A Stable Chichibabin Diradicaloid with Near‐Infrared Emission
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that a...
Saved in:
| Published in: | Angewandte Chemie International Edition Vol. 63; no. 29; pp. e202404853 - n/a |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
15.07.2024
|
| Edition: | International ed. in English |
| Subjects: | |
| ISSN: | 1433-7851, 1521-3773, 1521-3773 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
A stable analogue of the iconic Chichibabin hydrocarbon was synthesized by Ullmann coupling from a readily available, chlorinated trityl radical (TTM‐I). Thanks to its planar bridge, which exhibits hydrogen and chlorine atoms in just the right positions, the TTM‐TTM diradicaloid has skyblue color in solution, emits in the NIR range but nevertheless has significant diradical character at room temperature. |
|---|---|
| AbstractList | Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
A stable analogue of the iconic Chichibabin hydrocarbon was synthesized by Ullmann coupling from a readily available, chlorinated trityl radical (TTM‐I). Thanks to its planar bridge, which exhibits hydrogen and chlorine atoms in just the right positions, the TTM‐TTM diradicaloid has skyblue color in solution, emits in the NIR range but nevertheless has significant diradical character at room temperature. Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials. Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials. Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials. |
| Author | Delius, Max Arnold, Mona E. Jelezko, Fedor Kuehne, Alexander J. C. Chang, Xingmao Blinder, Rémi Zolg, Julia Slageren, Joris Wischnat, Jonathan |
| Author_xml | – sequence: 1 givenname: Xingmao orcidid: 0000-0002-0784-3495 surname: Chang fullname: Chang, Xingmao organization: Ulm University – sequence: 2 givenname: Mona E. surname: Arnold fullname: Arnold, Mona E. organization: Ulm University – sequence: 3 givenname: Rémi surname: Blinder fullname: Blinder, Rémi organization: Ulm University – sequence: 4 givenname: Julia surname: Zolg fullname: Zolg, Julia organization: Ulm University – sequence: 5 givenname: Jonathan surname: Wischnat fullname: Wischnat, Jonathan organization: Universität Stuttgart – sequence: 6 givenname: Joris orcidid: 0000-0002-0855-8960 surname: Slageren fullname: Slageren, Joris organization: Universität Stuttgart – sequence: 7 givenname: Fedor orcidid: 0000-0001-5759-3917 surname: Jelezko fullname: Jelezko, Fedor email: fedor.jelezko@uni-ulm.de organization: Ulm University – sequence: 8 givenname: Alexander J. C. surname: Kuehne fullname: Kuehne, Alexander J. C. email: alexander.kuehne@uni-ulm.de organization: Ulm University – sequence: 9 givenname: Max orcidid: 0000-0003-1852-2969 surname: Delius fullname: Delius, Max email: max.vondelius@uni-ulm.de organization: Ulm University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38695271$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkDFLAzEcR4NUtFZXRzlwcWn9J7lLcpOUWrUgdVDnkFxyNHK9q8mV4uZH8DP6SUxprSCIUzK8l_x4R6hTN7VF6BTDAAOQS1U7OyBAUkhFRvdQF2cE9ynntBPvKaV9LjJ8iI5CeIm8EMAO0CEVLM8Ix110NUweW6Urm4xmrpg5rbSrk2vnlXGFqhpnkpVrZ8nUKv_5_jGpS6-8Ncl47kJwTX2M9ktVBXuyPXvo-Wb8NLrr3z_cTkbD-36R4jhCWabLVDPIAZQVXGMVdxlDmQLgrDTagi5ZjpnOjABMDNHE5lyDYEBNQXvoYvPuwjevSxtaGQcUtqpUbZtlkBQywDwVQCJ6_gt9aZa-jusixRkTWcpFpM621FLPrZEL7-bKv8nvNBEYbIDCNyF4W-4QDHLdXq7by137KKS_hMK1qo2RWq9c9beWb7SVq-zbP5_I4XQy_nG_AMYkl3c |
| CitedBy_id | crossref_primary_10_1021_acsami_5c13020 crossref_primary_10_1016_j_chempr_2025_102621 crossref_primary_10_1002_anie_202512691 crossref_primary_10_1021_jacs_4c08876 crossref_primary_10_1002_anie_202414406 crossref_primary_10_1002_anie_202424128 crossref_primary_10_1038_s41467_025_59317_w crossref_primary_10_3762_bjoc_21_80 crossref_primary_10_1002_ange_202414406 crossref_primary_10_1021_acs_jpclett_5c02104 crossref_primary_10_1038_s41557_025_01875_z crossref_primary_10_1016_j_chempr_2025_102628 crossref_primary_10_1002_adma_202511877 crossref_primary_10_1038_s41377_025_01993_w crossref_primary_10_1021_acscentsci_4c01632 crossref_primary_10_1002_chem_202500749 crossref_primary_10_1002_ange_202424128 crossref_primary_10_1002_cplu_202500033 crossref_primary_10_3390_molecules30061191 crossref_primary_10_1039_D5CC01805F crossref_primary_10_1039_D5QM00328H crossref_primary_10_1002_ange_202512691 crossref_primary_10_1021_jacs_5c02672 crossref_primary_10_3390_chemistry7010021 crossref_primary_10_1039_D5SC03673A crossref_primary_10_1002_agt2_70100 crossref_primary_10_1021_jacs_4c08167 crossref_primary_10_1021_jacs_4c11549 crossref_primary_10_1002_chem_202403372 |
| Cites_doi | 10.1021/jacs.2c09637 10.1002/cber.19070400282 10.1038/s41467-021-21885-y 10.1021/jacs.0c12624 10.1021/jacs.3c01076 10.1038/s41467-022-29759-7 10.1002/wcms.81 10.1002/anie.201711031 10.1039/C8SC01209A 10.1021/jacs.5b03805 10.1039/C1CS15165G 10.1016/j.chempr.2020.09.024 10.1039/D2CC00352J 10.1039/C8SC01999A 10.1039/D3SC02341A 10.1021/ja00089a009 10.1002/anie.202209138 10.1039/D1TC05268C 10.1002/jcc.21759 10.1039/D3CC05706B 10.1039/b515623h 10.1021/jacs.3c05009 10.1002/anie.202300772 10.1016/j.jmr.2005.08.013 10.1021/acs.joc.3c00482 10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-D 10.1021/acs.chemrev.3c00406 10.1039/D3QM00666B 10.1002/anie.202309238 10.1039/D2CC04481A 10.1021/jacs.3c05251 10.1021/jacs.1c01620 10.1002/anie.202107855 10.1021/jacs.6b02888 10.1039/D1TC02196F 10.1038/s41557-023-01341-8 10.31635/ccschem.021.202101513 10.1002/wcms.1606 10.1002/anie.202302550 10.1002/anie.201915802 10.1107/S0108767307043930 10.1021/jacs.8b05465 10.1021/ja00279a056 10.1021/jacs.2c09241 10.1021/acs.accounts.7b00004 10.1063/1.3382344 10.1016/j.xcrp.2022.100858 10.1002/anie.202100655 10.1002/anie.202314900 10.1039/D2TC03299F 10.1039/C7SC04034B 10.1021/jacs.0c13310 10.1007/BF01481380 10.1002/tcr.201600094 10.1021/jacs.1c08262 10.1039/D3SC00102D 10.1039/D1SC04486A 10.1016/S0040-4039(00)78264-5 10.1021/ed085p532 10.1007/978-94-009-4746-7_11 10.1038/s41467-023-40990-8 10.1063/1.1928233 10.1002/anie.201713346 10.1038/s44160-023-00348-w 10.1063/1.1385558 10.1002/cber.19040370245 10.1039/C4CP03522D 10.1021/jacs.3c03928 10.1038/s41586-023-06222-1 10.1002/adma.202302114 10.1038/nchem.2518 10.1038/nchem.1013 10.1016/j.dyepig.2022.110863 10.1021/jacs.0c04876 10.1038/s41570-022-00453-y 10.1039/C5CS00933B 10.1021/jo00018a046 10.1039/b508541a 10.1107/S0021889808042726 10.1107/S2053229614024218 10.1002/chem.202302943 10.1021/j100306a023 10.1002/anie.201502657 10.1021/j100632a003 10.31635/ccschem.021.202000737 10.1039/C5SC00652J 10.1103/RevModPhys.25.269 10.1021/acs.chemrev.3c00613 10.1016/0009-2614(75)80169-2 10.1002/anie.202302835 10.1021/jacs.2c02318 10.1021/jacs.7b11183 10.1021/ja3050579 10.1002/anie.201507961 10.1063/5.0004608 10.1021/jacs.3c00306 10.1002/anie.201709537 10.1063/1.3484283 10.1038/s41557-019-0399-2 10.1002/anie.201500242 10.1021/ja00220a052 10.1039/D1SC01618K |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 |
| DOI | 10.1002/anie.202404853 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Open Access资源_Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1521-3773 |
| Edition | International ed. in English |
| EndPage | n/a |
| ExternalDocumentID | 38695271 10_1002_anie_202404853 ANIE202404853 |
| Genre | shortCommunication Journal Article |
| GrantInformation_xml | – fundername: H2020 European Research Council funderid: 856432; FLORIN; QuMicro – fundername: Fonds der Chemischen Industrie – fundername: Deutsche Forschungsgemeinschaft funderid: 856432 – fundername: Alexander von Humboldt-Stiftung – fundername: Carl-Zeiss-Stiftung funderid: IQST, QPhoton, Ultrasens-Vir – fundername: H2020 European Research Council grantid: FLORIN – fundername: H2020 European Research Council grantid: 856432 – fundername: Carl-Zeiss-Stiftung grantid: IQST, QPhoton, Ultrasens-Vir – fundername: Deutsche Forschungsgemeinschaft grantid: 856432 – fundername: H2020 European Research Council grantid: QuMicro |
| GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI ABUFD AEYWJ AGHNM AGYGG CITATION O8X NPM 7TM K9. 7X8 |
| ID | FETCH-LOGICAL-c4133-ae6bf4b60900ae87b1a785dd36a0076fdbe0bf6916b5d8012d2b2e97b08603dc3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265568500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1433-7851 1521-3773 |
| IngestDate | Fri Jul 11 11:14:22 EDT 2025 Tue Oct 07 07:41:25 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Sat Nov 29 03:04:19 EST 2025 Tue Nov 18 22:38:38 EST 2025 Wed Jan 22 17:18:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 29 |
| Keywords | NIR emission conjugated materials stable diradicaloid EPR spectroscopy radical chemistry |
| Language | English |
| License | Attribution 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4133-ae6bf4b60900ae87b1a785dd36a0076fdbe0bf6916b5d8012d2b2e97b08603dc3 |
| Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0855-8960 0000-0001-5759-3917 0000-0002-0784-3495 0000-0003-1852-2969 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202404853 |
| PMID | 38695271 |
| PQID | 3076685478 |
| PQPubID | 946352 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_3050174802 proquest_journals_3076685478 pubmed_primary_38695271 crossref_primary_10_1002_anie_202404853 crossref_citationtrail_10_1002_anie_202404853 wiley_primary_10_1002_anie_202404853_ANIE202404853 |
| PublicationCentury | 2000 |
| PublicationDate | July 15, 2024 |
| PublicationDateYYYYMMDD | 2024-07-15 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 15, 2024 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Angewandte Chemie International Edition |
| PublicationTitleAlternate | Angew Chem Int Ed Engl |
| PublicationYear | 2024 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2023; 35 2009; 42 1991; 56 2015; 71 2006; 35 2023; 7 2023; 145 2020; 59 2024; 30 2023; 620 2020; 12 2023; 2 2024 2006; 178 2018; 47 2023; 62 2018; 9 1986; 108 2012; 134 1904; 37 2015; 137 1986 1994; 35 1940; 28 2008; 64 1953; 25 1988 2021; 9 2021; 7 1994; 116 2015; 17 2015; 6 2023; 14 2018; 140 2011; 2 1973; 77 2023; 15 2020; 142 1987; 91 2023; 123 2024; 60 2015; 54 2006; 8 2011; 32 2023; 208 2024; 124 1975; 33 1907; 40 2021; 143 2011; 3 2016; 55 2022; 144 2017; 50 2021; 12 2023; 88 2023 2022; 3 2022; 4 2020; 152 2017; 17 2022; 61 2002; 23 2017; 56 2010; 132 2022; 12 2022; 13 2010; 133 2022; 58 2005; 7 2016; 138 2022; 10 2008; 85 2021; 60 2016; 8 2001; 115 2012; 41 2018; 57 e_1_2_3_50_2 e_1_2_3_92_2 e_1_2_3_114_2 e_1_2_3_110_2 e_1_2_3_16_2 e_1_2_3_4_1 e_1_2_3_39_2 e_1_2_3_8_2 e_1_2_3_12_2 e_1_2_3_58_2 e_1_2_3_77_2 e_1_2_3_35_2 e_1_2_3_118_2 e_1_2_3_54_2 e_1_2_3_73_2 e_1_2_3_31_2 e_1_2_3_96_1 e_1_2_3_102_1 e_1_2_3_121_2 e_1_2_3_28_2 e_1_2_3_47_2 e_1_2_3_66_2 e_1_2_3_89_1 e_1_2_3_106_2 e_1_2_3_20_2 e_1_2_3_43_2 e_1_2_3_62_2 e_1_2_3_85_2 e_1_2_3_72_2 e_1_2_3_91_2 Zhang Z. (e_1_2_3_95_2) 2024 Shi Y. (e_1_2_3_37_2) 2024 e_1_2_3_115_2 e_1_2_3_15_2 e_1_2_3_111_2 e_1_2_3_3_2 e_1_2_3_19_1 e_1_2_3_11_2 e_1_2_3_34_2 Rosenboom J. (e_1_2_3_81_2) 2023 e_1_2_3_7_1 e_1_2_3_57_2 e_1_2_3_99_1 e_1_2_3_30_2 e_1_2_3_76_2 e_1_2_3_119_2 e_1_2_3_53_2 e_1_2_3_84_1 e_1_2_3_61_2 e_1_2_3_80_2 Shimizu D. (e_1_2_3_87_2) 2024 e_1_2_3_103_1 e_1_2_3_27_2 e_1_2_3_122_2 e_1_2_3_23_2 e_1_2_3_69_2 e_1_2_3_46_2 e_1_2_3_42_1 e_1_2_3_88_1 e_1_2_3_65_2 e_1_2_3_107_2 e_1_2_3_71_2 e_1_2_3_94_2 e_1_2_3_90_1 e_1_2_3_112_2 e_1_2_3_2_2 e_1_2_3_18_2 e_1_2_3_56_2 e_1_2_3_79_2 e_1_2_3_33_2 e_1_2_3_6_2 e_1_2_3_14_2 e_1_2_3_75_2 e_1_2_3_52_1 e_1_2_3_98_1 e_1_2_3_116_2 e_1_2_3_10_2 e_1_2_3_60_2 e_1_2_3_83_2 e_1_2_3_104_1 e_1_2_3_26_2 e_1_2_3_49_2 e_1_2_3_100_2 e_1_2_3_22_2 e_1_2_3_68_2 e_1_2_3_45_1 e_1_2_3_41_2 e_1_2_3_64_2 e_1_2_3_108_2 e_1_2_3_93_1 e_1_2_3_70_2 e_1_2_3_1_1 e_1_2_3_113_2 e_1_2_3_5_2 e_1_2_3_17_2 e_1_2_3_59_2 e_1_2_3_9_2 e_1_2_3_55_2 e_1_2_3_13_2 e_1_2_3_36_2 e_1_2_3_78_2 e_1_2_3_51_2 e_1_2_3_32_2 e_1_2_3_97_1 e_1_2_3_74_2 e_1_2_3_117_2 e_1_2_3_82_2 Xu X. (e_1_2_3_24_2) 2023 e_1_2_3_101_2 e_1_2_3_48_2 e_1_2_3_29_2 e_1_2_3_120_2 Arnold M. (e_1_2_3_123_2) 2024 e_1_2_3_44_2 e_1_2_3_109_2 Wu H. (e_1_2_3_38_2) 2024 e_1_2_3_25_2 e_1_2_3_67_2 e_1_2_3_40_2 e_1_2_3_86_2 e_1_2_3_105_2 e_1_2_3_21_2 e_1_2_3_63_2 |
| References_xml | – volume: 4 start-page: 3190 year: 2022 end-page: 3203 publication-title: CCS Chem. – volume: 58 start-page: 3019 year: 2022 end-page: 3022 publication-title: Chem. Commun. – volume: 57 start-page: 749 year: 2018 end-page: 754 publication-title: Angew. Chem. Int. Ed. – volume: 91 start-page: 5608 year: 1987 end-page: 5616 publication-title: J. Phys. Chem. – volume: 23 start-page: 227 year: 2002 end-page: 246 publication-title: Macromol. Rapid Commun. – volume: 88 start-page: 8553 year: 2023 end-page: 8562 publication-title: J. Org. Chem. – volume: 32 start-page: 1456 year: 2011 end-page: 1465 publication-title: J. Comput. Chem. – volume: 9 start-page: 4970 year: 2018 end-page: 4976 publication-title: Chem. Sci. – volume: 3 year: 2022 publication-title: Cell Rep. Phy. Sci. – volume: 56 start-page: 5445 year: 1991 end-page: 5448 publication-title: J. Org. Chem. – volume: 85 start-page: 532 year: 2008 end-page: 536 publication-title: J. Chem. Educ. – volume: 10 start-page: 14116 year: 2022 end-page: 14121 publication-title: J. Mater. Chem. C – volume: 144 start-page: 19576 year: 2022 end-page: 19591 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 501 year: 2018 end-page: 513 publication-title: Chem. Soc. Rev. – start-page: 155 year: 1986 end-page: 184 – volume: 123 start-page: 11954 year: 2023 end-page: 12003 publication-title: Chem. Rev. – volume: 12 start-page: 13648 year: 2021 end-page: 13663 publication-title: Chem. Sci. – volume: 140 start-page: 2546 year: 2018 end-page: 2554 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 722 year: 2022 end-page: 731 publication-title: CCS Chem. – volume: 8 start-page: 1057 year: 2006 end-page: 1065 publication-title: Phys. Chem. Chem. Phys. – volume: 2 start-page: 1104 year: 2023 end-page: 1115 publication-title: Nat. Syn. – volume: 9 start-page: 6107 year: 2018 end-page: 6117 publication-title: Chem. Sci. – volume: 124 start-page: 1034 year: 2024 end-page: 1121 publication-title: Chem. Rev. – volume: 59 start-page: 6729 year: 2020 end-page: 6734 publication-title: Angew. Chem. Int. Ed. – volume: 152 year: 2020 publication-title: J. Chem. Phys. – volume: 7 start-page: 288 year: 2021 end-page: 332 publication-title: Chem – volume: 64 start-page: 112 year: 2008 end-page: 122 publication-title: Acta Crystallogr. Sect. A – volume: 6 start-page: 3402 year: 2015 end-page: 3409 publication-title: Chem. Sci. – volume: 14 start-page: 5248 year: 2023 publication-title: Nat. Commun. – volume: 9 start-page: 10610 year: 2021 end-page: 10623 publication-title: J. Mater. Chem. C – volume: 145 start-page: 14484 year: 2023 end-page: 14497 publication-title: J. Am. Chem. Soc. – year: 2024 publication-title: ACS Cent. Sci. – volume: 143 start-page: 7050 year: 2021 end-page: 7058 publication-title: J. Am. Chem. Soc. – volume: 178 start-page: 42 year: 2006 end-page: 55 publication-title: J. Magn. Reson. – volume: 143 start-page: 3687 year: 2021 end-page: 3692 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 359 year: 2011 end-page: 364 publication-title: Nat. Chem. – volume: 14 start-page: 12264 year: 2023 end-page: 12276 publication-title: Chem. Sci. – volume: 143 start-page: 17690 year: 2021 end-page: 17700 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 15702 year: 2023 end-page: 15707 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 10839 year: 2018 end-page: 10847 publication-title: J. Am. Chem. Soc. – volume: 35 year: 2023 publication-title: Adv. Mater. – volume: 37 start-page: 1463 year: 1904 end-page: 1470 publication-title: Chem. Ber. – volume: 142 start-page: 12730 year: 2020 end-page: 12742 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 5838 year: 2018 end-page: 5842 publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 983 year: 2015 end-page: 991 publication-title: Phys. Chem. Chem. Phys. – volume: 60 start-page: 22385 year: 2021 end-page: 22392 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 73 year: 2011 end-page: 78 publication-title: WIREs Comput. Mol. Sci. – volume: 145 start-page: 20229 year: 2023 end-page: 20241 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 6529 year: 1994 end-page: 6532 publication-title: Tetrahedron Lett. – volume: 8 start-page: 753 year: 2016 end-page: 759 publication-title: Nat. Chem. – volume: 33 start-page: 330 year: 1975 end-page: 335 publication-title: Chem. Phys. Lett. – year: 2024 publication-title: J. Am. Chem. Soc. – start-page: 4036 year: 1988 end-page: 4038 publication-title: J. Am. Chem. Soc. – volume: 145 start-page: 13615 year: 2023 end-page: 13622 publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 977 year: 2017 end-page: 987 publication-title: Acc. Chem. Res. – volume: 116 start-page: 4205 year: 1994 end-page: 4210 publication-title: J. Am. Chem. Soc. – volume: 15 start-page: 1541 year: 2023 end-page: 1548 publication-title: Nat. Chem. – volume: 138 start-page: 11517 year: 2016 end-page: 11525 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 339 year: 2009 end-page: 341 publication-title: J. Appl. Crystallogr. – volume: 41 start-page: 303 year: 2012 end-page: 349 publication-title: Chem. Soc. Rev. – volume: 620 start-page: 538 year: 2023 end-page: 544 publication-title: Nature – volume: 12 start-page: 242 year: 2020 end-page: 248 publication-title: Nat. Chem. – volume: 54 start-page: 7091 year: 2015 end-page: 7095 publication-title: Angew. Chem. Int. Ed. – year: 2024 publication-title: ChemRxiv. – volume: 108 start-page: 6004 year: 1986 end-page: 6011 publication-title: J. Am. Chem. Soc. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 4928 year: 2023 end-page: 4943 publication-title: Mater. Chem. Front. – volume: 145 start-page: 10092 year: 2023 end-page: 10103 publication-title: J. Am. Chem. Soc. – volume: 71 start-page: 3 year: 2015 end-page: 8 publication-title: Acta Crystallogr. Sect. C – volume: 208 year: 2023 publication-title: Dyes Pigm. – volume: 14 start-page: 3548 year: 2023 end-page: 3553 publication-title: Chem. Sci. – volume: 12 year: 2022 publication-title: WIREs Comput. Mol. Sci. – volume: 134 start-page: 14513 year: 2012 end-page: 14525 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 2207 year: 2001 end-page: 2211 publication-title: J. Chem. Phys. – volume: 7 start-page: 75 year: 2023 end-page: 90 publication-title: Nat. Chem. Rev. – volume: 55 start-page: 1183 year: 2016 end-page: 1186 publication-title: Angew. Chem. Int. Ed. – volume: 133 year: 2010 publication-title: J. Chem. Phys. – volume: 10 start-page: 7368 year: 2022 end-page: 7403 publication-title: J. Mater. Chem. C – volume: 61 year: 2022 publication-title: Angew. Chem. Int. Ed. – volume: 77 start-page: 1611 year: 1973 end-page: 1615 publication-title: J. Phys. Chem. – volume: 17 start-page: 27 year: 2017 end-page: 62 publication-title: Chem. Rec. – volume: 7 start-page: 3297 year: 2005 end-page: 3305 publication-title: Phys. Chem. Chem. Phys. – volume: 40 start-page: 1810 year: 1907 end-page: 1819 publication-title: Chem. Ber. – volume: 9 start-page: 1996 year: 2018 end-page: 2007 publication-title: Chem. Sci. – volume: 25 start-page: 269 year: 1953 end-page: 276 publication-title: Rev. Mod. Phys. – volume: 137 start-page: 6750 year: 2015 end-page: 6753 publication-title: J. Am. Chem. Soc. – year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 143 start-page: 4329 year: 2021 end-page: 4338 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1705 year: 2021 publication-title: Nat. Commun. – volume: 56 start-page: 15383 year: 2017 end-page: 15387 publication-title: Angew. Chem. Int. Ed. – volume: 54 start-page: 12442 year: 2015 end-page: 12446 publication-title: Angew. Chem. Int. Ed. – volume: 144 start-page: 23448 year: 2022 end-page: 23464 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 1 year: 2006 end-page: 8 publication-title: J. Phys. Chem. Ref. Data – volume: 58 start-page: 13443 year: 2022 end-page: 13446 publication-title: Chem. Commun. – volume: 60 start-page: 252 year: 2024 end-page: 264 publication-title: Chem. Commun. – volume: 144 start-page: 7479 year: 2022 end-page: 7488 publication-title: J. Am. Chem. Soc. – year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 9852 year: 2021 end-page: 9858 publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 15151 year: 2021 end-page: 15156 publication-title: Chem. Sci. – volume: 30 year: 2024 publication-title: Chem. Eur. J. – year: 2023 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 2744 year: 2022 publication-title: Nat. Commun. – volume: 28 start-page: 189 year: 1940 end-page: 190 publication-title: Naturwissenschaften – volume: 132 year: 2010 publication-title: J. Chem. Phys. – year: 2024 ident: e_1_2_3_123_2 publication-title: ChemRxiv. – ident: e_1_2_3_76_2 doi: 10.1021/jacs.2c09637 – ident: e_1_2_3_5_2 doi: 10.1002/cber.19070400282 – ident: e_1_2_3_18_2 doi: 10.1038/s41467-021-21885-y – ident: e_1_2_3_34_2 doi: 10.1021/jacs.0c12624 – ident: e_1_2_3_60_2 doi: 10.1021/jacs.3c01076 – ident: e_1_2_3_51_2 doi: 10.1038/s41467-022-29759-7 – ident: e_1_2_3_118_2 doi: 10.1002/wcms.81 – ident: e_1_2_3_69_2 doi: 10.1002/anie.201711031 – ident: e_1_2_3_73_2 doi: 10.1039/C8SC01209A – ident: e_1_2_3_64_2 doi: 10.1021/jacs.5b03805 – year: 2024 ident: e_1_2_3_95_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_8_2 doi: 10.1039/C1CS15165G – ident: e_1_2_3_12_2 doi: 10.1016/j.chempr.2020.09.024 – ident: e_1_2_3_26_2 doi: 10.1039/D2CC00352J – ident: e_1_2_3_71_2 doi: 10.1039/C8SC01999A – ident: e_1_2_3_79_2 doi: 10.1039/D3SC02341A – ident: e_1_2_3_42_1 – ident: e_1_2_3_53_2 doi: 10.1021/ja00089a009 – ident: e_1_2_3_40_2 doi: 10.1002/anie.202209138 – ident: e_1_2_3_14_2 doi: 10.1039/D1TC05268C – ident: e_1_2_3_117_2 doi: 10.1002/jcc.21759 – ident: e_1_2_3_17_2 doi: 10.1039/D3CC05706B – ident: e_1_2_3_111_2 doi: 10.1039/b515623h – ident: e_1_2_3_23_2 doi: 10.1021/jacs.3c05009 – ident: e_1_2_3_89_1 – ident: e_1_2_3_57_2 doi: 10.1002/anie.202300772 – ident: e_1_2_3_110_2 doi: 10.1016/j.jmr.2005.08.013 – ident: e_1_2_3_77_2 doi: 10.1021/acs.joc.3c00482 – ident: e_1_2_3_97_1 doi: 10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-D – ident: e_1_2_3_86_2 doi: 10.1021/acs.chemrev.3c00406 – ident: e_1_2_3_80_2 doi: 10.1039/D3QM00666B – ident: e_1_2_3_39_2 doi: 10.1002/anie.202309238 – ident: e_1_2_3_48_2 doi: 10.1039/D2CC04481A – ident: e_1_2_3_99_1 – ident: e_1_2_3_58_2 doi: 10.1021/jacs.3c05251 – ident: e_1_2_3_104_1 – year: 2023 ident: e_1_2_3_24_2 publication-title: J. Am. Chem. Soc. – ident: e_1_2_3_29_2 doi: 10.1021/jacs.1c01620 – ident: e_1_2_3_41_2 doi: 10.1002/anie.202107855 – ident: e_1_2_3_91_2 doi: 10.1021/jacs.6b02888 – ident: e_1_2_3_63_2 doi: 10.1039/D1TC02196F – ident: e_1_2_3_84_1 – ident: e_1_2_3_27_2 doi: 10.1038/s41557-023-01341-8 – ident: e_1_2_3_59_2 doi: 10.31635/ccschem.021.202101513 – ident: e_1_2_3_122_2 doi: 10.1002/wcms.1606 – ident: e_1_2_3_46_2 doi: 10.1002/anie.202302550 – ident: e_1_2_3_74_2 doi: 10.1002/anie.201915802 – ident: e_1_2_3_113_2 doi: 10.1107/S0108767307043930 – ident: e_1_2_3_33_2 doi: 10.1021/jacs.8b05465 – ident: e_1_2_3_3_2 doi: 10.1021/ja00279a056 – ident: e_1_2_3_21_2 doi: 10.1021/jacs.2c09241 – ident: e_1_2_3_45_1 – ident: e_1_2_3_9_2 doi: 10.1021/acs.accounts.7b00004 – ident: e_1_2_3_115_2 doi: 10.1063/1.3382344 – ident: e_1_2_3_102_1 doi: 10.1016/j.xcrp.2022.100858 – ident: e_1_2_3_44_2 doi: 10.1002/anie.202100655 – ident: e_1_2_3_56_2 doi: 10.1002/anie.202314900 – year: 2023 ident: e_1_2_3_81_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_94_2 doi: 10.1039/D2TC03299F – ident: e_1_2_3_52_1 – ident: e_1_2_3_50_2 doi: 10.1039/C7SC04034B – ident: e_1_2_3_103_1 doi: 10.1021/jacs.0c13310 – ident: e_1_2_3_93_1 – ident: e_1_2_3_90_1 – ident: e_1_2_3_4_1 – ident: e_1_2_3_6_2 doi: 10.1007/BF01481380 – ident: e_1_2_3_10_2 doi: 10.1002/tcr.201600094 – ident: e_1_2_3_75_2 doi: 10.1021/jacs.1c08262 – ident: e_1_2_3_22_2 doi: 10.1039/D3SC00102D – ident: e_1_2_3_20_2 doi: 10.1039/D1SC04486A – ident: e_1_2_3_100_2 doi: 10.1016/S0040-4039(00)78264-5 – ident: e_1_2_3_112_2 doi: 10.1021/ed085p532 – ident: e_1_2_3_106_2 doi: 10.1007/978-94-009-4746-7_11 – ident: e_1_2_3_78_2 doi: 10.1038/s41467-023-40990-8 – ident: e_1_2_3_109_2 doi: 10.1063/1.1928233 – ident: e_1_2_3_72_2 doi: 10.1002/anie.201713346 – ident: e_1_2_3_30_2 doi: 10.1038/s44160-023-00348-w – year: 2024 ident: e_1_2_3_87_2 publication-title: ACS Cent. Sci. – ident: e_1_2_3_107_2 doi: 10.1063/1.1385558 – ident: e_1_2_3_2_2 doi: 10.1002/cber.19040370245 – ident: e_1_2_3_66_2 doi: 10.1039/C4CP03522D – ident: e_1_2_3_36_2 doi: 10.1021/jacs.3c03928 – ident: e_1_2_3_85_2 doi: 10.1038/s41586-023-06222-1 – ident: e_1_2_3_61_2 doi: 10.1002/adma.202302114 – ident: e_1_2_3_32_2 doi: 10.1038/nchem.2518 – ident: e_1_2_3_43_2 doi: 10.1038/nchem.1013 – ident: e_1_2_3_88_1 doi: 10.1016/j.dyepig.2022.110863 – ident: e_1_2_3_35_2 doi: 10.1021/jacs.0c04876 – ident: e_1_2_3_16_2 doi: 10.1038/s41570-022-00453-y – ident: e_1_2_3_11_2 doi: 10.1039/C5CS00933B – ident: e_1_2_3_19_1 – ident: e_1_2_3_82_2 doi: 10.1021/jo00018a046 – ident: e_1_2_3_1_1 – ident: e_1_2_3_7_1 – ident: e_1_2_3_108_2 doi: 10.1039/b508541a – ident: e_1_2_3_114_2 doi: 10.1107/S0021889808042726 – ident: e_1_2_3_119_2 doi: 10.1107/S2053229614024218 – ident: e_1_2_3_83_2 doi: 10.1002/chem.202302943 – ident: e_1_2_3_92_2 doi: 10.1021/j100306a023 – ident: e_1_2_3_65_2 doi: 10.1002/anie.201502657 – ident: e_1_2_3_98_1 doi: 10.1021/j100632a003 – ident: e_1_2_3_49_2 doi: 10.31635/ccschem.021.202000737 – ident: e_1_2_3_67_2 doi: 10.1039/C5SC00652J – ident: e_1_2_3_96_1 doi: 10.1103/RevModPhys.25.269 – ident: e_1_2_3_15_2 doi: 10.1021/acs.chemrev.3c00613 – ident: e_1_2_3_105_2 doi: 10.1016/0009-2614(75)80169-2 – ident: e_1_2_3_62_2 doi: 10.1002/anie.202302835 – ident: e_1_2_3_121_2 – year: 2024 ident: e_1_2_3_38_2 publication-title: J. Am. Chem. Soc. – year: 2024 ident: e_1_2_3_37_2 publication-title: Angew. Chem. Int. Ed. – ident: e_1_2_3_55_2 doi: 10.1021/jacs.2c02318 – ident: e_1_2_3_70_2 doi: 10.1021/jacs.7b11183 – ident: e_1_2_3_54_2 doi: 10.1021/ja3050579 – ident: e_1_2_3_68_2 doi: 10.1002/anie.201507961 – ident: e_1_2_3_120_2 doi: 10.1063/5.0004608 – ident: e_1_2_3_25_2 doi: 10.1021/jacs.3c00306 – ident: e_1_2_3_31_2 doi: 10.1002/anie.201709537 – ident: e_1_2_3_116_2 doi: 10.1063/1.3484283 – ident: e_1_2_3_28_2 doi: 10.1038/s41557-019-0399-2 – ident: e_1_2_3_47_2 doi: 10.1002/anie.201500242 – ident: e_1_2_3_101_2 doi: 10.1021/ja00220a052 – ident: e_1_2_3_13_2 doi: 10.1039/D1SC01618K |
| SSID | ssj0028806 |
| Score | 2.5972142 |
| Snippet | Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e202404853 |
| SubjectTerms | Chlorine conjugated materials Data processing Emissions EPR spectroscopy Information processing Magnetic properties Near infrared radiation NIR emission Optical properties Quantum phenomena radical chemistry stable diradicaloid |
| Title | A Stable Chichibabin Diradicaloid with Near‐Infrared Emission |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202404853 https://www.ncbi.nlm.nih.gov/pubmed/38695271 https://www.proquest.com/docview/3076685478 https://www.proquest.com/docview/3050174802 |
| Volume | 63 |
| WOSCitedRecordID | wos001265568500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pa9swFH9sbWG9dOu2bt7a4kJhJ1FZsiz5NEKX0EIJZayQm9GTZBYozkjanvsR-hn3SapnJ97CKIPtYmws2eJJ77_0ewDHmQg6lKiYV06y3DpkKFRgzjtVW6drjnlbbEKPx2YyKS9_O8Xf4UP0ATfijFZeE4NbXJz8Ag2lE9jRv4saKY8q5zlsZpk0VLxB5Je9yxVXZ3e-SEpGZehXsI1cnKz3X1dLf9ia66Zrq3tGL_9_1K9gZ2l3poNuoezCs9C8hhenq3Jvb-DzII2GJ16HlHZnfJ-ijT5zGiWibTM5s6lPKWabjiNr_Lx_OG_qOe1dT4fxAxRxewtXo-G30zO2rK7AXFRcktlQYJ1jwUvObTAaMxsp5L0sLKXnao-BY11E8xGVJz3mBYpQaoxOEJfeyT3YaGZNeA8pOmdqqVUwMuTcIkqptJYCy8JkeSgTYCviVm4JPU4VMK6rDjRZVESWqidLAp_69j860I0nW-6v5qpaMt-iimKrKAwBlSVw1L-O1KBciG3C7JbaqCiLcsNFAu-6Oe5_JU1RKqGzBEQ7lX8ZQzUYnw_7pw__0ukjbNM9xYwztQ8bN_PbcABb7u5mupgftks6XvXEHMLml6-jq4tHIVf3rg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7StJBc-n64SVoXCj2JyHpY9qksYUOWpCaHBHIzGkmmC8FbNo9zf0J_Y39JNbbXYQmlUHK0LNliNG9J3wB8zkQwoUTNvHaSKeuQodCBOe90Y51pOKqu2ISpquLiojwdThPSXZgeH2JMuJFkdPqaBJwS0vt3qKF0BTsGeNEkqWhzHsFjFU0NsbpQp2PMFdmzv2AkJaM69CvcRi7218ev26V7zua679oZn8NnDzDt5_B08DzTSc8qL2AjtC9h62BV8O0VfJ2k0fXEy5DS-Yzvc7Qxak6jTrTdXs5i7lPK2qZVFI7fP3_N2mZJp9fTafwA5dxew_nh9OzgiA31FZiLpksyG3JsFOa85NyGwmBmI4m8l7mlDbrGY-DY5NGBRO3JknmBIpQGYxjEpXfyDWy2iza8gxSdKxppdChkUNwiSqmNkQLLvMhUKBNgK-rWbgAfpxoYl3UPmyxqIks9kiWBL2P_Hz3sxl977q4Wqx7E76qOiivPC4IqS-DT-DpSg3ZDbBsWN9RHR22kCi4SeNsv8vgrWeSlFiZLQHRr-Y851JNqNh2f3v_PoI-wdXT27aQ-mVXHO7BN7ZRBzvQubF4vb8IePHG31_Or5YeOv_8AWwL5EQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fa9UwFD_MO1Ff3NRNq9NVEHwKS5OmaZ_kst2LF0cZ4mBvJSdJ2YXRO-7-PO8j-Bn9JOa0vZWLiDD22PYkDSc5f5P8DsCnRHjtC1TMKStZaiwyFMoz66yqjdU1x7QtNqHLMj87K07604R0F6bDhxgSbiQZrb4mAfeXrj74gxpKV7BDgBdMUhpsziPYTKmSzAg2j75PT4-HqCss0O6KkZSMKtGvkBu5OFjvYd0y_eVurnuvrfmZbj3AwLfhee97xuNusbyADd-8hKeHq5Jvr-DLOA7OJ174mE5onM_RhLg5DlrRtLs5i7mLKW8bl0E8ft39nDX1ks6vx5PQAWXdduB0Ovlx-JX1FRaYDcZLMuMzrFPMeMG58bnGxAQWOSczQ1t0tUPPsc6CC4nKkS1zAoUvNIZAiEtn5S6MmkXj30CM1ua11Mrn0qfcIEqptJYCiyxPUl9EwFbcrWwPP05VMC6qDjhZVMSWamBLBJ8H-ssOeOOflHuryap6AbyqgurKspzAyiL4OHwO3KD9ENP4xQ3RqKCP0pyLCF53kzz8SuZZoYROIhDtXP5nDNW4nE2Gp7f3abQPT06OptXxrPz2Dp7Ra0ohJ2oPRtfLG_8eHtvb6_nV8kO_wH8DiZ_6Jw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stable+Chichibabin+Diradicaloid+with+Near%E2%80%90Infrared+Emission&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chang%2C+Xingmao&rft.au=Arnold%2C+Mona+E&rft.au=Blinder%2C+R%C3%A9mi&rft.au=Zolg%2C+Julia&rft.date=2024-07-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft_id=info:doi/10.1002%2Fanie.202404853&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |