_0423 crossref_primary_10_3389_fphy_2022_924890 crossref_primary_10_1002_adom_202201975 crossref_primary_10_1002_sstr_202500364 crossref_primary_10_1002_aisy_202400986 crossref_primary_10_1039_D5NR00385G crossref_primary_10_34133_research_0820 |
| Cites_doi | 10.1002/adma.201804019 10.1002/adma.201904069 10.1103/PhysRevLett.112.054302 10.1515/nanoph-2019-0318 10.1002/adma.202003084 10.1126/science.abf7136 10.1103/PhysRevE.97.022129 10.1038/s41563-018-0239-6 10.1038/s42254-018-0018-y 10.1364/OE.426187 10.1038/s41467-017-02678-8 10.1103/PhysRevApplied.11.034056 10.1002/adma.201502513 10.1038/s41467-018-06802-0 10.1016/j.ijheatmasstransfer.2019.03.162 10.1016/j.enconman.2018.03.070 10.1002/adma.201304448 10.1038/s41467-020-19909-0 10.1038/nphys4287 10.1103/PhysRevApplied.11.024053 10.1063/1.2951600 10.1016/j.ijheatmasstransfer.2018.07.035 10.1016/0017-9310(95)00059-I 10.1103/PhysRevE.99.022107 10.1103/PhysRevLett.112.054301 10.1002/adfm.202002061 10.1002/adma.201807849 10.1103/PhysRevLett.115.195503 10.1002/adma.201707237 10.1016/j.ijheatmasstransfer.2014.06.061 10.1038/s41928-020-0380-5 10.1063/1.4930989 10.1016/j.enconman.2019.03.056 10.1038/498440a 10.1126/science.1125907 10.1117/1.AP.3.1.016001 10.1038/s41578-021-00283-2 10.1002/adma.202003823 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH – notice: 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
| DOI | 10.1002/adma.202201093 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1521-4095 |
| EndPage | n/a |
| ExternalDocumentID | 35415933 10_1002_adma_202201093 ADMA202201093 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: China Scholarship Council funderid: 202006280279 – fundername: Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China funderid: 51888103 – fundername: National Science Foundation for Distinguished Young Scholars funderid: 52025065 – fundername: Ministry of Education, Republic of Singapore funderid: A‐0005143‐01‐00 | R‐263‐000‐E19‐114 – fundername: National Science Foundation for Distinguished Young Scholars grantid: 52025065 – fundername: Ministry of Education, Republic of Singapore grantid: A-0005143-01-00 | R-263-000-E19-114 – fundername: China Scholarship Council grantid: 202006280279 – fundername: Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China grantid: 51888103 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAMMB AANHP AASGY AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AEFGJ AETEA AEYWJ AFFNX AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH O8X PALCI RIWAO RJQFR SAMSI WTY ZY4 NPM 7SR 8BQ 8FD JG9 7X8 |
| ID | FETCH-LOGICAL-c4133-f904cfe868e7b0eb741f5ecc9adc50e2e823fa80375abfd7a30197ac18d30e053 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795012700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0935-9648 1521-4095 |
| IngestDate | Thu Jul 10 22:39:19 EDT 2025 Wed Oct 29 02:29:42 EDT 2025 Wed Feb 19 02:26:49 EST 2025 Sat Nov 29 07:17:47 EST 2025 Tue Nov 18 21:43:28 EST 2025 Wed Jan 22 16:23:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Keywords | real-time regulation thermal metasurfaces spatial evolution thermal camouflage |
| Language | English |
| License | Attribution 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4133-f904cfe868e7b0eb741f5ecc9adc50e2e823fa80375abfd7a30197ac18d30e053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6605-500X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201093 |
| PMID | 35415933 |
| PQID | 2676778624 |
| PQPubID | 2045203 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2649995951 proquest_journals_2676778624 pubmed_primary_35415933 crossref_primary_10_1002_adma_202201093 crossref_citationtrail_10_1002_adma_202201093 wiley_primary_10_1002_adma_202201093_ADMA202201093 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Advanced materials (Weinheim) |
| PublicationTitleAlternate | Adv Mater |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2021; 6 2018; 165 2019; 9 2019; 31 2018; 127 1995; 38 2019; 11 2019; 99 2019; 1 2021; 29 2014; 26 2019; 18 2020; 11 2020; 32 2015; 107 2008; 92 2006; 312 2014; 112 2019; 187 2020; 7 2018; 9 2020; 3 2015; 27 2021; 33 2015; 115 2017; 14 2020; 30 2021 2019; 137 2013; 498 2018; 30 2021; 374 2018; 97 2014; 78 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Guo J. (e_1_2_8_40_1) 2021 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 Guo J. (e_1_2_8_19_1) 2020; 7 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 99 year: 2019 publication-title: Phys. Rev. E – volume: 92 year: 2008 publication-title: Appl. Phys. Lett. – volume: 18 start-page: 48 year: 2019 publication-title: Nat. Mater. – volume: 27 start-page: 7752 year: 2015 publication-title: Adv. Mater. – volume: 7 start-page: 71 year: 2020 publication-title: ES Energy Environ. – volume: 6 start-page: 488 year: 2021 publication-title: Nat. Rev. Mater. – volume: 9 start-page: 4334 year: 2018 publication-title: Nat. Commun. – volume: 78 start-page: 1 year: 2014 publication-title: Int. J. Heat Mass Transfer – volume: 38 start-page: 3433 year: 1995 publication-title: Int. J. Heat Mass Transfer – volume: 312 start-page: 1780 year: 2006 publication-title: Science – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 9 start-page: 273 year: 2018 publication-title: Nat. Commun. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 187 start-page: 546 year: 2019 publication-title: Energy Convers. Manage. – volume: 26 start-page: 1731 year: 2014 publication-title: Adv. Mater. – volume: 165 start-page: 253 year: 2018 publication-title: Energy Convers. Manage. – volume: 498 start-page: 440 year: 2013 publication-title: Nature – volume: 1 start-page: 198 year: 2019 publication-title: Nat. Rev. Phys. – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 97 year: 2018 publication-title: Phys. Rev. E – volume: 3 start-page: 165 year: 2020 publication-title: Nat. Electron. – start-page: 173 year: 2021 publication-title: Int. J. Heat Mass Transfer – volume: 127 start-page: 1212 year: 2018 publication-title: Int. J. Heat Mass Transfer – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 374 start-page: 1504 year: 2021 publication-title: Science – volume: 137 start-page: 1312 year: 2019 publication-title: Int. J. Heat Mass Transfer – volume: 29 year: 2021 publication-title: Opt. Express – volume: 9 start-page: 611 year: 2019 publication-title: Nanophotonics – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 3 year: 2020 publication-title: Adv. Photonics – volume: 14 start-page: 8 year: 2017 publication-title: Nat. Phys. – volume: 11 start-page: 6028 year: 2020 publication-title: Nat. Commun. – ident: e_1_2_8_12_1 doi: 10.1002/adma.201804019 – ident: e_1_2_8_9_1 doi: 10.1002/adma.201904069 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.112.054302 – ident: e_1_2_8_38_1 doi: 10.1515/nanoph-2019-0318 – ident: e_1_2_8_13_1 doi: 10.1002/adma.202003084 – ident: e_1_2_8_6_1 doi: 10.1126/science.abf7136 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevE.97.022129 – ident: e_1_2_8_21_1 doi: 10.1038/s41563-018-0239-6 – ident: e_1_2_8_4_1 doi: 10.1038/s42254-018-0018-y – ident: e_1_2_8_8_1 doi: 10.1364/OE.426187 – ident: e_1_2_8_3_1 doi: 10.1038/s41467-017-02678-8 – ident: e_1_2_8_24_1 doi: 10.1103/PhysRevApplied.11.034056 – ident: e_1_2_8_17_1 doi: 10.1002/adma.201502513 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-018-06802-0 – ident: e_1_2_8_20_1 doi: 10.1016/j.ijheatmasstransfer.2019.03.162 – ident: e_1_2_8_22_1 doi: 10.1016/j.enconman.2018.03.070 – ident: e_1_2_8_15_1 doi: 10.1002/adma.201304448 – ident: e_1_2_8_23_1 doi: 10.1038/s41467-020-19909-0 – ident: e_1_2_8_5_1 doi: 10.1038/nphys4287 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevApplied.11.024053 – ident: e_1_2_8_31_1 doi: 10.1063/1.2951600 – ident: e_1_2_8_36_1 doi: 10.1016/j.ijheatmasstransfer.2018.07.035 – ident: e_1_2_8_39_1 doi: 10.1016/0017-9310(95)00059-I – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevE.99.022107 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevLett.112.054301 – ident: e_1_2_8_14_1 doi: 10.1002/adfm.202002061 – ident: e_1_2_8_2_1 doi: 10.1002/adma.201807849 – volume: 7 start-page: 71 year: 2020 ident: e_1_2_8_19_1 publication-title: ES Energy Environ. – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevLett.115.195503 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201707237 – ident: e_1_2_8_37_1 doi: 10.1016/j.ijheatmasstransfer.2014.06.061 – ident: e_1_2_8_10_1 doi: 10.1038/s41928-020-0380-5 – ident: e_1_2_8_35_1 doi: 10.1063/1.4930989 – ident: e_1_2_8_26_1 doi: 10.1016/j.enconman.2019.03.056 – start-page: 173 year: 2021 ident: e_1_2_8_40_1 publication-title: Int. J. Heat Mass Transfer – ident: e_1_2_8_18_1 doi: 10.1038/498440a – ident: e_1_2_8_30_1 doi: 10.1126/science.1125907 – ident: e_1_2_8_7_1 doi: 10.1117/1.AP.3.1.016001 – ident: e_1_2_8_1_1 doi: 10.1038/s41578-021-00283-2 – ident: e_1_2_8_16_1 doi: 10.1002/adma.202003823 |
| SSID | ssj0009606 |
| Score | 2.5922005 |
| Snippet | Emerging metamaterials have served as an efficient strategy for the realization of unconventional heat control and management using structural thermal... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2201093 |
| SubjectTerms | Circuit boards Feedback control Functionals Heat sources Materials science Metamaterials Metasurfaces Phase transitions real‐time regulation spatial evolution Switching thermal camouflage Thermal management thermal metasurfaces Thermodynamic properties Thermoelectricity |
| Title | A Real‐Time Self‐Adaptive Thermal Metasurface |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202201093 https://www.ncbi.nlm.nih.gov/pubmed/35415933 https://www.proquest.com/docview/2676778624 https://www.proquest.com/docview/2649995951 |
| Volume | 34 |
| WOSCitedRecordID | wos000795012700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1521-4095 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009606 issn: 0935-9648 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH64HfTgvowbFQRPxTZpm_RY1MGDM4gLzK2kWUAYZoaZ0bM_wd_oL_G9dqY6iAh6KSlN2vC2fEma7wGcKsMj4ZhADZjEj6zjfspC7bPYxrGO0DcTVSabEO227HTS2y-n-Ct-iHrBjTyjjNfk4KoYnX-ShipT8gYx2s5N-TwshiEXZNcsuv2k3U3K7Jq02-enSSSntI0BO59tPzssfcOas9C1HHuaa__v9TqsTnCnl1WGsgFztrcJK1_YCLcgzLw7hI3vr290LsS7t12H5cyoAYVEDw0Kg3jXa9kxLSs6pe02PDavHi6u_UlGBR_Fzrnv0iDSzspEWlEEtkA44WJUYqqMjgPLrGTcKUl5cVXhjFDo_qlQOpSGB5REYgcWev2e3QPPFEnkiqJgDkGYEYHiBmN4opgMuXZB0AB_KtBcT-jGKetFN6-IkllOoshrUTTgrK4_qIg2fqx5ONVPPnG4Uc6IeE7QaZcGnNSP0VVo_0P1bP-Z6tD0LkZM2YDdSq_1p3iMSCbl-HJWqu-XPuTZZSur7_b_0ugAlqlc_XZ2CAvj4bM9giX9Mn4aDY9LM8ar6MhjWLy8az7efADL4vM4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFH5oK6gH96VaNYLgKTSdyXoMalFsi2gFb2EyCwilLdp69if4G_0lvpek0SIiiLcsk8nwtvlm-x7AiVDcDQwLUAPKt11tuB2xprSZpz1PuuibvsiSTQTdbvjwEN0UuwnpLEzOD1FOuJFnZPGaHJwmpBufrKFCZcRBjNZzIz4PVRdtyatA9fy2dd_-ZN71swSbtOBnR74bTpkbHdaYrWG2Z_oGN2fRa9b9tFb_oeFrsFJgTyvOjWUd5vRgA5a_MBJuQjO2bhE6vr--0dkQ6073DV7HSowoLFpoVBjI-1ZHj2lq0Qipt-C-ddE7u7SLrAo2ip5z20SOK40O_VAHqaNThBTGQ0VGQknP0UyHjBsRUm5ckRoVCAwBUSBkM1TcoUQS21AZDAd6FyyV-q5J05QZBGIqcARXGMd9wcIml8ZxamBPJZrIgnKcMl_0k5wsmSUkiqQURQ1Oy_KjnGzjx5L1qYKSwumeE0bkcwGdeKnBcfka3YXWQMRADydUhoZ4HuLKGuzkii1_xT1EMxHHylmmv1_akMTnnbi82_vLR0eweNnrtJP2Vfd6H5boeb4NrQ6V8dNEH8CCfBk_Pj8dFlb9AW0o9i0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZS8QwEB68EH3wPupZQfCpbJv0fCzqoqjL4gG-lTQHCEt30dVnf4K_0V_iTNutLiKC-NYjacNMZvIlk3wDcCgU9yPDItSACh1fG-4kzJMOC3QQSB9tMxRlsomo04nv75NuvZuQzsJU_BDNghtZRumvycD1QJnWJ2uoUCVxEKN4bsInYdoP0NESubPf_eTdDcv0mhTuc5LQj0e8jS5rjdcfH5e-gc1x7FoOPu3Ff2j2EizUyNNOq66yDBO6WIH5L3yEq-Cl9jUCx_fXNzoZYt_onsHrVIkBOUUbuxS68Z59pYe0sGiE1Gtw1z69PT5z6pwKDgqec8ckri-NjsNYR7mrcwQUJkA1JkLJwNVMx4wbEVNmXJEbFQl0AEkkpBcr7lIaiXWYKvqF3gRb5aFv8jxnBmGYilzBFXrxULDY49K4rgXOSKKZrAnHKe9FL6uokllGosgaUVhw1JQfVFQbP5bcGSkoq03uKWNEPRfReRcLDprXaCwUARGF7j9TGZrgBYgqLdioFNv8igeIZRKOH2el_n5pQ5aeXKXN3dZfKu3DbPeknV2edy62YY4eV3vQdmBq-Pisd2FGvgwfnh73yi79AZnO9BY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Real-Time+Self-Adaptive+Thermal+Metasurface&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Guo%2C+Jun&rft.au=Xu%2C+Guoqiang&rft.au=Tian%2C+Di&rft.au=Qu%2C+Zhiguo&rft.date=2022-06-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=34&rft.issue=24&rft.spage=e2201093&rft_id=info:doi/10.1002%2Fadma.202201093&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |