Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study

•Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation. The response of ultra-lean flames, sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering Jg. 182; S. 116099
Hauptverfasser: Habib, Rabeeah, Yadollahi, Bijan, Saeed, Ali, Doranehgard, Mohammad Hossein, Li, Larry K.B., Karimi, Nader
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 05.01.2021
Elsevier BV
Schlagworte:
ISSN:1359-4311, 1873-5606
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation. The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position.
AbstractList •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation. The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position.
The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position.
ArticleNumber 116099
Author Habib, Rabeeah
Li, Larry K.B.
Doranehgard, Mohammad Hossein
Yadollahi, Bijan
Saeed, Ali
Karimi, Nader
Author_xml – sequence: 1
  givenname: Rabeeah
  surname: Habib
  fullname: Habib, Rabeeah
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 2
  givenname: Bijan
  surname: Yadollahi
  fullname: Yadollahi, Bijan
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 3
  givenname: Ali
  surname: Saeed
  fullname: Saeed, Ali
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 4
  givenname: Mohammad Hossein
  surname: Doranehgard
  fullname: Doranehgard, Mohammad Hossein
  organization: Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
– sequence: 5
  givenname: Larry K.B.
  surname: Li
  fullname: Li, Larry K.B.
  organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
– sequence: 6
  givenname: Nader
  surname: Karimi
  fullname: Karimi, Nader
  email: Nader.Karimi@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
BookMark eNqNkM1O3TAQha0KpPLTd7BUtrmME8dJJDYUlR8JqRtYWxNnAr7KtVPbqXp3vANv2CfBV5dNWbGZGWnOnDn6jtmB844YOxOwEiDU-XqF8zylZwobnMg9rUoo80oo6Lov7Ei0TVXUCtRBnqu6K2QlxFd2HOMaQJRtI48YPrqYCIctX6YUsJgIHTd-0y8xWe-4H_mG0jM64ugG3lv_hJFbx5HPPvgl8n4JjgL_9_LKLx2nvzMFuyGXcOIxLcP2lB2OOEX69t5P2OP1z4er2-L-183d1eV9YaQoUzGaSgnVoRSjUZ2sG2hEP0DVKzX2WPUgoVW5tp1sK2ixJqMa6KBBU0sgU52w73vfOfjfC8Wk1z5Hyy91KZtWlaVoIasu9ioTfIyBRj3nuBi2WoDeQdVr_T9UvYOq91Dz-Y8P58Ym3JHK8Oz0WZPrvQllHH8sBR2NJWdosIFM0oO3nzN6A0Z1onY
CitedBy_id crossref_primary_10_1016_j_proci_2024_105491
crossref_primary_10_1016_j_applthermaleng_2023_121108
crossref_primary_10_1016_j_jppr_2023_09_001
crossref_primary_10_1016_j_jtice_2021_02_019
crossref_primary_10_3390_en14217308
crossref_primary_10_1016_j_jtice_2024_105753
crossref_primary_10_1007_s13369_021_06489_4
crossref_primary_10_1007_s10973_022_11511_4
crossref_primary_10_1016_j_fuel_2022_126613
crossref_primary_10_1016_j_joei_2023_101334
crossref_primary_10_1080_00986445_2021_1986702
crossref_primary_10_1016_j_jtice_2021_04_055
crossref_primary_10_1016_j_est_2022_104457
crossref_primary_10_1080_00986445_2021_1995372
crossref_primary_10_1515_zna_2023_0039
crossref_primary_10_1016_j_applthermaleng_2021_117732
crossref_primary_10_1016_j_proci_2024_105364
crossref_primary_10_1016_j_applthermaleng_2022_119338
crossref_primary_10_1007_s11630_021_1508_2
crossref_primary_10_1016_j_combustflame_2024_113950
crossref_primary_10_1080_00102202_2024_2345706
crossref_primary_10_1007_s00231_021_03107_9
crossref_primary_10_1080_00102202_2024_2318781
crossref_primary_10_1016_j_rser_2025_115884
crossref_primary_10_1016_j_fuel_2023_127498
crossref_primary_10_1088_1755_1315_1372_1_012042
crossref_primary_10_1002_adem_202301804
crossref_primary_10_1016_j_applthermaleng_2025_127658
crossref_primary_10_2298_TSCI220115080L
crossref_primary_10_1016_j_fuel_2023_128348
crossref_primary_10_3390_en15239224
crossref_primary_10_1007_s00231_023_03443_y
crossref_primary_10_1016_j_combustflame_2022_112244
crossref_primary_10_1016_j_joei_2023_101502
crossref_primary_10_1080_00986445_2021_1992398
crossref_primary_10_1016_j_applthermaleng_2024_123092
crossref_primary_10_1016_j_applthermaleng_2025_126882
crossref_primary_10_1002_ente_202400872
crossref_primary_10_1016_j_fuel_2025_134385
Cites_doi 10.1016/j.energy.2011.12.006
10.1016/j.egypro.2019.01.276
10.1016/j.energy.2014.05.024
10.1016/j.applthermaleng.2019.114843
10.1016/j.jenvman.2008.10.009
10.1016/j.energy.2018.08.005
10.1007/s10973-018-7945-9
10.1016/j.energy.2011.06.014
10.1016/j.applthermaleng.2017.10.024
10.1063/1.4940154
10.1016/j.apenergy.2009.01.017
10.1016/j.pecs.2008.11.001
10.1016/j.energy.2014.08.045
10.1016/j.applthermaleng.2018.12.155
10.1016/j.rser.2010.09.032
10.1016/j.cep.2011.03.001
10.1016/j.proci.2016.06.188
10.1007/s10494-015-9695-0
10.1016/j.enconman.2016.06.058
10.1016/j.apenergy.2018.08.048
10.1016/j.combustflame.2017.02.019
10.1016/j.ijhydene.2016.02.065
10.1016/j.physrep.2018.11.004
10.1016/j.applthermaleng.2019.02.109
10.1016/j.rser.2015.02.032
10.1016/j.ijheatmasstransfer.2020.119657
10.1016/j.renene.2019.10.092
10.1016/j.pecs.2008.04.003
10.1016/j.expthermflusci.2017.01.023
10.1016/S0894-1777(03)00038-4
10.1016/j.icheatmasstransfer.2020.104639
10.1243/09576509JPE169
10.1016/j.apenergy.2019.03.200
10.1016/j.energy.2014.10.036
10.1016/j.ijheatmasstransfer.2019.02.015
10.1016/j.cep.2019.107602
10.1016/0360-1285(96)00001-9
10.1016/j.energy.2016.12.077
10.1021/acs.energyfuels.8b03602
10.1016/j.icheatmasstransfer.2019.104367
10.1016/j.ijhydene.2018.03.074
10.1016/j.applthermaleng.2009.04.001
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright Elsevier BV Jan 5, 2021
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright Elsevier BV Jan 5, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2020.116099
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2020_116099
S1359431120335791
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c412t-fc36169a41fc69457071bd03b66fba3b04086b048948308a5ec670907ac540ec3
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592641600081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sun Nov 30 04:38:44 EST 2025
Sat Nov 29 06:58:49 EST 2025
Tue Nov 18 22:14:05 EST 2025
Fri Feb 23 02:46:46 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ultra-lean combustion
Porous burner
Forced response
Biogas combustion
Unsteady combustion
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c412t-fc36169a41fc69457071bd03b66fba3b04086b048948308a5ec670907ac540ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1016/j.applthermaleng.2020.116099
PQID 2478622180
PQPubID 2045278
ParticipantIDs proquest_journals_2478622180
crossref_primary_10_1016_j_applthermaleng_2020_116099
crossref_citationtrail_10_1016_j_applthermaleng_2020_116099
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_116099
PublicationCentury 2000
PublicationDate 2021-01-05
PublicationDateYYYYMMDD 2021-01-05
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Delalic, Mulahasanovic, Ganic (b0085) 2004; 28
Terracciano, De Oliveira, Vazquez-Molina, Uribe-Romo, Vasu, Orlovskaya (b0155) 2017; 180
Ghorashi, Hashemi, Hashemi, Mollamahdi (b0215) 2018; 162
Göransson, Söderlind, He, Zhang (b0095) 2011; 15
Wang, Karimi, Sutardi, Paul (b0100) 2019; 33
Mujeebu, Abdullah, Bakar, Mohamad, Abdullah (b0175) 2009; 35
D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, 2012.
Chaelek, Grare, Jugjai (b0220) 2019; 153
Kazemian, Rashidi, Esfahani, Samimi-Abianeh (b0265) 2019
Keramiotis, Stelzner, Trimis, Founti (b0200) 2012; 45
Howell, Hall, Ellzey (b0025) 1996; 22
Habib, Yadollahi, Karimi (b0245) 2020
Gentillon, Southcott, Chan, Taylor (b0130) 2018; 229
Siavashi, Karimi, Xiong, Doranehgard (b0050) 2019; 137
Kamal, Mohamad (b0180) 2006; 220
Shafiey Dehaj, Ebrahimi, Shams, Farzaneh (b0210) 2017; 84
Saeed, Karimi, Hunt, Torabi (b0160) 2019; 143
Wang, Karimi, Paul (b0020) 2018; 43
Karimi (b0260) 2014; 78
Mahian, Kolsi, Amani, Estellé, Ahmadi, Kleinstreuer, Marshall, Siavashi, Taylor, Niazmand, Wongwises, Hayat, Kolanjiyil, Kasaeian, Pop (b0060) 2019; 790
Devi, Sahoo, Muthukumar (b0230) 2020; 149
Wang, Wei, Zhao, Ye (b0145) 2014; 72
Mao, Feng, Wang, Ren (b0090) 2015; 45
Gholamalipour, Siavashi, Doranehgard (b0055) 2019; 109
Bani, Pan, Tang, Lu, Zhang (b0120) 2018; 129
Bubnovich, Toledo, Henríquez, Rosas, Romero (b0190) 2010; 30
Peng, Yang, Jiaqiang, Xu, Li, Yu, Tu, Wu (b0135) 2019; 200
Dunnmon, Sobhani, Wu, Fahrig, Ihme (b0110) 2017; 36
Christodoulou, Kabiraj, Saurabh, Karimi (b0030) 2016; 26
Liu, Wu, Xie, Liu, Xu (b0125) 2019; 150
Rosa (b0015) 2017; 3
J. Ellzey, M. William, Porous Burner For Gas Turbine Applications, 2003024655, 2003.
Rashidi, Kashefi, Kim, Samimi-Abianeh (b0045) 2019; 243
Mujeebu, Abdullah, Bakar, Mohamad, Abdullah (b0170) 2009; 86
He, Chen, Jiang, Leng (b0140) 2019; 160
Habib, Yadollahi, Karimi, Hossein (b0240) 2020; 116
Turns (b0255) 2000
Mujeebu, Abdullah, Bakar, Mohamad, Muhad, Abdullah (b0080) 2009; 90
M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed., 2011.
Mujeebu, Abdullah, Mohamad (b0195) 2011; 36
Rashidi, Hormozi, Doranehgard (b0040) 2020
S. Mößbauer, O. Pickenäcker, K. Pickenäcker, Application of the porous burner technology in energy- and heat engineering, in: 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), 1999, pp. 519–523.
Hunt, Karimi, Yadollahi, Torabi (b0115) 2019; 134
Song, Wen, Dong, Wang, Liu (b0010) 2017; 119
Toledo, Gracia, Caro, Gómez, Jovicic (b0105) 2016; 41
Karimi, McGrath, Brown, Weinkauff, Dreizler (b0035) 2016; 97
Wood, Harris (b0005) 2008; 34
Liu, Ning, Fan, Yao (b0150) 2016; 123
Xu, Liu, Zhao (b0165) 2011; 50
Robayo, Beaman, Hughes, Delose, Orlovskaya, Chen (b0205) 2014; 76
Devi, Sahoo, Muthukumar (b0225) 2019; 158
Habib, Karimi, Yadollahi, Hossein, Li (b0235) 2020; 153
Izadi, Siavashi, Rasam, Xiong (b0065) 2020; 168
Mujeebu (10.1016/j.applthermaleng.2020.116099_b0080) 2009; 90
Robayo (10.1016/j.applthermaleng.2020.116099_b0205) 2014; 76
Toledo (10.1016/j.applthermaleng.2020.116099_b0105) 2016; 41
Liu (10.1016/j.applthermaleng.2020.116099_b0125) 2019; 150
Gentillon (10.1016/j.applthermaleng.2020.116099_b0130) 2018; 229
Liu (10.1016/j.applthermaleng.2020.116099_b0150) 2016; 123
Mahian (10.1016/j.applthermaleng.2020.116099_b0060) 2019; 790
Ghorashi (10.1016/j.applthermaleng.2020.116099_b0215) 2018; 162
Song (10.1016/j.applthermaleng.2020.116099_b0010) 2017; 119
10.1016/j.applthermaleng.2020.116099_b0185
Howell (10.1016/j.applthermaleng.2020.116099_b0025) 1996; 22
Dunnmon (10.1016/j.applthermaleng.2020.116099_b0110) 2017; 36
Habib (10.1016/j.applthermaleng.2020.116099_b0235) 2020; 153
Peng (10.1016/j.applthermaleng.2020.116099_b0135) 2019; 200
Bubnovich (10.1016/j.applthermaleng.2020.116099_b0190) 2010; 30
Turns (10.1016/j.applthermaleng.2020.116099_b0255) 2000
Wang (10.1016/j.applthermaleng.2020.116099_b0020) 2018; 43
Siavashi (10.1016/j.applthermaleng.2020.116099_b0050) 2019; 137
Karimi (10.1016/j.applthermaleng.2020.116099_b0035) 2016; 97
Devi (10.1016/j.applthermaleng.2020.116099_b0230) 2020; 149
Kamal (10.1016/j.applthermaleng.2020.116099_b0180) 2006; 220
Shafiey Dehaj (10.1016/j.applthermaleng.2020.116099_b0210) 2017; 84
10.1016/j.applthermaleng.2020.116099_b0070
Rosa (10.1016/j.applthermaleng.2020.116099_b0015) 2017; 3
Göransson (10.1016/j.applthermaleng.2020.116099_b0095) 2011; 15
Wang (10.1016/j.applthermaleng.2020.116099_b0100) 2019; 33
Karimi (10.1016/j.applthermaleng.2020.116099_b0260) 2014; 78
Christodoulou (10.1016/j.applthermaleng.2020.116099_b0030) 2016; 26
10.1016/j.applthermaleng.2020.116099_b0075
Bani (10.1016/j.applthermaleng.2020.116099_b0120) 2018; 129
Mujeebu (10.1016/j.applthermaleng.2020.116099_b0195) 2011; 36
Mujeebu (10.1016/j.applthermaleng.2020.116099_b0175) 2009; 35
Rashidi (10.1016/j.applthermaleng.2020.116099_b0045) 2019; 243
Xu (10.1016/j.applthermaleng.2020.116099_b0165) 2011; 50
Habib (10.1016/j.applthermaleng.2020.116099_b0245) 2020
Saeed (10.1016/j.applthermaleng.2020.116099_b0160) 2019; 143
Keramiotis (10.1016/j.applthermaleng.2020.116099_b0200) 2012; 45
Wang (10.1016/j.applthermaleng.2020.116099_b0145) 2014; 72
Terracciano (10.1016/j.applthermaleng.2020.116099_b0155) 2017; 180
Chaelek (10.1016/j.applthermaleng.2020.116099_b0220) 2019; 153
Mujeebu (10.1016/j.applthermaleng.2020.116099_b0170) 2009; 86
Habib (10.1016/j.applthermaleng.2020.116099_b0240) 2020; 116
Gholamalipour (10.1016/j.applthermaleng.2020.116099_b0055) 2019; 109
He (10.1016/j.applthermaleng.2020.116099_b0140) 2019; 160
Kazemian (10.1016/j.applthermaleng.2020.116099_b0265) 2019
Izadi (10.1016/j.applthermaleng.2020.116099_b0065) 2020; 168
Hunt (10.1016/j.applthermaleng.2020.116099_b0115) 2019; 134
Wood (10.1016/j.applthermaleng.2020.116099_b0005) 2008; 34
Delalic (10.1016/j.applthermaleng.2020.116099_b0085) 2004; 28
Rashidi (10.1016/j.applthermaleng.2020.116099_b0040) 2020
10.1016/j.applthermaleng.2020.116099_b0250
Mao (10.1016/j.applthermaleng.2020.116099_b0090) 2015; 45
Devi (10.1016/j.applthermaleng.2020.116099_b0225) 2019; 158
References_xml – volume: 76
  start-page: 477
  year: 2014
  end-page: 486
  ident: b0205
  article-title: Perovskite catalysts enhanced combustion on porous media
  publication-title: Energy
– volume: 220
  start-page: 487
  year: 2006
  end-page: 508
  ident: b0180
  article-title: Combustion in porous media
  publication-title: Proc. Inst. Mech. Eng. Part A J. Power Energy
– volume: 168
  start-page: 114843
  year: 2020
  ident: b0065
  article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling
  publication-title: Appl. Therm. Eng.
– volume: 45
  start-page: 540
  year: 2015
  end-page: 555
  ident: b0090
  article-title: Review on research achievements of biogas from anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
– volume: 123
  start-page: 402
  year: 2016
  end-page: 409
  ident: b0150
  article-title: Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media
  publication-title: Energy Convers. Manag.
– volume: 129
  start-page: 596
  year: 2018
  end-page: 605
  ident: b0120
  article-title: Micro combustion in a porous media for thermophotovoltaic power generation
  publication-title: Appl. Therm. Eng.
– volume: 143
  start-page: 107602
  year: 2019
  ident: b0160
  article-title: On the influences of surface heat release and thermal radiation upon transport in catalytic porous microreactors—a novel porous-solid interface model
  publication-title: Chem. Eng. Process. – Process Intensif.
– reference: M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed., 2011.
– volume: 200
  year: 2019
  ident: b0135
  article-title: Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications
  publication-title: Energy Convers. Manag.
– volume: 33
  start-page: 1556
  year: 2019
  end-page: 1569
  ident: b0100
  article-title: Combustion characteristics and pollutant emissions in transient oxy-combustion of a single biomass particle: a numerical study
  publication-title: Energy Fuels
– volume: 72
  start-page: 195
  year: 2014
  end-page: 200
  ident: b0145
  article-title: Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion
  publication-title: Energy
– volume: 153
  start-page: 119657
  year: 2020
  ident: b0235
  article-title: A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations
  publication-title: Int. J. Heat Mass Transf.
– volume: 116
  start-page: 104639
  year: 2020
  ident: b0240
  article-title: On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis
  publication-title: Int. Commun. Heat Mass Transf.
– reference: S. Mößbauer, O. Pickenäcker, K. Pickenäcker, Application of the porous burner technology in energy- and heat engineering, in: 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), 1999, pp. 519–523.
– volume: 158
  start-page: 1116
  year: 2019
  end-page: 1121
  ident: b0225
  article-title: Combustion of biogas in Porous Radiant Burner: low emission combustion
  publication-title: Energy Procedia
– volume: 162
  start-page: 517
  year: 2018
  end-page: 525
  ident: b0215
  article-title: Experimental study on pollutant emissions in the novel combined porous-free flame burner
  publication-title: Energy
– reference: J. Ellzey, M. William, Porous Burner For Gas Turbine Applications, 2003024655, 2003.
– volume: 28
  start-page: 185
  year: 2004
  end-page: 192
  ident: b0085
  article-title: Porous media compact heat exchanger unit – experiment and analysis
  publication-title: Exp. Therm. Fluid Sci.
– volume: 180
  start-page: 32
  year: 2017
  end-page: 39
  ident: b0155
  article-title: Effect of catalytically active Ce0.8Gd0.2O1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO2 porous ceramics
  publication-title: Combust. Flame
– volume: 119
  start-page: 497
  year: 2017
  end-page: 503
  ident: b0010
  article-title: Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation
  publication-title: Energy
– volume: 26
  start-page: 013110
  year: 2016
  ident: b0030
  article-title: Characterizing the signature of flame flashback precursor through recurrence analysis
  publication-title: Chaos An Interdiscip. J. Nonlinear Sci.
– volume: 150
  start-page: 445
  year: 2019
  end-page: 455
  ident: b0125
  article-title: Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium
  publication-title: Appl. Therm. Eng.
– year: 2020
  ident: b0040
  article-title: Abilities of porous materials for energy saving in advanced thermal systems
  publication-title: J. Therm. Anal. Calorim.
– volume: 790
  start-page: 1
  year: 2019
  end-page: 48
  ident: b0060
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory
  publication-title: Phys. Rep.
– volume: 137
  start-page: 267
  year: 2019
  end-page: 287
  ident: b0050
  article-title: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder
  publication-title: J. Therm. Anal. Calorim.
– volume: 149
  start-page: 1040
  year: 2020
  end-page: 1052
  ident: b0230
  article-title: Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner
  publication-title: Renew. Energy
– volume: 86
  start-page: 1365
  year: 2009
  end-page: 1375
  ident: b0170
  article-title: Applications of porous media combustion technology – a review
  publication-title: Appl. Energy
– volume: 134
  start-page: 1227
  year: 2019
  end-page: 1249
  ident: b0115
  article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors
  publication-title: Int. J. Heat Mass Transf.
– volume: 3
  start-page: 11
  year: 2017
  ident: b0015
  article-title: The role of synthetic fuels for a carbon neutral economy
  publication-title: C
– volume: 160
  year: 2019
  ident: b0140
  article-title: Combustion characteristics of blast furnace gas in porous media burner
  publication-title: Appl. Therm. Eng.
– volume: 50
  start-page: 608
  year: 2011
  end-page: 613
  ident: b0165
  article-title: Stability of lean combustion in mini-scale porous media combustor with heat recuperation
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 97
  start-page: 663
  year: 2016
  end-page: 687
  ident: b0035
  article-title: Generation of adverse pressure gradient in the circumferential flashback of a premixed flame
  publication-title: Flow Turbul. Combust.
– volume: 84
  start-page: 134
  year: 2017
  end-page: 143
  ident: b0210
  article-title: Experimental analysis of natural gas combustion in a porous burner
  publication-title: Exp. Therm Fluid Sci.
– volume: 36
  start-page: 5132
  year: 2011
  end-page: 5139
  ident: b0195
  article-title: Development of energy efficient porous medium burners on surface and submerged combustion modes
  publication-title: Energy
– volume: 243
  start-page: 206
  year: 2019
  end-page: 232
  ident: b0045
  article-title: Potentials of porous materials for energy management in heat exchangers – a comprehensive review
  publication-title: Appl. Energy
– year: 2000
  ident: b0255
  article-title: An Introduction to Combustion: Concepts and Applications
– volume: 36
  start-page: 4399
  year: 2017
  end-page: 4408
  ident: b0110
  article-title: An investigation of internal flame structure in porous media combustion via X-ray Computed Tomography
  publication-title: Proc. Combust. Inst.
– volume: 34
  start-page: 667
  year: 2008
  end-page: 684
  ident: b0005
  article-title: Porous burners for lean-burn applications
  publication-title: Prog. Energy Combust. Sci.
– volume: 35
  start-page: 216
  year: 2009
  end-page: 230
  ident: b0175
  article-title: A review of investigations on liquid fuel combustion in porous inert media
  publication-title: Prog. Energy Combust. Sci.
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0245
  article-title: A pore-scale investigation of the transient response of forced convection in porous media to inlet ramp inputs
  publication-title: J. Energy Resour. Technol.
– volume: 41
  start-page: 5857
  year: 2016
  end-page: 5864
  ident: b0105
  article-title: Hydrocarbons conversion to syngas in inert porous media combustion
  publication-title: Int. J. Hydrogen Energy
– volume: 90
  start-page: 2287
  year: 2009
  end-page: 2312
  ident: b0080
  article-title: Combustion in porous media and its applications – a comprehensive survey
  publication-title: J. Environ. Manage.
– volume: 229
  start-page: 736
  year: 2018
  end-page: 744
  ident: b0130
  article-title: Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina
  publication-title: Appl. Energy
– volume: 30
  start-page: 92
  year: 2010
  end-page: 95
  ident: b0190
  article-title: Flame stabilization between two beds of alumina balls in a porous burner
  publication-title: Appl. Therm. Eng.
– volume: 78
  start-page: 490
  year: 2014
  end-page: 500
  ident: b0260
  article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories
  publication-title: Energy
– volume: 45
  start-page: 213
  year: 2012
  end-page: 219
  ident: b0200
  article-title: Porous burners for low emission combustion: an experimental investigation
  publication-title: Energy
– volume: 43
  start-page: 8506
  year: 2018
  end-page: 8523
  ident: b0020
  article-title: Gas-phase transport and entropy generation during transient combustion of single biomass particle in varying oxygen and nitrogen atmospheres
  publication-title: Int. J. Hydrogen Energy
– volume: 109
  start-page: 104367
  year: 2019
  ident: b0055
  article-title: Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 153
  start-page: 181
  year: 2019
  end-page: 189
  ident: b0220
  article-title: Self-aspirating/air-preheating porous medium gas burner
  publication-title: Appl. Therm. Eng.
– reference: D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, 2012.
– volume: 22
  start-page: 121
  year: 1996
  end-page: 145
  ident: b0025
  article-title: Combustion of hydrocarbon fuels within porous inert media
  publication-title: Prog. Energy Combust. Sci.
– volume: 15
  start-page: 482
  year: 2011
  end-page: 492
  ident: b0095
  article-title: Review of syngas production via biomass DFBGs
  publication-title: Renew. Sustain. Energy Rev.
– year: 2019
  ident: b0265
  article-title: Effects of grains shapes of porous media on combustion onset—a numerical simulation using Lattice Boltzmann method
  publication-title: Comput. Math. with Appl.
– volume: 45
  start-page: 213
  issue: 1
  year: 2012
  ident: 10.1016/j.applthermaleng.2020.116099_b0200
  article-title: Porous burners for low emission combustion: an experimental investigation
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.006
– volume: 158
  start-page: 1116
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0225
  article-title: Combustion of biogas in Porous Radiant Burner: low emission combustion
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.276
– volume: 72
  start-page: 195
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.116099_b0145
  article-title: Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.024
– volume: 168
  start-page: 114843
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0065
  article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.114843
– volume: 90
  start-page: 2287
  issue: 8
  year: 2009
  ident: 10.1016/j.applthermaleng.2020.116099_b0080
  article-title: Combustion in porous media and its applications – a comprehensive survey
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2008.10.009
– volume: 162
  start-page: 517
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116099_b0215
  article-title: Experimental study on pollutant emissions in the novel combined porous-free flame burner
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.005
– volume: 137
  start-page: 267
  issue: 1
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0050
  article-title: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7945-9
– volume: 36
  start-page: 5132
  issue: 8
  year: 2011
  ident: 10.1016/j.applthermaleng.2020.116099_b0195
  article-title: Development of energy efficient porous medium burners on surface and submerged combustion modes
  publication-title: Energy
  doi: 10.1016/j.energy.2011.06.014
– year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0040
  article-title: Abilities of porous materials for energy saving in advanced thermal systems
  publication-title: J. Therm. Anal. Calorim.
– volume: 129
  start-page: 596
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116099_b0120
  article-title: Micro combustion in a porous media for thermophotovoltaic power generation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.10.024
– volume: 26
  start-page: 013110
  issue: 1
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116099_b0030
  article-title: Characterizing the signature of flame flashback precursor through recurrence analysis
  publication-title: Chaos An Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4940154
– year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0265
  article-title: Effects of grains shapes of porous media on combustion onset—a numerical simulation using Lattice Boltzmann method
  publication-title: Comput. Math. with Appl.
– volume: 86
  start-page: 1365
  issue: 9
  year: 2009
  ident: 10.1016/j.applthermaleng.2020.116099_b0170
  article-title: Applications of porous media combustion technology – a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.01.017
– volume: 35
  start-page: 216
  issue: 2
  year: 2009
  ident: 10.1016/j.applthermaleng.2020.116099_b0175
  article-title: A review of investigations on liquid fuel combustion in porous inert media
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.11.001
– volume: 76
  start-page: 477
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.116099_b0205
  article-title: Perovskite catalysts enhanced combustion on porous media
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.045
– ident: 10.1016/j.applthermaleng.2020.116099_b0075
– year: 2000
  ident: 10.1016/j.applthermaleng.2020.116099_b0255
– volume: 150
  start-page: 445
  issue: January
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0125
  article-title: Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.12.155
– volume: 15
  start-page: 482
  issue: 1
  year: 2011
  ident: 10.1016/j.applthermaleng.2020.116099_b0095
  article-title: Review of syngas production via biomass DFBGs
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.09.032
– volume: 50
  start-page: 608
  issue: 7
  year: 2011
  ident: 10.1016/j.applthermaleng.2020.116099_b0165
  article-title: Stability of lean combustion in mini-scale porous media combustor with heat recuperation
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2011.03.001
– start-page: 1
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0245
  article-title: A pore-scale investigation of the transient response of forced convection in porous media to inlet ramp inputs
  publication-title: J. Energy Resour. Technol.
– volume: 36
  start-page: 4399
  issue: 3
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116099_b0110
  article-title: An investigation of internal flame structure in porous media combustion via X-ray Computed Tomography
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.06.188
– volume: 97
  start-page: 663
  issue: 2
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116099_b0035
  article-title: Generation of adverse pressure gradient in the circumferential flashback of a premixed flame
  publication-title: Flow Turbul. Combust.
  doi: 10.1007/s10494-015-9695-0
– volume: 123
  start-page: 402
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116099_b0150
  article-title: Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.06.058
– volume: 160
  issue: November
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0140
  article-title: Combustion characteristics of blast furnace gas in porous media burner
  publication-title: Appl. Therm. Eng.
– volume: 229
  start-page: 736
  issue: July
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116099_b0130
  article-title: Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.08.048
– volume: 180
  start-page: 32
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116099_b0155
  article-title: Effect of catalytically active Ce0.8Gd0.2O1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO2 porous ceramics
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.02.019
– volume: 41
  start-page: 5857
  issue: 14
  year: 2016
  ident: 10.1016/j.applthermaleng.2020.116099_b0105
  article-title: Hydrocarbons conversion to syngas in inert porous media combustion
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.02.065
– volume: 790
  start-page: 1
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0060
  article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2018.11.004
– ident: 10.1016/j.applthermaleng.2020.116099_b0185
– volume: 153
  start-page: 181
  issue: November 2018
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0220
  article-title: Self-aspirating/air-preheating porous medium gas burner
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.02.109
– volume: 45
  start-page: 540
  year: 2015
  ident: 10.1016/j.applthermaleng.2020.116099_b0090
  article-title: Review on research achievements of biogas from anaerobic digestion
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.02.032
– volume: 153
  start-page: 119657
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0235
  article-title: A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119657
– volume: 149
  start-page: 1040
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0230
  article-title: Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.10.092
– volume: 34
  start-page: 667
  issue: 5
  year: 2008
  ident: 10.1016/j.applthermaleng.2020.116099_b0005
  article-title: Porous burners for lean-burn applications
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.04.003
– volume: 84
  start-page: 134
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116099_b0210
  article-title: Experimental analysis of natural gas combustion in a porous burner
  publication-title: Exp. Therm Fluid Sci.
  doi: 10.1016/j.expthermflusci.2017.01.023
– volume: 28
  start-page: 185
  issue: 2–3
  year: 2004
  ident: 10.1016/j.applthermaleng.2020.116099_b0085
  article-title: Porous media compact heat exchanger unit – experiment and analysis
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/S0894-1777(03)00038-4
– volume: 116
  start-page: 104639
  year: 2020
  ident: 10.1016/j.applthermaleng.2020.116099_b0240
  article-title: On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2020.104639
– volume: 220
  start-page: 487
  issue: 5
  year: 2006
  ident: 10.1016/j.applthermaleng.2020.116099_b0180
  article-title: Combustion in porous media
  publication-title: Proc. Inst. Mech. Eng. Part A J. Power Energy
  doi: 10.1243/09576509JPE169
– volume: 243
  start-page: 206
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0045
  article-title: Potentials of porous materials for energy management in heat exchangers – a comprehensive review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.200
– volume: 3
  start-page: 11
  issue: 4
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116099_b0015
  article-title: The role of synthetic fuels for a carbon neutral economy
  publication-title: C
– volume: 78
  start-page: 490
  year: 2014
  ident: 10.1016/j.applthermaleng.2020.116099_b0260
  article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.036
– volume: 134
  start-page: 1227
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0115
  article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.015
– volume: 143
  start-page: 107602
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0160
  article-title: On the influences of surface heat release and thermal radiation upon transport in catalytic porous microreactors—a novel porous-solid interface model
  publication-title: Chem. Eng. Process. – Process Intensif.
  doi: 10.1016/j.cep.2019.107602
– volume: 22
  start-page: 121
  issue: 2
  year: 1996
  ident: 10.1016/j.applthermaleng.2020.116099_b0025
  article-title: Combustion of hydrocarbon fuels within porous inert media
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(96)00001-9
– volume: 119
  start-page: 497
  year: 2017
  ident: 10.1016/j.applthermaleng.2020.116099_b0010
  article-title: Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.077
– volume: 33
  start-page: 1556
  issue: 2
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0100
  article-title: Combustion characteristics and pollutant emissions in transient oxy-combustion of a single biomass particle: a numerical study
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b03602
– ident: 10.1016/j.applthermaleng.2020.116099_b0070
– ident: 10.1016/j.applthermaleng.2020.116099_b0250
– volume: 109
  start-page: 104367
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0055
  article-title: Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104367
– volume: 43
  start-page: 8506
  issue: 17
  year: 2018
  ident: 10.1016/j.applthermaleng.2020.116099_b0020
  article-title: Gas-phase transport and entropy generation during transient combustion of single biomass particle in varying oxygen and nitrogen atmospheres
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.074
– volume: 200
  issue: June
  year: 2019
  ident: 10.1016/j.applthermaleng.2020.116099_b0135
  article-title: Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications
  publication-title: Energy Convers. Manag.
– volume: 30
  start-page: 92
  year: 2010
  ident: 10.1016/j.applthermaleng.2020.116099_b0190
  article-title: Flame stabilization between two beds of alumina balls in a porous burner
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.04.001
SSID ssj0012874
Score 2.5101078
Snippet •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of...
The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116099
SubjectTerms Amplitudes
Biogas
Biogas combustion
Carbon dioxide
Chemical composition
Combustion
Digital cameras
Flow velocity
Forced response
Fuel flow
Mass flow
Methane
Porous burner
Porous media
Programmable controllers
Silicon carbide
Sine waves
Studies
Thermocouples
Ultra-lean combustion
Unsteady combustion
Title Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study
URI https://dx.doi.org/10.1016/j.applthermaleng.2020.116099
https://www.proquest.com/docview/2478622180
Volume 182
WOSCitedRecordID wos000592641600081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZCixA9IH5FS0E-VFyirfbX6xUHFFAqQCEgSFA4WbbX22602YQkrcqNd-BJeCWehPHam00QReHAxYqcrNea-TL-PB7PIHQkdMpuGkknkZ50wiwCOxjzyPGI4KRKmCUqTffifp-ORsn7VutHfRfmoojLkl5eJrP_qmroA2Xrq7P_oO7VoNABn0Hp0ILaod1K8cOyUtzX9nmxnHOn0K52eI_QZbsMOdRVo3lpzg1EPj3lVUwsbwMV1wGxQrs55-06DCLQjsONQgBNSto6fa2lsppMTuAHqkly2Fg4kVdHPx-4UKpxQn_WKaUKXpUWbr_Ixw1YP3JlHLGdIl_RbQBsqc5OuQnIfzs945MJT3X1k4WyOcStC8P3KhdG1PjVVndrPq1Z4iBKHGA3BnjK9NE4cICikU3z7a8ZYO-Py4LxUIyPdVCAFQVI4hjmotcM4poaTZvZuPvv2Mmw12OD7mjwdPbF0YXK9IG-rdpyDe36cZSAId3tvO6O3qyOrnQBgWqXb-d_Ax01QYVXT-AqXvQbQ6hoz-A2umX3K7hjcHYHtVR5F-2tZbG8h3iNONwgDjeIw9MMW8RhQBw2iMN5iTk2iMMGcfjnt--4U-J1rOEKa_fR8KQ7ePnKsZU7HBl6_tLJZEA8kvDQyyRJwigGIitSNxCEZIIHAlYOSqClSUgDl_JISZ1H0I25hB2EksEDtFNOS_UQYZrClhtG8gVPw1RIoWCHTaWbAtN1U8730bNabkzatPa6ukrB6vjFMduUOtNSZ0bq-yhaPT0z6V22fO55rSJmqaqhoAwgt-UIh7VmmbUeC-aHMSU-sG734O9fP0I3mz_SIdpZzs_VY3RdXizzxfyJheQvCI3FWw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsteady+ultra-lean+combustion+of+methane+and+biogas+in+a+porous+burner+%E2%80%93+An+experimental+study&rft.jtitle=Applied+thermal+engineering&rft.au=Habib%2C+Rabeeah&rft.au=Yadollahi%2C+Bijan&rft.au=Saeed%2C+Ali&rft.au=Doranehgard%2C+Mohammad+Hossein&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=182&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.116099&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon