Optimal power flow analysis considering renewable energy resources uncertainty based on an improved wild horse optimizer

In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IET generation, transmission & distribution Ročník 17; číslo 16; s. 3582 - 3606
Hlavní autoři: Hassan, Mohamed H., Kamel, Salah, Hussien, Abdelazim G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Wiley 01.08.2023
Témata:
ISSN:1751-8687, 1751-8695, 1751-8695
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow (OPF) problem for conventional power generation with RES integration is highly complex, non‐linear, and non‐convex, and this complexity is further compounded when stochastic RES is integrated into the network. To address this problem, this article proposes an elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES. This approach provides a practical solution to the challenges posed by the integration of RES into power networks, allowing for maximum energy efficiency while minimizing system complexity. An elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES.
AbstractList In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow (OPF) problem for conventional power generation with RES integration is highly complex, non‐linear, and non‐convex, and this complexity is further compounded when stochastic RES is integrated into the network. To address this problem, this article proposes an elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES. This approach provides a practical solution to the challenges posed by the integration of RES into power networks, allowing for maximum energy efficiency while minimizing system complexity. An elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES.
In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow (OPF) problem for conventional power generation with RES integration is highly complex, non-linear, and non-convex, and this complexity is further compounded when stochastic RES is integrated into the network. To address this problem, this article proposes an elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed techniques effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE-30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES. This approach provides a practical solution to the challenges posed by the integration of RES into power networks, allowing for maximum energy efficiency while minimizing system complexity.
Abstract In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow (OPF) problem for conventional power generation with RES integration is highly complex, non‐linear, and non‐convex, and this complexity is further compounded when stochastic RES is integrated into the network. To address this problem, this article proposes an elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES. This approach provides a practical solution to the challenges posed by the integration of RES into power networks, allowing for maximum energy efficiency while minimizing system complexity.
In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources (RES). The goal is to increase the penetration level of RES in the power grid to maximize energy efficiency. However, the optimal power flow (OPF) problem for conventional power generation with RES integration is highly complex, non‐linear, and non‐convex, and this complexity is further compounded when stochastic RES is integrated into the network. To address this problem, this article proposes an elite evolutionary strategy (EES) based on evolutionary approaches to improve the Wild Horse Optimizer (WHO), creating an enhanced hybrid technique called EESWHO. The proposed technique's effectiveness and robustness were tested on 23 numerical optimization test functions, including seven unimodal, six multimodal, and ten composite test functions. Furthermore, the EESWHO was applied to the modified IEEE‐30 bus test system to demonstrate its supremacy and efficacy in achieving the optimal solution. The simulation results show that the proposed EESWHO algorithm is highly effective and robust in achieving the optimal solution to the OPF problem with stochastic RES. This approach provides a practical solution to the challenges posed by the integration of RES into power networks, allowing for maximum energy efficiency while minimizing system complexity.
Author Kamel, Salah
Hussien, Abdelazim G.
Hassan, Mohamed H.
Author_xml – sequence: 1
  givenname: Mohamed H.
  surname: Hassan
  fullname: Hassan, Mohamed H.
  organization: Ministry of Electricity and Renewable Energy
– sequence: 2
  givenname: Salah
  orcidid: 0000-0001-9505-5386
  surname: Kamel
  fullname: Kamel, Salah
  organization: Aswan University
– sequence: 3
  givenname: Abdelazim G.
  orcidid: 0000-0001-5394-0678
  surname: Hussien
  fullname: Hussien, Abdelazim G.
  email: abdelazim.hussien@liu.se
  organization: Middle East University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196780$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNp9kUFv1DAQhS1UJNrChV_gM1KKncROfKxaKJUq9VK4WvZ4srhK7cjOEtJfj3cDSCDEyePRe99o5p2RkxADEvKWswvOWvV-N7v6gteKsRfklHeCV71U4uR33XevyFnOj4wJIdvulHy_n2b_ZEY6xQUTHca4UBPMuGafKcSQvcPkw44mDLgYOyItRdqtpZHjPgFmug-AaTY-zCu1JqOjMRQI9U9Tit_Kd_Gjo19jykjjYZx_xvSavBzMmPHNz_ecfP744eHqU3V3f3N7dXlXQcsbVtVD0wyGS4YcamFAIqreQgtoOyecMZb3goNhqhGDtIJZNbRKoAAGrJd1c05uN66L5lFPqSybVh2N18dGTDtt0uxhRA3YgJSDAyNsqxxTUlghFG86BMtcW1jVxsoLTnv7B-3af7k80ka_11zJrmdFzzY9pJhzwkGDn83sY5iT8aPmTB9S04fU9DG1Ynn3l-XXkH-K-SYuB8b1P0p983Bdb54f6fWt6A
CitedBy_id crossref_primary_10_1049_rpg2_12874
crossref_primary_10_3390_electricity5040035
crossref_primary_10_1016_j_est_2025_115653
crossref_primary_10_1109_ACCESS_2024_3406632
crossref_primary_10_1109_ACCESS_2024_3425754
crossref_primary_10_1007_s40974_024_00337_5
crossref_primary_10_3390_en17236087
crossref_primary_10_1016_j_apenergy_2024_123499
crossref_primary_10_3390_app14020556
crossref_primary_10_1016_j_rineng_2025_104553
crossref_primary_10_3390_pr13030676
crossref_primary_10_1109_ACCESS_2024_3496123
crossref_primary_10_1109_ACCESS_2023_3328958
crossref_primary_10_1016_j_ijepes_2023_109585
crossref_primary_10_1177_0309524X241229206
crossref_primary_10_1109_ACCESS_2024_3430862
Cites_doi 10.1016/j.energy.2019.04.159
10.1016/j.asoc.2016.05.027
10.3390/su14042305
10.1007/s12667-016-0206-8
10.1016/j.jclepro.2020.120419
10.1016/j.aej.2023.02.023
10.1016/j.energy.2017.03.046
10.1007/s00500-021-06401-0
10.1109/TPWRS.1986.4334951
10.1016/j.eswa.2020.114529
10.1109/ACCESS.2020.3015473
10.3390/app11156883
10.3389/fenrg.2022.921936
10.1016/j.renene.2015.06.011
10.1016/j.rico.2022.100187
10.1049/gtd2.12738
10.1109/59.193826
10.1007/s10489-022-03796-7
10.3390/math10081311
10.3390/su10061822
10.1109/ACCESS.2021.3133286
10.1007/s00542-020-05046-7
10.1002/er.7928
10.1109/TPAS.1984.318568
10.3390/math10030361
10.1016/j.engappai.2022.105082
10.1109/ACCESS.2021.3097006
10.1109/ACCESS.2021.3056423
10.1080/23080477.2021.1964692
10.1016/j.eswa.2022.116516
10.1016/j.eswa.2021.115079
10.1016/j.engappai.2017.10.019
10.1016/j.epsr.2014.03.032
10.1007/s00366-021-01438-z
10.1016/j.cma.2021.114194
10.1016/j.renene.2015.04.034
10.1016/j.enconman.2017.06.071
10.1016/j.asoc.2016.01.041
10.1109/ACCESS.2019.2909561
10.1023/B:OPTE.0000005390.63406.1e
10.1109/ACCESS.2019.2943480
10.3390/su14106049
10.1007/s10115-020-01503-x
ContentType Journal Article
Copyright 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.1049/gtd2.12900
DatabaseName Wiley Online Library Open Access
CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8695
EndPage 3606
ExternalDocumentID oai_doaj_org_article_ce3c66fdca5b49d0965b559137ecb0d4
oai_DiVA_org_liu_196780
10_1049_gtd2_12900
GTD212900
Genre article
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
4.4
4IJ
6IK
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACIWK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IGS
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
AAYXX
AFFHD
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c4130-2f33fa160e1c25ac6ee98bc4ceb7d5daab1851ca0935f6b50b9f495e5c0c08623
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001016076700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8687
1751-8695
IngestDate Mon Nov 10 04:35:40 EST 2025
Tue Nov 04 17:19:52 EST 2025
Wed Oct 29 21:23:56 EDT 2025
Tue Nov 18 20:39:33 EST 2025
Wed Jan 22 16:17:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords elite evolutionary strategy
optimal power flow
wild horse optimizer algorithm
stochastic renewable energy sources
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4130-2f33fa160e1c25ac6ee98bc4ceb7d5daab1851ca0935f6b50b9f495e5c0c08623
ORCID 0000-0001-9505-5386
0000-0001-5394-0678
OpenAccessLink https://doaj.org/article/ce3c66fdca5b49d0965b559137ecb0d4
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_ce3c66fdca5b49d0965b559137ecb0d4
swepub_primary_oai_DiVA_org_liu_196780
crossref_citationtrail_10_1049_gtd2_12900
crossref_primary_10_1049_gtd2_12900
wiley_primary_10_1049_gtd2_12900_GTD212900
PublicationCentury 2000
PublicationDate August 2023
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle IET generation, transmission & distribution
PublicationYear 2023
Publisher Wiley
Publisher_xml – name: Wiley
References 2023; 53
2021; 9
2019; 7
2023; 10
2021; 27
1989; 4
2022; 195
2023; 17
2020; 62
2022; 46
2021; 181
2022; 26
2014; 114
1984; PAS‐103
2022; 114
2018; 68
2020; 8
1986; 1
2016; 7
2023; 69
2021; 11
2020; 30
2015; 83
2021; 171
2016; 42
2003; 4
2022; 14
2022; 10
2020; 256
2018; 10
2022; 38
2017; 148
2019; 178
2017; 127
2016; 46
2022; 388
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_25_1
e_1_2_12_26_1
Duman S. (e_1_2_12_36_1) 2020; 30
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 388
  year: 2022
  article-title: Artificial hummingbird algorithm: A new bio‐inspired optimizer with its engineering applications
  publication-title: Comput. Methods Appl. Mech. Eng
– volume: 178
  start-page: 598
  year: 2019
  end-page: 609
  article-title: Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement
  publication-title: Energy
– volume: 14
  start-page: 2305
  issue: 4
  year: 2022
  article-title: ESMA‐OPF: Enhanced Slime Mould Algorithm for Solving Optimal Power Flow Problem
  publication-title: Sustainability
– volume: 9
  start-page: 162059
  year: 2021
  end-page: 162080
  article-title: Northern goshawk optimization: A new swarm‐based algorithm for solving optimization problems
  publication-title: IEEE Access
– volume: 42
  start-page: 119
  year: 2016
  end-page: 131
  article-title: Optimal power flow using an improved colliding bodies optimization algorithm
  publication-title: Appl. Soft Comput
– volume: 17
  start-page: 1333
  issue: 6
  year: 2023
  end-page: 1357
  article-title: A reliable optimization framework using ensembled successive history adaptive differential evolutionary algorithm for optimal power flow problems
  publication-title: IET Gener. Transm. Distrib
– volume: 7
  start-page: 139726
  year: 2019
  end-page: 139745
  article-title: Multi‐objective optimal power flow based on hybrid firefly‐bat algorithm and constraints‐ prior object‐fuzzy sorting strategy
  publication-title: IEEE Access
– volume: 10
  year: 2023
  article-title: An application of teaching–learning‐based optimization for solving the optimal power flow problem with stochastic wind and solar power generators
  publication-title: Results Control Optim.
– volume: 9
  start-page: 23264
  year: 2021
  end-page: 23283
  article-title: Optimal reactive power dispatch with time‐varying demand and renewable energy uncertainty using Rao‐3 algorithm
  publication-title: IEEE Access
– volume: 127
  start-page: 756
  year: 2017
  end-page: 767
  article-title: Dynamic optimal power flow of combined heat and power system with Valve‐point effect using Krill Herd algorithm
  publication-title: Energy
– volume: 68
  start-page: 81
  year: 2018
  end-page: 100
  article-title: Optimal power flow solutions using differential evolution algorithm integrated with effective constraint handling techniques
  publication-title: Eng. Appl. Artif. Intell
– volume: 9
  start-page: 100911
  year: 2021
  end-page: 100933
  article-title: Optimal power flow solution based on jellyfish search optimization considering uncertainty of renewable energy sources
  publication-title: IEEE Access
– volume: 7
  start-page: 699
  issue: 4
  year: 2016
  end-page: 721
  article-title: Multiobjective optimal power flow using a fuzzy based grenade explosion method
  publication-title: Energy Syst
– volume: 4
  start-page: 309
  issue: 4
  year: 2003
  end-page: 336
  article-title: A primal‐dual interior‐point method to solve the optimal power flow dispatching problem
  publication-title: Optim. Eng
– volume: 53
  start-page: 7232
  issue: 6
  year: 2023
  end-page: 7253
  article-title: Development and application of equilibrium optimizer for optimal power flow calculation of power system
  publication-title: Appl. Intell
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energy Convers Manage
– volume: 62
  start-page: 4407
  issue: 11
  year: 2020
  end-page: 4444
  article-title: Multi‐objective Bonobo Optimizer (MOBO): An intelligent heuristic for multi‐criteria optimization
  publication-title: Knowl. Inf. Syst
– volume: 181
  year: 2021
  article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl
– volume: 38
  start-page: 3025
  issue: S4
  year: 2022
  end-page: 3056
  article-title: Wild horse optimizer: A new meta‐heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Comput
– volume: 14
  start-page: 6049
  issue: 10
  year: 2022
  article-title: Optimal power flow solution of power systems with renewable energy sources using white sharks algorithm
  publication-title: Sustainability
– volume: 46
  start-page: 11291
  issue: 8
  year: 2022
  end-page: 11325
  article-title: Developing chaotic Bonobo optimizer for optimal power flow analysis considering stochastic renewable energy resources
  publication-title: Int. J. Energy Res.
– volume: 1
  start-page: 31
  issue: 3
  year: 1986
  end-page: 39
  article-title: Sparse reactive power scheduling by a penalty function—Linear programming technique
  publication-title: IEEE Trans. Power Syst
– volume: PAS‐103
  start-page: 3267
  issue: 11
  year: 1984
  end-page: 3275
  article-title: Quadratically convergent optimal power flow
  publication-title: IEEE Trans. Power Appar. Syst
– volume: 10
  year: 2022
  article-title: Optimal power flow of renewable‐integrated power systems using a gaussian bare‐bones levy‐flight firefly algorithm
  publication-title: Front. Energy Res.
– volume: 30
  start-page: 1
  issue: 4
  year: 2020
  end-page: 28
  article-title: Optimal power flow of power systems with controllable wind‐photovoltaic energy systems via differential evolutionary particle swarm optimization
  publication-title: Int. Tran. Electr. Energy Syst
– volume: 7
  start-page: 46763
  year: 2019
  end-page: 46772
  article-title: A solution to the optimal power flow problem considering WT and PV generation
  publication-title: IEEE Access
– volume: 4
  start-page: 530
  issue: 2
  year: 1989
  end-page: 537
  article-title: Hydrothermal optimal power flow based on a combined linear and nonlinear programming methodology
  publication-title: IEEE Trans. Power Syst
– volume: 195
  year: 2022
  article-title: INFO: An efficient optimization algorithm based on weighted mean of vectors
  publication-title: Expert Syst. Appl.
– volume: 114
  year: 2022
  article-title: Artificial rabbits optimization: A new bio‐inspired meta‐heuristic algorithm for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell
– volume: 10
  start-page: 361
  issue: 3
  year: 2022
  article-title: Optimal power flow analysis based on hybrid gradient‐based optimizer with moth–flame optimization algorithm considering optimal placement and sizing of FACTS/wind power
  publication-title: Mathematics
– volume: 171
  year: 2021
  article-title: Memetic Harris Hawks Optimization: Developments and perspectives on project scheduling and QoS‐aware web service composition
  publication-title: Expert Syst. Appl
– volume: 83
  start-page: 188
  year: 2015
  end-page: 202
  article-title: Hybrid flower pollination algorithm with time‐varying fuzzy selection mechanism for wind integrated multi‐objective dynamic economic dispatch
  publication-title: Renewable Energy
– volume: 114
  start-page: 49
  year: 2014
  end-page: 59
  article-title: Optimal power flow using teaching‐learning‐based optimization technique
  publication-title: Electr. Power Syst. Res.
– volume: 83
  start-page: 1215
  year: 2015
  end-page: 1226
  article-title: Real time economic dispatch considering renewable energy resources
  publication-title: Renewable Energy
– volume: 256
  year: 2020
  article-title: Optimized controller for renewable energy sources integration into microgrid: Functions, constraints and suggestions
  publication-title: J. Clean Prod
– volume: 27
  start-page: 3263
  issue: 9
  year: 2021
  end-page: 3277
  article-title: Optimal power flow incorporating stochastic wind and solar generation by metaheuristic optimizers
  publication-title: Microsyst. Technol.
– volume: 26
  start-page: 1279
  issue: 3
  year: 2022
  end-page: 1314
  article-title: Hunter–prey optimization: Algorithm and applications
  publication-title: Soft Comput
– volume: 46
  start-page: 501
  year: 2016
  end-page: 522
  article-title: Security constrained optimal power flow solution using new adaptive partitioning flower pollination algorithm
  publication-title: Appl. Soft Comput
– volume: 10
  start-page: 77
  issue: 2
  year: 2022
  end-page: 117
  article-title: Single‐ and multiobjective optimal power flow with stochastic wind and solar power plants using moth flame optimization algorithm
  publication-title: Smart Sci
– volume: 10
  start-page: 1822
  issue: 6
  year: 2018
  article-title: Opportunities and challenges of solar and wind energy in South Korea: A review
  publication-title: Sustainability
– volume: 10
  start-page: 1311
  issue: 8
  year: 2022
  article-title: An improved wild horse optimizer for solving optimization problems
  publication-title: Mathematics
– volume: 11
  start-page: 6883
  issue: 15
  year: 2021
  article-title: An optimization‐based strategy for solving optimal power flow problems in a power system integrated with stochastic solar and wind power energy
  publication-title: Appl. Sci.
– volume: 69
  start-page: 585
  year: 2023
  end-page: 612
  article-title: Mathematical distribution coyote optimization algorithm with crossover operator to solve optimal power flow problem of power system
  publication-title: Alexandria Eng. J
– volume: 8
  start-page: 148622
  year: 2020
  end-page: 148643
  article-title: Heuristic algorithm based optimal power flow model incorporating stochastic renewable energy sources
  publication-title: IEEE Access
– ident: e_1_2_12_12_1
  doi: 10.1016/j.energy.2019.04.159
– ident: e_1_2_12_42_1
  doi: 10.1016/j.asoc.2016.05.027
– ident: e_1_2_12_16_1
  doi: 10.3390/su14042305
– ident: e_1_2_12_41_1
  doi: 10.1007/s12667-016-0206-8
– ident: e_1_2_12_2_1
  doi: 10.1016/j.jclepro.2020.120419
– ident: e_1_2_12_17_1
  doi: 10.1016/j.aej.2023.02.023
– ident: e_1_2_12_30_1
  doi: 10.1016/j.energy.2017.03.046
– ident: e_1_2_12_25_1
  doi: 10.1007/s00500-021-06401-0
– ident: e_1_2_12_6_1
  doi: 10.1109/TPWRS.1986.4334951
– ident: e_1_2_12_35_1
  doi: 10.1016/j.eswa.2020.114529
– ident: e_1_2_12_31_1
  doi: 10.1109/ACCESS.2020.3015473
– ident: e_1_2_12_37_1
  doi: 10.3390/app11156883
– ident: e_1_2_12_20_1
  doi: 10.3389/fenrg.2022.921936
– ident: e_1_2_12_33_1
  doi: 10.1016/j.renene.2015.06.011
– ident: e_1_2_12_21_1
  doi: 10.1016/j.rico.2022.100187
– ident: e_1_2_12_18_1
  doi: 10.1049/gtd2.12738
– ident: e_1_2_12_7_1
  doi: 10.1109/59.193826
– ident: e_1_2_12_13_1
  doi: 10.1007/s10489-022-03796-7
– ident: e_1_2_12_23_1
  doi: 10.3390/math10081311
– ident: e_1_2_12_4_1
  doi: 10.3390/su10061822
– ident: e_1_2_12_29_1
  doi: 10.1109/ACCESS.2021.3133286
– ident: e_1_2_12_43_1
  doi: 10.1007/s00542-020-05046-7
– ident: e_1_2_12_5_1
  doi: 10.1002/er.7928
– ident: e_1_2_12_8_1
  doi: 10.1109/TPAS.1984.318568
– volume: 30
  start-page: 1
  issue: 4
  year: 2020
  ident: e_1_2_12_36_1
  article-title: Optimal power flow of power systems with controllable wind‐photovoltaic energy systems via differential evolutionary particle swarm optimization
  publication-title: Int. Tran. Electr. Energy Syst
– ident: e_1_2_12_10_1
  doi: 10.3390/math10030361
– ident: e_1_2_12_28_1
  doi: 10.1016/j.engappai.2022.105082
– ident: e_1_2_12_44_1
  doi: 10.1109/ACCESS.2021.3097006
– ident: e_1_2_12_15_1
  doi: 10.1109/ACCESS.2021.3056423
– ident: e_1_2_12_45_1
  doi: 10.1080/23080477.2021.1964692
– ident: e_1_2_12_27_1
  doi: 10.1016/j.eswa.2022.116516
– ident: e_1_2_12_26_1
  doi: 10.1016/j.eswa.2021.115079
– ident: e_1_2_12_39_1
  doi: 10.1016/j.engappai.2017.10.019
– ident: e_1_2_12_11_1
  doi: 10.1016/j.epsr.2014.03.032
– ident: e_1_2_12_22_1
  doi: 10.1007/s00366-021-01438-z
– ident: e_1_2_12_24_1
  doi: 10.1016/j.cma.2021.114194
– ident: e_1_2_12_32_1
  doi: 10.1016/j.renene.2015.04.034
– ident: e_1_2_12_34_1
  doi: 10.1016/j.enconman.2017.06.071
– ident: e_1_2_12_40_1
  doi: 10.1016/j.asoc.2016.01.041
– ident: e_1_2_12_3_1
  doi: 10.1109/ACCESS.2019.2909561
– ident: e_1_2_12_9_1
  doi: 10.1023/B:OPTE.0000005390.63406.1e
– ident: e_1_2_12_14_1
  doi: 10.1109/ACCESS.2019.2943480
– ident: e_1_2_12_19_1
  doi: 10.3390/su14106049
– ident: e_1_2_12_38_1
  doi: 10.1007/s10115-020-01503-x
SSID ssj0055647
Score 2.4647872
Snippet In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy sources...
Abstract In recent years, electricity networks across the globe have undergone rapid development, especially with the incorporation of various renewable energy...
SourceID doaj
swepub
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 3582
SubjectTerms elite evolutionary strategy
optimal power flow
stochastic renewable energy sources
wild horse optimizer algorithm
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQ7QEOLeWhbgvIEggJpEAedh4SFx4FTsABELfIHtsQabtB2eXR_vrOONmFlVClqrckmowtezwv298wtqlVFoc2dIEEBYFAixPolLYQrYC4MFJLk_tiE9n5eX57W1zOsP3xXZgWH2KScKOV4fU1LXCl2yok6NTiJN6NTLxLWRQM2D9EUZKRTMficqyHpUx9eTG0j1GQp3k2BicVxd7rv1PmyKP2TzBDp91Vb29OPv9fTxfYp87P5AetYHxhM3awyObfoA8usZcLVBc_keiBKqVx16-fueowSjh0hTyRkhPq5TNdseLW3xTED23Of8jRKrZnCka_OBlEw-sBMuGVz1XgK_bY8Pu6GVpeU3PVb9sss-uTH1dHZ0FXiCEAsnFB7JLEqSgNbQSxVJBaW-QaBFidGWmU0mj1I1C0qepSLUNdOAy8rIQQKGRKVtjsoB7Yr4wbA07nLrLoLgvpDHpD2oQJEiYyQzY9tj2ejxI6lHIqltEv_W65KEoazdKPZo9tTGgfWmyOd6kOaVonFISn7T_UzV3ZLc8SbAJp6gwoqUVhCBJHY6yFUmVBh0b02FYrFFNsjqubA8-mXz2WqMqyHFvb8aLwlw6Vp1fHsX_69i_E39kclbpvDx-ustlR82jX2Ed4GlXDZt2L_h-bvgn-
  priority: 102
  providerName: Wiley-Blackwell
Title Optimal power flow analysis considering renewable energy resources uncertainty based on an improved wild horse optimizer
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fgtd2.12900
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-196780
https://doaj.org/article/ce3c66fdca5b49d0965b559137ecb0d4
Volume 17
WOSCitedRecordID wos001016076700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley-Blackwell Open Access Collection
  customDbUrl:
  eissn: 1751-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055647
  issn: 1751-8695
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELYg6oEeELRFBGhliapSKy31PryPY0sp9JLmkJbeVvbYLiuFbJWkBPj1zNibqJEQvXBZ7VojezSe9Td-fcPYvlZFIqxwkQQFUYaIE-mcthBtBkllpJam9MkmisGgvLmphg9SfdGZsEAPHAx3DDaFPHcGlNRZZYisRGMUHKeFBS2MZwIVRbWcTIUxWMrcpxZDbIyjMi-LJTFpVh3fzk3ygVZfxBoUecb-FV_oeqjqseb8BXveBYn8JCj3kj2xky22-YA6cJv9vMR__TsK3VGaM-7G7YKrjmCEQ5eFEyU5UVYu6H4Ut_6aHxaEBfsZR0gLBwLmvzihmeHtBCvhjV9owE9UzvBv7XRmeUvNNb_tdIddnX8affwSdVkUIiCAihKXpk7FubAxJFJBbm1VasjA6sJIo5RGyI5B0Y6oy7UUunI4a7ISBNB8J33FepN2Yl8zbgw4XbrYYqybSWcwlNFGpCiYygKr6bPDpUFr6CjGKdPFuPZb3VlVk_Frb_w-e7-SvQvEGn-VOqV-WUkQGbYvQBepOxepH3ORPjsIvbpWzVlzfeKrGTf3NY5DRYmtHfle_4dC9efRWeLf3vwP1d6yZ5S_PpwofMd68-m93WUb8GPezKZ77GmSDfe8Z-Pz68XgDy5QALQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEA-lLagftPWB56MGFEFh6z6SfXystrXFevbDKf0WkklSF87bsndtrX99Z7J7Vw9EEL_tLrOTkNdvZpL8hrFXRhdp7GIfSdAQCUScyOS0hegEpJWVRtoyJJsohsPy5KQ67s_m0F2Yjh9iEXCjmRHWa5rgFJDuHE5BJJmnM5tuUxgFPfY1gTBDCQxScTxfiKXMQ34xBMgkKvOymLOTiurdzb9LeBRo-xekocv2agCc_Xv_WdUNdre3NPlONzQ22Yqb3Gd3fuMffMB-fsEF4wcKnVGuNO7HzSXXPUsJhz6VJ0py4r28pEtW3IW7gvihi_pPOeJid6pgdsUJEi1vJqiE1yFaga9YZcu_N-3U8YaKq3-59iH7ur83-nAQ9akYIiCUi1KfZV4neewSSKWG3LmqNCDAmcJKq7VB3E9A07aqz42MTeXR9XISYiCnKXvEVifNxD1m3FrwpvSJQ4NZSG_RHjI2zlAwkwWqGbA38w5R0POUU7qMsQr75aJS1JoqtOaAvVzInnXsHH-Uek_9upAgRu3woWlPVT9BFbgM8txb0NKIyhIpjkFvK8kKBya2YsBed6NiSc1u_W0nqBnX5woXs6LE0t6GsfCXCqmPo900PD35F-EX7NbB6POROjocfnrKblPi--4o4jO2OmvP3XO2DhezetpuhXlwDVAHDeA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxQxFA6lFtEHtV5wWy8BRVAYnUsyl8fqurZU1n2o0reQnCR1YLuzzG6t9td7TmZ2dUEE8W1mOHMSkpxrku8w9tzoIo1d7CMJGiKBFicyOW0hOgFpZaWRtgzFJorxuDw9rSb92Ry6C9PhQ6wTbiQZQV-TgLu59V3AKQgk82xp09eURsGI_ZqQqGQJ2FlMVopYyjzUF0MDmURlXhYrdFJRvfn174Y9CrD9a9DQTX81GJzR7f_s6h12q_c0-UG3NHbZlpvdZTd_wx-8x75_QoVxjkRzqpXG_bS55LpHKeHQl_JESk64l5d0yYq7cFcQP3RZ_wVHu9idKlj-4GQSLW9myITXIVuBr9hly7827cLxhpqrr1x7n30evT95dxj1pRgiICsXpT7LvE7y2CWQSg25c1VpQIAzhZVWa4N2PwFN26o-NzI2lcfQy0mIgYKm7AHbnjUz95Bxa8Gb0icOHWYhvUV_yNg4Q8JMFshmwF6uJkRBj1NO5TKmKuyXi0rRaKowmgP2bE0779A5_kj1luZ1TUGI2uFD056pXkAVuAzy3FvQ0ojKEiiOwWgryQoHJrZiwF50q2KDzbD-chDYTOsLhcqsKLG1V2Et_KVD6sPJMA1Pe_9C_JRdnwxH6uPR-Hif3aC6991JxEdse9leuMdsB74t60X7JIjBT-OmDWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+power+flow+analysis+considering+renewable+energy+resources+uncertainty+based+on+an+improved+wild+horse+optimizer&rft.jtitle=IET+generation%2C+transmission+%26+distribution&rft.au=Hassan%2C+Mohamed+H.&rft.au=Kamel%2C+Salah&rft.au=Hussien%2C+Abdelazim+G.&rft.date=2023-08-01&rft.issn=1751-8687&rft.eissn=1751-8695&rft.volume=17&rft.issue=16&rft.spage=3582&rft.epage=3606&rft_id=info:doi/10.1049%2Fgtd2.12900&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_gtd2_12900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8687&client=summon