A Stable Chichibabin Diradicaloid with Near‐Infrared Emission

Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Angewandte Chemie International Edition Ročník 63; číslo 29; s. e202404853 - n/a
Hlavní autoři: Chang, Xingmao, Arnold, Mona E., Blinder, Rémi, Zolg, Julia, Wischnat, Jonathan, Slageren, Joris, Jelezko, Fedor, Kuehne, Alexander J. C., Delius, Max
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 15.07.2024
Vydání:International ed. in English
Témata:
ISSN:1433-7851, 1521-3773, 1521-3773
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials. A stable analogue of the iconic Chichibabin hydrocarbon was synthesized by Ullmann coupling from a readily available, chlorinated trityl radical (TTM‐I). Thanks to its planar bridge, which exhibits hydrogen and chlorine atoms in just the right positions, the TTM‐TTM diradicaloid has skyblue color in solution, emits in the NIR range but nevertheless has significant diradical character at room temperature.
AbstractList Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials. A stable analogue of the iconic Chichibabin hydrocarbon was synthesized by Ullmann coupling from a readily available, chlorinated trityl radical (TTM‐I). Thanks to its planar bridge, which exhibits hydrogen and chlorine atoms in just the right positions, the TTM‐TTM diradicaloid has skyblue color in solution, emits in the NIR range but nevertheless has significant diradical character at room temperature.
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM-TTM diradicaloid, which exhibits high diradical character, a striking sky-blue color and near-infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in "just the right positions", allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In-depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing and quantum information processing. However, it is a considerable challenge to design simple analogues of the Chichibabin hydrocarbon that are chemically inert, exhibit high diradical character and emit light at a distinct wavelength that may offer an optical readout of the spin state in functional ensembles. Here we describe the serendipitous discovery of the stable TTM‐TTM diradicaloid, which exhibits high diradical character, a striking sky‐blue color and near‐infrared (NIR) emission (in solution). This combination of properties is unique among related diradicaloids and is due to the presence of hydrogen and chlorine atoms in “just the right positions”, allowing a perfectly planar, yet predominantly benzenoid bridge to connect the two sterically stabilized radical centers. In‐depth studies of the optical and magnetic properties suggest that this structural motif could become a mainstay building block of organic spin materials.
Author Delius, Max
Arnold, Mona E.
Jelezko, Fedor
Kuehne, Alexander J. C.
Chang, Xingmao
Blinder, Rémi
Zolg, Julia
Slageren, Joris
Wischnat, Jonathan
Author_xml – sequence: 1
  givenname: Xingmao
  orcidid: 0000-0002-0784-3495
  surname: Chang
  fullname: Chang, Xingmao
  organization: Ulm University
– sequence: 2
  givenname: Mona E.
  surname: Arnold
  fullname: Arnold, Mona E.
  organization: Ulm University
– sequence: 3
  givenname: Rémi
  surname: Blinder
  fullname: Blinder, Rémi
  organization: Ulm University
– sequence: 4
  givenname: Julia
  surname: Zolg
  fullname: Zolg, Julia
  organization: Ulm University
– sequence: 5
  givenname: Jonathan
  surname: Wischnat
  fullname: Wischnat, Jonathan
  organization: Universität Stuttgart
– sequence: 6
  givenname: Joris
  orcidid: 0000-0002-0855-8960
  surname: Slageren
  fullname: Slageren, Joris
  organization: Universität Stuttgart
– sequence: 7
  givenname: Fedor
  orcidid: 0000-0001-5759-3917
  surname: Jelezko
  fullname: Jelezko, Fedor
  email: fedor.jelezko@uni-ulm.de
  organization: Ulm University
– sequence: 8
  givenname: Alexander J. C.
  surname: Kuehne
  fullname: Kuehne, Alexander J. C.
  email: alexander.kuehne@uni-ulm.de
  organization: Ulm University
– sequence: 9
  givenname: Max
  orcidid: 0000-0003-1852-2969
  surname: Delius
  fullname: Delius, Max
  email: max.vondelius@uni-ulm.de
  organization: Ulm University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38695271$$D View this record in MEDLINE/PubMed
BookMark eNqFkDFLAzEcR4NUtFZXRzlwcWn9J7lLcpOUWrUgdVDnkFxyNHK9q8mV4uZH8DP6SUxprSCIUzK8l_x4R6hTN7VF6BTDAAOQS1U7OyBAUkhFRvdQF2cE9ynntBPvKaV9LjJ8iI5CeIm8EMAO0CEVLM8Ix110NUweW6Urm4xmrpg5rbSrk2vnlXGFqhpnkpVrZ8nUKv_5_jGpS6-8Ncl47kJwTX2M9ktVBXuyPXvo-Wb8NLrr3z_cTkbD-36R4jhCWabLVDPIAZQVXGMVdxlDmQLgrDTagi5ZjpnOjABMDNHE5lyDYEBNQXvoYvPuwjevSxtaGQcUtqpUbZtlkBQywDwVQCJ6_gt9aZa-jusixRkTWcpFpM621FLPrZEL7-bKv8nvNBEYbIDCNyF4W-4QDHLdXq7by137KKS_hMK1qo2RWq9c9beWb7SVq-zbP5_I4XQy_nG_AMYkl3c
CitedBy_id crossref_primary_10_1021_acsami_5c13020
crossref_primary_10_1016_j_chempr_2025_102621
crossref_primary_10_1002_anie_202512691
crossref_primary_10_1021_jacs_4c08876
crossref_primary_10_1002_anie_202414406
crossref_primary_10_1002_anie_202424128
crossref_primary_10_1038_s41467_025_59317_w
crossref_primary_10_3762_bjoc_21_80
crossref_primary_10_1002_ange_202414406
crossref_primary_10_1021_acs_jpclett_5c02104
crossref_primary_10_1038_s41557_025_01875_z
crossref_primary_10_1016_j_chempr_2025_102628
crossref_primary_10_1002_adma_202511877
crossref_primary_10_1038_s41377_025_01993_w
crossref_primary_10_1021_acscentsci_4c01632
crossref_primary_10_1002_chem_202500749
crossref_primary_10_1002_ange_202424128
crossref_primary_10_1002_cplu_202500033
crossref_primary_10_3390_molecules30061191
crossref_primary_10_1039_D5CC01805F
crossref_primary_10_1039_D5QM00328H
crossref_primary_10_1002_ange_202512691
crossref_primary_10_1021_jacs_5c02672
crossref_primary_10_3390_chemistry7010021
crossref_primary_10_1039_D5SC03673A
crossref_primary_10_1002_agt2_70100
crossref_primary_10_1021_jacs_4c08167
crossref_primary_10_1021_jacs_4c11549
crossref_primary_10_1002_chem_202403372
Cites_doi 10.1021/jacs.2c09637
10.1002/cber.19070400282
10.1038/s41467-021-21885-y
10.1021/jacs.0c12624
10.1021/jacs.3c01076
10.1038/s41467-022-29759-7
10.1002/wcms.81
10.1002/anie.201711031
10.1039/C8SC01209A
10.1021/jacs.5b03805
10.1039/C1CS15165G
10.1016/j.chempr.2020.09.024
10.1039/D2CC00352J
10.1039/C8SC01999A
10.1039/D3SC02341A
10.1021/ja00089a009
10.1002/anie.202209138
10.1039/D1TC05268C
10.1002/jcc.21759
10.1039/D3CC05706B
10.1039/b515623h
10.1021/jacs.3c05009
10.1002/anie.202300772
10.1016/j.jmr.2005.08.013
10.1021/acs.joc.3c00482
10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-D
10.1021/acs.chemrev.3c00406
10.1039/D3QM00666B
10.1002/anie.202309238
10.1039/D2CC04481A
10.1021/jacs.3c05251
10.1021/jacs.1c01620
10.1002/anie.202107855
10.1021/jacs.6b02888
10.1039/D1TC02196F
10.1038/s41557-023-01341-8
10.31635/ccschem.021.202101513
10.1002/wcms.1606
10.1002/anie.202302550
10.1002/anie.201915802
10.1107/S0108767307043930
10.1021/jacs.8b05465
10.1021/ja00279a056
10.1021/jacs.2c09241
10.1021/acs.accounts.7b00004
10.1063/1.3382344
10.1016/j.xcrp.2022.100858
10.1002/anie.202100655
10.1002/anie.202314900
10.1039/D2TC03299F
10.1039/C7SC04034B
10.1021/jacs.0c13310
10.1007/BF01481380
10.1002/tcr.201600094
10.1021/jacs.1c08262
10.1039/D3SC00102D
10.1039/D1SC04486A
10.1016/S0040-4039(00)78264-5
10.1021/ed085p532
10.1007/978-94-009-4746-7_11
10.1038/s41467-023-40990-8
10.1063/1.1928233
10.1002/anie.201713346
10.1038/s44160-023-00348-w
10.1063/1.1385558
10.1002/cber.19040370245
10.1039/C4CP03522D
10.1021/jacs.3c03928
10.1038/s41586-023-06222-1
10.1002/adma.202302114
10.1038/nchem.2518
10.1038/nchem.1013
10.1016/j.dyepig.2022.110863
10.1021/jacs.0c04876
10.1038/s41570-022-00453-y
10.1039/C5CS00933B
10.1021/jo00018a046
10.1039/b508541a
10.1107/S0021889808042726
10.1107/S2053229614024218
10.1002/chem.202302943
10.1021/j100306a023
10.1002/anie.201502657
10.1021/j100632a003
10.31635/ccschem.021.202000737
10.1039/C5SC00652J
10.1103/RevModPhys.25.269
10.1021/acs.chemrev.3c00613
10.1016/0009-2614(75)80169-2
10.1002/anie.202302835
10.1021/jacs.2c02318
10.1021/jacs.7b11183
10.1021/ja3050579
10.1002/anie.201507961
10.1063/5.0004608
10.1021/jacs.3c00306
10.1002/anie.201709537
10.1063/1.3484283
10.1038/s41557-019-0399-2
10.1002/anie.201500242
10.1021/ja00220a052
10.1039/D1SC01618K
ContentType Journal Article
Copyright 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202404853
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library : Open Access journals [open access]
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 38695271
10_1002_anie_202404853
ANIE202404853
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: H2020 European Research Council
  funderid: 856432; FLORIN; QuMicro
– fundername: Fonds der Chemischen Industrie
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 856432
– fundername: Alexander von Humboldt-Stiftung
– fundername: Carl-Zeiss-Stiftung
  funderid: IQST, QPhoton, Ultrasens-Vir
– fundername: H2020 European Research Council
  grantid: FLORIN
– fundername: H2020 European Research Council
  grantid: 856432
– fundername: Carl-Zeiss-Stiftung
  grantid: IQST, QPhoton, Ultrasens-Vir
– fundername: Deutsche Forschungsgemeinschaft
  grantid: 856432
– fundername: H2020 European Research Council
  grantid: QuMicro
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
ABUFD
AEYWJ
AGHNM
AGYGG
CITATION
O8X
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4133-ae6bf4b60900ae87b1a785dd36a0076fdbe0bf6916b5d8012d2b2e97b08603dc3
IEDL.DBID 24P
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265568500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 11:14:22 EDT 2025
Tue Oct 07 07:41:25 EDT 2025
Mon Jul 21 06:02:29 EDT 2025
Sat Nov 29 03:04:19 EST 2025
Tue Nov 18 22:38:38 EST 2025
Wed Jan 22 17:18:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords NIR emission
conjugated materials
stable diradicaloid
EPR spectroscopy
radical chemistry
Language English
License Attribution
2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4133-ae6bf4b60900ae87b1a785dd36a0076fdbe0bf6916b5d8012d2b2e97b08603dc3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0855-8960
0000-0001-5759-3917
0000-0002-0784-3495
0000-0003-1852-2969
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202404853
PMID 38695271
PQID 3076685478
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_3050174802
proquest_journals_3076685478
pubmed_primary_38695271
crossref_primary_10_1002_anie_202404853
crossref_citationtrail_10_1002_anie_202404853
wiley_primary_10_1002_anie_202404853_ANIE202404853
PublicationCentury 2000
PublicationDate July 15, 2024
PublicationDateYYYYMMDD 2024-07-15
PublicationDate_xml – month: 07
  year: 2024
  text: July 15, 2024
  day: 15
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023; 35
2009; 42
1991; 56
2015; 71
2006; 35
2023; 7
2023; 145
2020; 59
2024; 30
2023; 620
2020; 12
2023; 2
2024
2006; 178
2018; 47
2023; 62
2018; 9
1986; 108
2012; 134
1904; 37
2015; 137
1986
1994; 35
1940; 28
2008; 64
1953; 25
1988
2021; 9
2021; 7
1994; 116
2015; 17
2015; 6
2023; 14
2018; 140
2011; 2
1973; 77
2023; 15
2020; 142
1987; 91
2023; 123
2024; 60
2015; 54
2006; 8
2011; 32
2023; 208
2024; 124
1975; 33
1907; 40
2021; 143
2011; 3
2016; 55
2022; 144
2017; 50
2021; 12
2023; 88
2023
2022; 3
2022; 4
2020; 152
2017; 17
2022; 61
2002; 23
2017; 56
2010; 132
2022; 12
2022; 13
2010; 133
2022; 58
2005; 7
2016; 138
2022; 10
2008; 85
2021; 60
2016; 8
2001; 115
2012; 41
2018; 57
e_1_2_3_50_2
e_1_2_3_92_2
e_1_2_3_114_2
e_1_2_3_110_2
e_1_2_3_16_2
e_1_2_3_4_1
e_1_2_3_39_2
e_1_2_3_8_2
e_1_2_3_12_2
e_1_2_3_58_2
e_1_2_3_77_2
e_1_2_3_35_2
e_1_2_3_118_2
e_1_2_3_54_2
e_1_2_3_73_2
e_1_2_3_31_2
e_1_2_3_96_1
e_1_2_3_102_1
e_1_2_3_121_2
e_1_2_3_28_2
e_1_2_3_47_2
e_1_2_3_66_2
e_1_2_3_89_1
e_1_2_3_106_2
e_1_2_3_20_2
e_1_2_3_43_2
e_1_2_3_62_2
e_1_2_3_85_2
e_1_2_3_72_2
e_1_2_3_91_2
Zhang Z. (e_1_2_3_95_2) 2024
Shi Y. (e_1_2_3_37_2) 2024
e_1_2_3_115_2
e_1_2_3_15_2
e_1_2_3_111_2
e_1_2_3_3_2
e_1_2_3_19_1
e_1_2_3_11_2
e_1_2_3_34_2
Rosenboom J. (e_1_2_3_81_2) 2023
e_1_2_3_7_1
e_1_2_3_57_2
e_1_2_3_99_1
e_1_2_3_30_2
e_1_2_3_76_2
e_1_2_3_119_2
e_1_2_3_53_2
e_1_2_3_84_1
e_1_2_3_61_2
e_1_2_3_80_2
Shimizu D. (e_1_2_3_87_2) 2024
e_1_2_3_103_1
e_1_2_3_27_2
e_1_2_3_122_2
e_1_2_3_23_2
e_1_2_3_69_2
e_1_2_3_46_2
e_1_2_3_42_1
e_1_2_3_88_1
e_1_2_3_65_2
e_1_2_3_107_2
e_1_2_3_71_2
e_1_2_3_94_2
e_1_2_3_90_1
e_1_2_3_112_2
e_1_2_3_2_2
e_1_2_3_18_2
e_1_2_3_56_2
e_1_2_3_79_2
e_1_2_3_33_2
e_1_2_3_6_2
e_1_2_3_14_2
e_1_2_3_75_2
e_1_2_3_52_1
e_1_2_3_98_1
e_1_2_3_116_2
e_1_2_3_10_2
e_1_2_3_60_2
e_1_2_3_83_2
e_1_2_3_104_1
e_1_2_3_26_2
e_1_2_3_49_2
e_1_2_3_100_2
e_1_2_3_22_2
e_1_2_3_68_2
e_1_2_3_45_1
e_1_2_3_41_2
e_1_2_3_64_2
e_1_2_3_108_2
e_1_2_3_93_1
e_1_2_3_70_2
e_1_2_3_1_1
e_1_2_3_113_2
e_1_2_3_5_2
e_1_2_3_17_2
e_1_2_3_59_2
e_1_2_3_9_2
e_1_2_3_55_2
e_1_2_3_13_2
e_1_2_3_36_2
e_1_2_3_78_2
e_1_2_3_51_2
e_1_2_3_32_2
e_1_2_3_97_1
e_1_2_3_74_2
e_1_2_3_117_2
e_1_2_3_82_2
Xu X. (e_1_2_3_24_2) 2023
e_1_2_3_101_2
e_1_2_3_48_2
e_1_2_3_29_2
e_1_2_3_120_2
Arnold M. (e_1_2_3_123_2) 2024
e_1_2_3_44_2
e_1_2_3_109_2
Wu H. (e_1_2_3_38_2) 2024
e_1_2_3_25_2
e_1_2_3_67_2
e_1_2_3_40_2
e_1_2_3_86_2
e_1_2_3_105_2
e_1_2_3_21_2
e_1_2_3_63_2
References_xml – volume: 4
  start-page: 3190
  year: 2022
  end-page: 3203
  publication-title: CCS Chem.
– volume: 58
  start-page: 3019
  year: 2022
  end-page: 3022
  publication-title: Chem. Commun.
– volume: 57
  start-page: 749
  year: 2018
  end-page: 754
  publication-title: Angew. Chem. Int. Ed.
– volume: 91
  start-page: 5608
  year: 1987
  end-page: 5616
  publication-title: J. Phys. Chem.
– volume: 23
  start-page: 227
  year: 2002
  end-page: 246
  publication-title: Macromol. Rapid Commun.
– volume: 88
  start-page: 8553
  year: 2023
  end-page: 8562
  publication-title: J. Org. Chem.
– volume: 32
  start-page: 1456
  year: 2011
  end-page: 1465
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 4970
  year: 2018
  end-page: 4976
  publication-title: Chem. Sci.
– volume: 3
  year: 2022
  publication-title: Cell Rep. Phy. Sci.
– volume: 56
  start-page: 5445
  year: 1991
  end-page: 5448
  publication-title: J. Org. Chem.
– volume: 85
  start-page: 532
  year: 2008
  end-page: 536
  publication-title: J. Chem. Educ.
– volume: 10
  start-page: 14116
  year: 2022
  end-page: 14121
  publication-title: J. Mater. Chem. C
– volume: 144
  start-page: 19576
  year: 2022
  end-page: 19591
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 501
  year: 2018
  end-page: 513
  publication-title: Chem. Soc. Rev.
– start-page: 155
  year: 1986
  end-page: 184
– volume: 123
  start-page: 11954
  year: 2023
  end-page: 12003
  publication-title: Chem. Rev.
– volume: 12
  start-page: 13648
  year: 2021
  end-page: 13663
  publication-title: Chem. Sci.
– volume: 140
  start-page: 2546
  year: 2018
  end-page: 2554
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 722
  year: 2022
  end-page: 731
  publication-title: CCS Chem.
– volume: 8
  start-page: 1057
  year: 2006
  end-page: 1065
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 1104
  year: 2023
  end-page: 1115
  publication-title: Nat. Syn.
– volume: 9
  start-page: 6107
  year: 2018
  end-page: 6117
  publication-title: Chem. Sci.
– volume: 124
  start-page: 1034
  year: 2024
  end-page: 1121
  publication-title: Chem. Rev.
– volume: 59
  start-page: 6729
  year: 2020
  end-page: 6734
  publication-title: Angew. Chem. Int. Ed.
– volume: 152
  year: 2020
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 288
  year: 2021
  end-page: 332
  publication-title: Chem
– volume: 64
  start-page: 112
  year: 2008
  end-page: 122
  publication-title: Acta Crystallogr. Sect. A
– volume: 6
  start-page: 3402
  year: 2015
  end-page: 3409
  publication-title: Chem. Sci.
– volume: 14
  start-page: 5248
  year: 2023
  publication-title: Nat. Commun.
– volume: 9
  start-page: 10610
  year: 2021
  end-page: 10623
  publication-title: J. Mater. Chem. C
– volume: 145
  start-page: 14484
  year: 2023
  end-page: 14497
  publication-title: J. Am. Chem. Soc.
– year: 2024
  publication-title: ACS Cent. Sci.
– volume: 143
  start-page: 7050
  year: 2021
  end-page: 7058
  publication-title: J. Am. Chem. Soc.
– volume: 178
  start-page: 42
  year: 2006
  end-page: 55
  publication-title: J. Magn. Reson.
– volume: 143
  start-page: 3687
  year: 2021
  end-page: 3692
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 359
  year: 2011
  end-page: 364
  publication-title: Nat. Chem.
– volume: 14
  start-page: 12264
  year: 2023
  end-page: 12276
  publication-title: Chem. Sci.
– volume: 143
  start-page: 17690
  year: 2021
  end-page: 17700
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 15702
  year: 2023
  end-page: 15707
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 10839
  year: 2018
  end-page: 10847
  publication-title: J. Am. Chem. Soc.
– volume: 35
  year: 2023
  publication-title: Adv. Mater.
– volume: 37
  start-page: 1463
  year: 1904
  end-page: 1470
  publication-title: Chem. Ber.
– volume: 142
  start-page: 12730
  year: 2020
  end-page: 12742
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 5838
  year: 2018
  end-page: 5842
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 983
  year: 2015
  end-page: 991
  publication-title: Phys. Chem. Chem. Phys.
– volume: 60
  start-page: 22385
  year: 2021
  end-page: 22392
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 73
  year: 2011
  end-page: 78
  publication-title: WIREs Comput. Mol. Sci.
– volume: 145
  start-page: 20229
  year: 2023
  end-page: 20241
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 6529
  year: 1994
  end-page: 6532
  publication-title: Tetrahedron Lett.
– volume: 8
  start-page: 753
  year: 2016
  end-page: 759
  publication-title: Nat. Chem.
– volume: 33
  start-page: 330
  year: 1975
  end-page: 335
  publication-title: Chem. Phys. Lett.
– year: 2024
  publication-title: J. Am. Chem. Soc.
– start-page: 4036
  year: 1988
  end-page: 4038
  publication-title: J. Am. Chem. Soc.
– volume: 145
  start-page: 13615
  year: 2023
  end-page: 13622
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 977
  year: 2017
  end-page: 987
  publication-title: Acc. Chem. Res.
– volume: 116
  start-page: 4205
  year: 1994
  end-page: 4210
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 1541
  year: 2023
  end-page: 1548
  publication-title: Nat. Chem.
– volume: 138
  start-page: 11517
  year: 2016
  end-page: 11525
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 339
  year: 2009
  end-page: 341
  publication-title: J. Appl. Crystallogr.
– volume: 41
  start-page: 303
  year: 2012
  end-page: 349
  publication-title: Chem. Soc. Rev.
– volume: 620
  start-page: 538
  year: 2023
  end-page: 544
  publication-title: Nature
– volume: 12
  start-page: 242
  year: 2020
  end-page: 248
  publication-title: Nat. Chem.
– volume: 54
  start-page: 7091
  year: 2015
  end-page: 7095
  publication-title: Angew. Chem. Int. Ed.
– year: 2024
  publication-title: ChemRxiv.
– volume: 108
  start-page: 6004
  year: 1986
  end-page: 6011
  publication-title: J. Am. Chem. Soc.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 4928
  year: 2023
  end-page: 4943
  publication-title: Mater. Chem. Front.
– volume: 145
  start-page: 10092
  year: 2023
  end-page: 10103
  publication-title: J. Am. Chem. Soc.
– volume: 71
  start-page: 3
  year: 2015
  end-page: 8
  publication-title: Acta Crystallogr. Sect. C
– volume: 208
  year: 2023
  publication-title: Dyes Pigm.
– volume: 14
  start-page: 3548
  year: 2023
  end-page: 3553
  publication-title: Chem. Sci.
– volume: 12
  year: 2022
  publication-title: WIREs Comput. Mol. Sci.
– volume: 134
  start-page: 14513
  year: 2012
  end-page: 14525
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 2207
  year: 2001
  end-page: 2211
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 75
  year: 2023
  end-page: 90
  publication-title: Nat. Chem. Rev.
– volume: 55
  start-page: 1183
  year: 2016
  end-page: 1186
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  year: 2010
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 7368
  year: 2022
  end-page: 7403
  publication-title: J. Mater. Chem. C
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Int. Ed.
– volume: 77
  start-page: 1611
  year: 1973
  end-page: 1615
  publication-title: J. Phys. Chem.
– volume: 17
  start-page: 27
  year: 2017
  end-page: 62
  publication-title: Chem. Rec.
– volume: 7
  start-page: 3297
  year: 2005
  end-page: 3305
  publication-title: Phys. Chem. Chem. Phys.
– volume: 40
  start-page: 1810
  year: 1907
  end-page: 1819
  publication-title: Chem. Ber.
– volume: 9
  start-page: 1996
  year: 2018
  end-page: 2007
  publication-title: Chem. Sci.
– volume: 25
  start-page: 269
  year: 1953
  end-page: 276
  publication-title: Rev. Mod. Phys.
– volume: 137
  start-page: 6750
  year: 2015
  end-page: 6753
  publication-title: J. Am. Chem. Soc.
– year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 143
  start-page: 4329
  year: 2021
  end-page: 4338
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1705
  year: 2021
  publication-title: Nat. Commun.
– volume: 56
  start-page: 15383
  year: 2017
  end-page: 15387
  publication-title: Angew. Chem. Int. Ed.
– volume: 54
  start-page: 12442
  year: 2015
  end-page: 12446
  publication-title: Angew. Chem. Int. Ed.
– volume: 144
  start-page: 23448
  year: 2022
  end-page: 23464
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 1
  year: 2006
  end-page: 8
  publication-title: J. Phys. Chem. Ref. Data
– volume: 58
  start-page: 13443
  year: 2022
  end-page: 13446
  publication-title: Chem. Commun.
– volume: 60
  start-page: 252
  year: 2024
  end-page: 264
  publication-title: Chem. Commun.
– volume: 144
  start-page: 7479
  year: 2022
  end-page: 7488
  publication-title: J. Am. Chem. Soc.
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 9852
  year: 2021
  end-page: 9858
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 15151
  year: 2021
  end-page: 15156
  publication-title: Chem. Sci.
– volume: 30
  year: 2024
  publication-title: Chem. Eur. J.
– year: 2023
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 2744
  year: 2022
  publication-title: Nat. Commun.
– volume: 28
  start-page: 189
  year: 1940
  end-page: 190
  publication-title: Naturwissenschaften
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– year: 2024
  ident: e_1_2_3_123_2
  publication-title: ChemRxiv.
– ident: e_1_2_3_76_2
  doi: 10.1021/jacs.2c09637
– ident: e_1_2_3_5_2
  doi: 10.1002/cber.19070400282
– ident: e_1_2_3_18_2
  doi: 10.1038/s41467-021-21885-y
– ident: e_1_2_3_34_2
  doi: 10.1021/jacs.0c12624
– ident: e_1_2_3_60_2
  doi: 10.1021/jacs.3c01076
– ident: e_1_2_3_51_2
  doi: 10.1038/s41467-022-29759-7
– ident: e_1_2_3_118_2
  doi: 10.1002/wcms.81
– ident: e_1_2_3_69_2
  doi: 10.1002/anie.201711031
– ident: e_1_2_3_73_2
  doi: 10.1039/C8SC01209A
– ident: e_1_2_3_64_2
  doi: 10.1021/jacs.5b03805
– year: 2024
  ident: e_1_2_3_95_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_8_2
  doi: 10.1039/C1CS15165G
– ident: e_1_2_3_12_2
  doi: 10.1016/j.chempr.2020.09.024
– ident: e_1_2_3_26_2
  doi: 10.1039/D2CC00352J
– ident: e_1_2_3_71_2
  doi: 10.1039/C8SC01999A
– ident: e_1_2_3_79_2
  doi: 10.1039/D3SC02341A
– ident: e_1_2_3_42_1
– ident: e_1_2_3_53_2
  doi: 10.1021/ja00089a009
– ident: e_1_2_3_40_2
  doi: 10.1002/anie.202209138
– ident: e_1_2_3_14_2
  doi: 10.1039/D1TC05268C
– ident: e_1_2_3_117_2
  doi: 10.1002/jcc.21759
– ident: e_1_2_3_17_2
  doi: 10.1039/D3CC05706B
– ident: e_1_2_3_111_2
  doi: 10.1039/b515623h
– ident: e_1_2_3_23_2
  doi: 10.1021/jacs.3c05009
– ident: e_1_2_3_89_1
– ident: e_1_2_3_57_2
  doi: 10.1002/anie.202300772
– ident: e_1_2_3_110_2
  doi: 10.1016/j.jmr.2005.08.013
– ident: e_1_2_3_77_2
  doi: 10.1021/acs.joc.3c00482
– ident: e_1_2_3_97_1
  doi: 10.1002/1521-3927(20020301)23:4<227::AID-MARC227>3.0.CO;2-D
– ident: e_1_2_3_86_2
  doi: 10.1021/acs.chemrev.3c00406
– ident: e_1_2_3_80_2
  doi: 10.1039/D3QM00666B
– ident: e_1_2_3_39_2
  doi: 10.1002/anie.202309238
– ident: e_1_2_3_48_2
  doi: 10.1039/D2CC04481A
– ident: e_1_2_3_99_1
– ident: e_1_2_3_58_2
  doi: 10.1021/jacs.3c05251
– ident: e_1_2_3_104_1
– year: 2023
  ident: e_1_2_3_24_2
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_3_29_2
  doi: 10.1021/jacs.1c01620
– ident: e_1_2_3_41_2
  doi: 10.1002/anie.202107855
– ident: e_1_2_3_91_2
  doi: 10.1021/jacs.6b02888
– ident: e_1_2_3_63_2
  doi: 10.1039/D1TC02196F
– ident: e_1_2_3_84_1
– ident: e_1_2_3_27_2
  doi: 10.1038/s41557-023-01341-8
– ident: e_1_2_3_59_2
  doi: 10.31635/ccschem.021.202101513
– ident: e_1_2_3_122_2
  doi: 10.1002/wcms.1606
– ident: e_1_2_3_46_2
  doi: 10.1002/anie.202302550
– ident: e_1_2_3_74_2
  doi: 10.1002/anie.201915802
– ident: e_1_2_3_113_2
  doi: 10.1107/S0108767307043930
– ident: e_1_2_3_33_2
  doi: 10.1021/jacs.8b05465
– ident: e_1_2_3_3_2
  doi: 10.1021/ja00279a056
– ident: e_1_2_3_21_2
  doi: 10.1021/jacs.2c09241
– ident: e_1_2_3_45_1
– ident: e_1_2_3_9_2
  doi: 10.1021/acs.accounts.7b00004
– ident: e_1_2_3_115_2
  doi: 10.1063/1.3382344
– ident: e_1_2_3_102_1
  doi: 10.1016/j.xcrp.2022.100858
– ident: e_1_2_3_44_2
  doi: 10.1002/anie.202100655
– ident: e_1_2_3_56_2
  doi: 10.1002/anie.202314900
– year: 2023
  ident: e_1_2_3_81_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_94_2
  doi: 10.1039/D2TC03299F
– ident: e_1_2_3_52_1
– ident: e_1_2_3_50_2
  doi: 10.1039/C7SC04034B
– ident: e_1_2_3_103_1
  doi: 10.1021/jacs.0c13310
– ident: e_1_2_3_93_1
– ident: e_1_2_3_90_1
– ident: e_1_2_3_4_1
– ident: e_1_2_3_6_2
  doi: 10.1007/BF01481380
– ident: e_1_2_3_10_2
  doi: 10.1002/tcr.201600094
– ident: e_1_2_3_75_2
  doi: 10.1021/jacs.1c08262
– ident: e_1_2_3_22_2
  doi: 10.1039/D3SC00102D
– ident: e_1_2_3_20_2
  doi: 10.1039/D1SC04486A
– ident: e_1_2_3_100_2
  doi: 10.1016/S0040-4039(00)78264-5
– ident: e_1_2_3_112_2
  doi: 10.1021/ed085p532
– ident: e_1_2_3_106_2
  doi: 10.1007/978-94-009-4746-7_11
– ident: e_1_2_3_78_2
  doi: 10.1038/s41467-023-40990-8
– ident: e_1_2_3_109_2
  doi: 10.1063/1.1928233
– ident: e_1_2_3_72_2
  doi: 10.1002/anie.201713346
– ident: e_1_2_3_30_2
  doi: 10.1038/s44160-023-00348-w
– year: 2024
  ident: e_1_2_3_87_2
  publication-title: ACS Cent. Sci.
– ident: e_1_2_3_107_2
  doi: 10.1063/1.1385558
– ident: e_1_2_3_2_2
  doi: 10.1002/cber.19040370245
– ident: e_1_2_3_66_2
  doi: 10.1039/C4CP03522D
– ident: e_1_2_3_36_2
  doi: 10.1021/jacs.3c03928
– ident: e_1_2_3_85_2
  doi: 10.1038/s41586-023-06222-1
– ident: e_1_2_3_61_2
  doi: 10.1002/adma.202302114
– ident: e_1_2_3_32_2
  doi: 10.1038/nchem.2518
– ident: e_1_2_3_43_2
  doi: 10.1038/nchem.1013
– ident: e_1_2_3_88_1
  doi: 10.1016/j.dyepig.2022.110863
– ident: e_1_2_3_35_2
  doi: 10.1021/jacs.0c04876
– ident: e_1_2_3_16_2
  doi: 10.1038/s41570-022-00453-y
– ident: e_1_2_3_11_2
  doi: 10.1039/C5CS00933B
– ident: e_1_2_3_19_1
– ident: e_1_2_3_82_2
  doi: 10.1021/jo00018a046
– ident: e_1_2_3_1_1
– ident: e_1_2_3_7_1
– ident: e_1_2_3_108_2
  doi: 10.1039/b508541a
– ident: e_1_2_3_114_2
  doi: 10.1107/S0021889808042726
– ident: e_1_2_3_119_2
  doi: 10.1107/S2053229614024218
– ident: e_1_2_3_83_2
  doi: 10.1002/chem.202302943
– ident: e_1_2_3_92_2
  doi: 10.1021/j100306a023
– ident: e_1_2_3_65_2
  doi: 10.1002/anie.201502657
– ident: e_1_2_3_98_1
  doi: 10.1021/j100632a003
– ident: e_1_2_3_49_2
  doi: 10.31635/ccschem.021.202000737
– ident: e_1_2_3_67_2
  doi: 10.1039/C5SC00652J
– ident: e_1_2_3_96_1
  doi: 10.1103/RevModPhys.25.269
– ident: e_1_2_3_15_2
  doi: 10.1021/acs.chemrev.3c00613
– ident: e_1_2_3_105_2
  doi: 10.1016/0009-2614(75)80169-2
– ident: e_1_2_3_62_2
  doi: 10.1002/anie.202302835
– ident: e_1_2_3_121_2
– year: 2024
  ident: e_1_2_3_38_2
  publication-title: J. Am. Chem. Soc.
– year: 2024
  ident: e_1_2_3_37_2
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_3_55_2
  doi: 10.1021/jacs.2c02318
– ident: e_1_2_3_70_2
  doi: 10.1021/jacs.7b11183
– ident: e_1_2_3_54_2
  doi: 10.1021/ja3050579
– ident: e_1_2_3_68_2
  doi: 10.1002/anie.201507961
– ident: e_1_2_3_120_2
  doi: 10.1063/5.0004608
– ident: e_1_2_3_25_2
  doi: 10.1021/jacs.3c00306
– ident: e_1_2_3_31_2
  doi: 10.1002/anie.201709537
– ident: e_1_2_3_116_2
  doi: 10.1063/1.3484283
– ident: e_1_2_3_28_2
  doi: 10.1038/s41557-019-0399-2
– ident: e_1_2_3_47_2
  doi: 10.1002/anie.201500242
– ident: e_1_2_3_101_2
  doi: 10.1021/ja00220a052
– ident: e_1_2_3_13_2
  doi: 10.1039/D1SC01618K
SSID ssj0028806
Score 2.5972142
Snippet Conjugated molecules with multiple radical centers such as the iconic Chichibabin diradicaloid hold promise as building blocks in materials for quantum sensing...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202404853
SubjectTerms Chlorine
conjugated materials
Data processing
Emissions
EPR spectroscopy
Information processing
Magnetic properties
Near infrared radiation
NIR emission
Optical properties
Quantum phenomena
radical chemistry
stable diradicaloid
Title A Stable Chichibabin Diradicaloid with Near‐Infrared Emission
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202404853
https://www.ncbi.nlm.nih.gov/pubmed/38695271
https://www.proquest.com/docview/3076685478
https://www.proquest.com/docview/3050174802
Volume 63
WOSCitedRecordID wos001265568500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1521-3773
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028806
  issn: 1433-7851
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS-wwFD64gb643OtSNyoI9ymYJl3SJxl0BgUZRBTmrSRpigNDR2bUZ3-Cv9Ff4jntTHW4iKAvpaVJG05y9uQ7AMeJ5iYtbMLSVGsWBjpkyhrNbOBIQWjjVF4Vm0i6XdXrpdefTvHX-BBNwI04o5LXxODajE8-QEPpBDb6d6iRQlQ587AYBFJR8QYRXjcuF67O-nyRlIzK0E9hG7k4me0_q5b-szVnTddK93TWfj_qdVid2J1-q14oGzDnyj-wfDYt9_YXTls-Gp5m4HzanXHfNxp9Zh8loq4yOcN-7lPM1u8ia7y9vF6WxYj2rvtt_ABF3DbhrtO-Pbtgk-oKzKLikky72BShiXnKuXYqMYFGCuW5jDWl54rcOG6KGM1HE-Wkx3JhhEsTg04Ql7mVW7BQDku3A75KCQdOuNhadGeE1CEvokI5aSwhAGgP2JS4mZ1Aj1MFjEFWgyaLjMiSNWTx4F_T_qEG3fiy5f50rrIJ840zFFtxrAiozIOj5jVSg3IhunTDJ2oToSwKFRcebNdz3PxKqjiNRBJ4IKqp_GYMWat72W6edn_SaQ9W6J5ixkG0DwuPoyd3AEv2-bE_Hh1WSxqvSU8dwuL5Tefu6h2J8fcR
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7STSG5NOnbzaZ1odCTiCz5IZ_KEjbskq3JYQO5GUmW6ULwln3k3J-Q35hf0hnb67CEEAg52pZtMZrRNzOSvgH4kWhu0tImLE21ZmGgQ6as0cwGjgBCG6eKuthEkmXq6iq9aHcT0lmYhh-iS7iRZdTzNRk4JaRP7llD6Qg2BngISSFizivYDRFqSNVFeNHFXKiezQEjKRnVod_wNnJxsv3-Ni49cDa3fdcafM4OXqDbh_Cm9Tz9QaMqb2HHVe9g73RT8O09_Br46Hqaa-fT_ow_M6MxavZxTtT1Ws58VviUtfUzNI67f7fjqlzQ7nV_iB-gnNsHuDwbTk9HrK2vwCxCl2TaxaYMTcxTzrVTiQk0iqgoZKxpga4sjOOmjNGBNFFBSFYII1yaGAyDuCys_Ai9al65z-CrlJjghIutxYBGSB3yMiqVk8YSB4D2gG2km9uWfJxqYFznDW2yyEkseScWD3527f82tBuPtuxvBitvzW-Z48QVx4qoyjz43j1GadBqiK7cfE1tIpyNQsWFB5-aQe5-JVWcRiIJPBD1WD7Rh3yQjYfd1ZfnvPQN9kbT35N8Ms7Oj2Cf7lMGOYj60Fst1u4YXtub1Wy5-Frr93_EHPh0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6aTUh7aZukD7dp6kAgJ7Gy5Id8KkuyS5cEE0ICuRm9TBaCN2we5_yE_sb-ks7YXpcllELp0bZsi5FmvpmR9A3AQaa5ySubsTzXmsWRjpmyRjMbeQIIbbxyTbGJrCjU1VV-1u0mpLMwLT9En3AjzWjsNSm4v3XV8DdrKB3BxgAPISlGzFmD9ZgqyQxg_fh8cnnaR104QdsjRlIyqkS_ZG7kYrj6hVVkeuZurnqvDfxM3vyHjr-F153vGY7aybIFL3y9DS-PliXfduDbKETn09z4kHZoXM-Mxrg5RKuom9Wc-cyFlLcNC1SPn08_pnW1oP3r4Rg_QFm3d3A5GV8cfWddhQVmEbwk0z41VWxSnnOuvcpMpFFEzslU0xJd5YznpkrRhTSJIyxzwgifZwYDIS6dle9hUM9r_xFClRMXnPCptRjSCKljXiWV8tJYYgHQAbCldEvb0Y9TFYybsiVOFiWJpezFEsBh3_62Jd74Y8vd5WCVnQLelWi60lQRWVkA-_1jlAath-jazx-oTYL2KFZcBPChHeT-V1KleSKyKADRjOVf-lCOium4v_r0Ly99hc2z40l5Oi1OPsMruk0p5CjZhcH94sF_gQ37eD-7W-x1E_wX8WL5ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Stable+Chichibabin+Diradicaloid+with+Near-Infrared+Emission&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Chang%2C+Xingmao&rft.au=Arnold%2C+Mona+E&rft.au=Blinder%2C+R%C3%A9mi&rft.au=Zolg%2C+Julia&rft.date=2024-07-15&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=63&rft.issue=29&rft.spage=e202404853&rft_id=info:doi/10.1002%2Fanie.202404853&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon