Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study
•Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation. The response of ultra-lean flames, sta...
Gespeichert in:
| Veröffentlicht in: | Applied thermal engineering Jg. 182; S. 116099 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Oxford
Elsevier Ltd
05.01.2021
Elsevier BV |
| Schlagworte: | |
| ISSN: | 1359-4311, 1873-5606 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation.
The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position. |
|---|---|
| AbstractList | •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of motion is larger for methane flames.•Long-term exposure to fluctuations results in flame destabilisation.
The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position. The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study is motivated by the likelihood of small biogas generators to produce fuels with temporal variations in their flow rate and chemical composition. The employed porous burner includes layers of silicon carbide porous foam placed inside a quartz tube. The burner is equipped with a series of axially arranged thermocouples and is imaged by a digital camera. Methane and a blend of methane and carbon dioxide (mimicking biogas) are mixed with air and then fed to the burner at equivalence ratios below 0.3. The fuel flow rate is modulated with a programmable mass flow controller by imposing a sinusoidal wave with variable amplitude and frequency on the steady fuel flow. Through analysis of the flame images and collected temperature traces, it is shown that the imposed disturbances result in motion of the flame inside the burner. Such motion is found to qualitatively follow the temporal variation in the fuel flow for both methane and biogas. Nonetheless, the amplitude of the flame oscillations for methane is found to be higher than that for biogas. Further, it is observed that exposure of the burner to the fuel fluctuations for a long time (180 s) eventually results in flame destabilisation. However, stabilised combustion was achieved for methane mixtures at amplitudes between 0 and 30% of steady values over a period of 60 s. This study reveals the strong effects of unsteady heat transfer in porous media upon the fluctuations in flame position. |
| ArticleNumber | 116099 |
| Author | Habib, Rabeeah Li, Larry K.B. Doranehgard, Mohammad Hossein Yadollahi, Bijan Saeed, Ali Karimi, Nader |
| Author_xml | – sequence: 1 givenname: Rabeeah surname: Habib fullname: Habib, Rabeeah organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 2 givenname: Bijan surname: Yadollahi fullname: Yadollahi, Bijan organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 3 givenname: Ali surname: Saeed fullname: Saeed, Ali organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 4 givenname: Mohammad Hossein surname: Doranehgard fullname: Doranehgard, Mohammad Hossein organization: Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada – sequence: 5 givenname: Larry K.B. surname: Li fullname: Li, Larry K.B. organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong – sequence: 6 givenname: Nader surname: Karimi fullname: Karimi, Nader email: Nader.Karimi@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom |
| BookMark | eNqNkM1O3TAQha0KpPLTd7BUtrmME8dJJDYUlR8JqRtYWxNnAr7KtVPbqXp3vANv2CfBV5dNWbGZGWnOnDn6jtmB844YOxOwEiDU-XqF8zylZwobnMg9rUoo80oo6Lov7Ei0TVXUCtRBnqu6K2QlxFd2HOMaQJRtI48YPrqYCIctX6YUsJgIHTd-0y8xWe-4H_mG0jM64ugG3lv_hJFbx5HPPvgl8n4JjgL_9_LKLx2nvzMFuyGXcOIxLcP2lB2OOEX69t5P2OP1z4er2-L-183d1eV9YaQoUzGaSgnVoRSjUZ2sG2hEP0DVKzX2WPUgoVW5tp1sK2ixJqMa6KBBU0sgU52w73vfOfjfC8Wk1z5Hyy91KZtWlaVoIasu9ioTfIyBRj3nuBi2WoDeQdVr_T9UvYOq91Dz-Y8P58Ym3JHK8Oz0WZPrvQllHH8sBR2NJWdosIFM0oO3nzN6A0Z1onY |
| CitedBy_id | crossref_primary_10_1016_j_proci_2024_105491 crossref_primary_10_1016_j_applthermaleng_2023_121108 crossref_primary_10_1016_j_jppr_2023_09_001 crossref_primary_10_1016_j_jtice_2021_02_019 crossref_primary_10_3390_en14217308 crossref_primary_10_1016_j_jtice_2024_105753 crossref_primary_10_1007_s13369_021_06489_4 crossref_primary_10_1007_s10973_022_11511_4 crossref_primary_10_1016_j_fuel_2022_126613 crossref_primary_10_1016_j_joei_2023_101334 crossref_primary_10_1080_00986445_2021_1986702 crossref_primary_10_1016_j_jtice_2021_04_055 crossref_primary_10_1016_j_est_2022_104457 crossref_primary_10_1080_00986445_2021_1995372 crossref_primary_10_1515_zna_2023_0039 crossref_primary_10_1016_j_applthermaleng_2021_117732 crossref_primary_10_1016_j_proci_2024_105364 crossref_primary_10_1016_j_applthermaleng_2022_119338 crossref_primary_10_1007_s11630_021_1508_2 crossref_primary_10_1016_j_combustflame_2024_113950 crossref_primary_10_1080_00102202_2024_2345706 crossref_primary_10_1007_s00231_021_03107_9 crossref_primary_10_1080_00102202_2024_2318781 crossref_primary_10_1016_j_rser_2025_115884 crossref_primary_10_1016_j_fuel_2023_127498 crossref_primary_10_1088_1755_1315_1372_1_012042 crossref_primary_10_1002_adem_202301804 crossref_primary_10_1016_j_applthermaleng_2025_127658 crossref_primary_10_2298_TSCI220115080L crossref_primary_10_1016_j_fuel_2023_128348 crossref_primary_10_3390_en15239224 crossref_primary_10_1007_s00231_023_03443_y crossref_primary_10_1016_j_combustflame_2022_112244 crossref_primary_10_1016_j_joei_2023_101502 crossref_primary_10_1080_00986445_2021_1992398 crossref_primary_10_1016_j_applthermaleng_2024_123092 crossref_primary_10_1016_j_applthermaleng_2025_126882 crossref_primary_10_1002_ente_202400872 crossref_primary_10_1016_j_fuel_2025_134385 |
| Cites_doi | 10.1016/j.energy.2011.12.006 10.1016/j.egypro.2019.01.276 10.1016/j.energy.2014.05.024 10.1016/j.applthermaleng.2019.114843 10.1016/j.jenvman.2008.10.009 10.1016/j.energy.2018.08.005 10.1007/s10973-018-7945-9 10.1016/j.energy.2011.06.014 10.1016/j.applthermaleng.2017.10.024 10.1063/1.4940154 10.1016/j.apenergy.2009.01.017 10.1016/j.pecs.2008.11.001 10.1016/j.energy.2014.08.045 10.1016/j.applthermaleng.2018.12.155 10.1016/j.rser.2010.09.032 10.1016/j.cep.2011.03.001 10.1016/j.proci.2016.06.188 10.1007/s10494-015-9695-0 10.1016/j.enconman.2016.06.058 10.1016/j.apenergy.2018.08.048 10.1016/j.combustflame.2017.02.019 10.1016/j.ijhydene.2016.02.065 10.1016/j.physrep.2018.11.004 10.1016/j.applthermaleng.2019.02.109 10.1016/j.rser.2015.02.032 10.1016/j.ijheatmasstransfer.2020.119657 10.1016/j.renene.2019.10.092 10.1016/j.pecs.2008.04.003 10.1016/j.expthermflusci.2017.01.023 10.1016/S0894-1777(03)00038-4 10.1016/j.icheatmasstransfer.2020.104639 10.1243/09576509JPE169 10.1016/j.apenergy.2019.03.200 10.1016/j.energy.2014.10.036 10.1016/j.ijheatmasstransfer.2019.02.015 10.1016/j.cep.2019.107602 10.1016/0360-1285(96)00001-9 10.1016/j.energy.2016.12.077 10.1021/acs.energyfuels.8b03602 10.1016/j.icheatmasstransfer.2019.104367 10.1016/j.ijhydene.2018.03.074 10.1016/j.applthermaleng.2009.04.001 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s) Copyright Elsevier BV Jan 5, 2021 |
| Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright Elsevier BV Jan 5, 2021 |
| DBID | 6I. AAFTH AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.applthermaleng.2020.116099 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-5606 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2020_116099 S1359431120335791 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ R2- SEW ~HD 7TB 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c412t-fc36169a41fc69457071bd03b66fba3b04086b048948308a5ec670907ac540ec3 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592641600081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sun Nov 30 04:38:44 EST 2025 Sat Nov 29 06:58:49 EST 2025 Tue Nov 18 22:14:05 EST 2025 Fri Feb 23 02:46:46 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ultra-lean combustion Porous burner Forced response Biogas combustion Unsteady combustion |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c412t-fc36169a41fc69457071bd03b66fba3b04086b048948308a5ec670907ac540ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.applthermaleng.2020.116099 |
| PQID | 2478622180 |
| PQPubID | 2045278 |
| ParticipantIDs | proquest_journals_2478622180 crossref_primary_10_1016_j_applthermaleng_2020_116099 crossref_citationtrail_10_1016_j_applthermaleng_2020_116099 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2020_116099 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-05 |
| PublicationDateYYYYMMDD | 2021-01-05 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Delalic, Mulahasanovic, Ganic (b0085) 2004; 28 Terracciano, De Oliveira, Vazquez-Molina, Uribe-Romo, Vasu, Orlovskaya (b0155) 2017; 180 Ghorashi, Hashemi, Hashemi, Mollamahdi (b0215) 2018; 162 Göransson, Söderlind, He, Zhang (b0095) 2011; 15 Wang, Karimi, Sutardi, Paul (b0100) 2019; 33 Mujeebu, Abdullah, Bakar, Mohamad, Abdullah (b0175) 2009; 35 D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, 2012. Chaelek, Grare, Jugjai (b0220) 2019; 153 Kazemian, Rashidi, Esfahani, Samimi-Abianeh (b0265) 2019 Keramiotis, Stelzner, Trimis, Founti (b0200) 2012; 45 Howell, Hall, Ellzey (b0025) 1996; 22 Habib, Yadollahi, Karimi (b0245) 2020 Gentillon, Southcott, Chan, Taylor (b0130) 2018; 229 Siavashi, Karimi, Xiong, Doranehgard (b0050) 2019; 137 Kamal, Mohamad (b0180) 2006; 220 Shafiey Dehaj, Ebrahimi, Shams, Farzaneh (b0210) 2017; 84 Saeed, Karimi, Hunt, Torabi (b0160) 2019; 143 Wang, Karimi, Paul (b0020) 2018; 43 Karimi (b0260) 2014; 78 Mahian, Kolsi, Amani, Estellé, Ahmadi, Kleinstreuer, Marshall, Siavashi, Taylor, Niazmand, Wongwises, Hayat, Kolanjiyil, Kasaeian, Pop (b0060) 2019; 790 Devi, Sahoo, Muthukumar (b0230) 2020; 149 Wang, Wei, Zhao, Ye (b0145) 2014; 72 Mao, Feng, Wang, Ren (b0090) 2015; 45 Gholamalipour, Siavashi, Doranehgard (b0055) 2019; 109 Bani, Pan, Tang, Lu, Zhang (b0120) 2018; 129 Bubnovich, Toledo, Henríquez, Rosas, Romero (b0190) 2010; 30 Peng, Yang, Jiaqiang, Xu, Li, Yu, Tu, Wu (b0135) 2019; 200 Dunnmon, Sobhani, Wu, Fahrig, Ihme (b0110) 2017; 36 Christodoulou, Kabiraj, Saurabh, Karimi (b0030) 2016; 26 Liu, Wu, Xie, Liu, Xu (b0125) 2019; 150 Rosa (b0015) 2017; 3 J. Ellzey, M. William, Porous Burner For Gas Turbine Applications, 2003024655, 2003. Rashidi, Kashefi, Kim, Samimi-Abianeh (b0045) 2019; 243 Mujeebu, Abdullah, Bakar, Mohamad, Abdullah (b0170) 2009; 86 He, Chen, Jiang, Leng (b0140) 2019; 160 Habib, Yadollahi, Karimi, Hossein (b0240) 2020; 116 Turns (b0255) 2000 Mujeebu, Abdullah, Bakar, Mohamad, Muhad, Abdullah (b0080) 2009; 90 M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed., 2011. Mujeebu, Abdullah, Mohamad (b0195) 2011; 36 Rashidi, Hormozi, Doranehgard (b0040) 2020 S. Mößbauer, O. Pickenäcker, K. Pickenäcker, Application of the porous burner technology in energy- and heat engineering, in: 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), 1999, pp. 519–523. Hunt, Karimi, Yadollahi, Torabi (b0115) 2019; 134 Song, Wen, Dong, Wang, Liu (b0010) 2017; 119 Toledo, Gracia, Caro, Gómez, Jovicic (b0105) 2016; 41 Karimi, McGrath, Brown, Weinkauff, Dreizler (b0035) 2016; 97 Wood, Harris (b0005) 2008; 34 Liu, Ning, Fan, Yao (b0150) 2016; 123 Xu, Liu, Zhao (b0165) 2011; 50 Robayo, Beaman, Hughes, Delose, Orlovskaya, Chen (b0205) 2014; 76 Devi, Sahoo, Muthukumar (b0225) 2019; 158 Habib, Karimi, Yadollahi, Hossein, Li (b0235) 2020; 153 Izadi, Siavashi, Rasam, Xiong (b0065) 2020; 168 Mujeebu (10.1016/j.applthermaleng.2020.116099_b0080) 2009; 90 Robayo (10.1016/j.applthermaleng.2020.116099_b0205) 2014; 76 Toledo (10.1016/j.applthermaleng.2020.116099_b0105) 2016; 41 Liu (10.1016/j.applthermaleng.2020.116099_b0125) 2019; 150 Gentillon (10.1016/j.applthermaleng.2020.116099_b0130) 2018; 229 Liu (10.1016/j.applthermaleng.2020.116099_b0150) 2016; 123 Mahian (10.1016/j.applthermaleng.2020.116099_b0060) 2019; 790 Ghorashi (10.1016/j.applthermaleng.2020.116099_b0215) 2018; 162 Song (10.1016/j.applthermaleng.2020.116099_b0010) 2017; 119 10.1016/j.applthermaleng.2020.116099_b0185 Howell (10.1016/j.applthermaleng.2020.116099_b0025) 1996; 22 Dunnmon (10.1016/j.applthermaleng.2020.116099_b0110) 2017; 36 Habib (10.1016/j.applthermaleng.2020.116099_b0235) 2020; 153 Peng (10.1016/j.applthermaleng.2020.116099_b0135) 2019; 200 Bubnovich (10.1016/j.applthermaleng.2020.116099_b0190) 2010; 30 Turns (10.1016/j.applthermaleng.2020.116099_b0255) 2000 Wang (10.1016/j.applthermaleng.2020.116099_b0020) 2018; 43 Siavashi (10.1016/j.applthermaleng.2020.116099_b0050) 2019; 137 Karimi (10.1016/j.applthermaleng.2020.116099_b0035) 2016; 97 Devi (10.1016/j.applthermaleng.2020.116099_b0230) 2020; 149 Kamal (10.1016/j.applthermaleng.2020.116099_b0180) 2006; 220 Shafiey Dehaj (10.1016/j.applthermaleng.2020.116099_b0210) 2017; 84 10.1016/j.applthermaleng.2020.116099_b0070 Rosa (10.1016/j.applthermaleng.2020.116099_b0015) 2017; 3 Göransson (10.1016/j.applthermaleng.2020.116099_b0095) 2011; 15 Wang (10.1016/j.applthermaleng.2020.116099_b0100) 2019; 33 Karimi (10.1016/j.applthermaleng.2020.116099_b0260) 2014; 78 Christodoulou (10.1016/j.applthermaleng.2020.116099_b0030) 2016; 26 10.1016/j.applthermaleng.2020.116099_b0075 Bani (10.1016/j.applthermaleng.2020.116099_b0120) 2018; 129 Mujeebu (10.1016/j.applthermaleng.2020.116099_b0195) 2011; 36 Mujeebu (10.1016/j.applthermaleng.2020.116099_b0175) 2009; 35 Rashidi (10.1016/j.applthermaleng.2020.116099_b0045) 2019; 243 Xu (10.1016/j.applthermaleng.2020.116099_b0165) 2011; 50 Habib (10.1016/j.applthermaleng.2020.116099_b0245) 2020 Saeed (10.1016/j.applthermaleng.2020.116099_b0160) 2019; 143 Keramiotis (10.1016/j.applthermaleng.2020.116099_b0200) 2012; 45 Wang (10.1016/j.applthermaleng.2020.116099_b0145) 2014; 72 Terracciano (10.1016/j.applthermaleng.2020.116099_b0155) 2017; 180 Chaelek (10.1016/j.applthermaleng.2020.116099_b0220) 2019; 153 Mujeebu (10.1016/j.applthermaleng.2020.116099_b0170) 2009; 86 Habib (10.1016/j.applthermaleng.2020.116099_b0240) 2020; 116 Gholamalipour (10.1016/j.applthermaleng.2020.116099_b0055) 2019; 109 He (10.1016/j.applthermaleng.2020.116099_b0140) 2019; 160 Kazemian (10.1016/j.applthermaleng.2020.116099_b0265) 2019 Izadi (10.1016/j.applthermaleng.2020.116099_b0065) 2020; 168 Hunt (10.1016/j.applthermaleng.2020.116099_b0115) 2019; 134 Wood (10.1016/j.applthermaleng.2020.116099_b0005) 2008; 34 Delalic (10.1016/j.applthermaleng.2020.116099_b0085) 2004; 28 Rashidi (10.1016/j.applthermaleng.2020.116099_b0040) 2020 10.1016/j.applthermaleng.2020.116099_b0250 Mao (10.1016/j.applthermaleng.2020.116099_b0090) 2015; 45 Devi (10.1016/j.applthermaleng.2020.116099_b0225) 2019; 158 |
| References_xml | – volume: 76 start-page: 477 year: 2014 end-page: 486 ident: b0205 article-title: Perovskite catalysts enhanced combustion on porous media publication-title: Energy – volume: 220 start-page: 487 year: 2006 end-page: 508 ident: b0180 article-title: Combustion in porous media publication-title: Proc. Inst. Mech. Eng. Part A J. Power Energy – volume: 168 start-page: 114843 year: 2020 ident: b0065 article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling publication-title: Appl. Therm. Eng. – volume: 45 start-page: 540 year: 2015 end-page: 555 ident: b0090 article-title: Review on research achievements of biogas from anaerobic digestion publication-title: Renew. Sustain. Energy Rev. – volume: 123 start-page: 402 year: 2016 end-page: 409 ident: b0150 article-title: Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media publication-title: Energy Convers. Manag. – volume: 129 start-page: 596 year: 2018 end-page: 605 ident: b0120 article-title: Micro combustion in a porous media for thermophotovoltaic power generation publication-title: Appl. Therm. Eng. – volume: 143 start-page: 107602 year: 2019 ident: b0160 article-title: On the influences of surface heat release and thermal radiation upon transport in catalytic porous microreactors—a novel porous-solid interface model publication-title: Chem. Eng. Process. – Process Intensif. – reference: M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, Fundamentals of Engineering Thermodynamics, 7th ed., 2011. – volume: 200 year: 2019 ident: b0135 article-title: Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications publication-title: Energy Convers. Manag. – volume: 33 start-page: 1556 year: 2019 end-page: 1569 ident: b0100 article-title: Combustion characteristics and pollutant emissions in transient oxy-combustion of a single biomass particle: a numerical study publication-title: Energy Fuels – volume: 72 start-page: 195 year: 2014 end-page: 200 ident: b0145 article-title: Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion publication-title: Energy – volume: 153 start-page: 119657 year: 2020 ident: b0235 article-title: A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations publication-title: Int. J. Heat Mass Transf. – volume: 116 start-page: 104639 year: 2020 ident: b0240 article-title: On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis publication-title: Int. Commun. Heat Mass Transf. – reference: S. Mößbauer, O. Pickenäcker, K. Pickenäcker, Application of the porous burner technology in energy- and heat engineering, in: 5th International Conference on Technologies and Combustion for a Clean Environment (Clean Air V), 1999, pp. 519–523. – volume: 158 start-page: 1116 year: 2019 end-page: 1121 ident: b0225 article-title: Combustion of biogas in Porous Radiant Burner: low emission combustion publication-title: Energy Procedia – volume: 162 start-page: 517 year: 2018 end-page: 525 ident: b0215 article-title: Experimental study on pollutant emissions in the novel combined porous-free flame burner publication-title: Energy – reference: J. Ellzey, M. William, Porous Burner For Gas Turbine Applications, 2003024655, 2003. – volume: 28 start-page: 185 year: 2004 end-page: 192 ident: b0085 article-title: Porous media compact heat exchanger unit – experiment and analysis publication-title: Exp. Therm. Fluid Sci. – volume: 180 start-page: 32 year: 2017 end-page: 39 ident: b0155 article-title: Effect of catalytically active Ce0.8Gd0.2O1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO2 porous ceramics publication-title: Combust. Flame – volume: 119 start-page: 497 year: 2017 end-page: 503 ident: b0010 article-title: Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation publication-title: Energy – volume: 26 start-page: 013110 year: 2016 ident: b0030 article-title: Characterizing the signature of flame flashback precursor through recurrence analysis publication-title: Chaos An Interdiscip. J. Nonlinear Sci. – volume: 150 start-page: 445 year: 2019 end-page: 455 ident: b0125 article-title: Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium publication-title: Appl. Therm. Eng. – year: 2020 ident: b0040 article-title: Abilities of porous materials for energy saving in advanced thermal systems publication-title: J. Therm. Anal. Calorim. – volume: 790 start-page: 1 year: 2019 end-page: 48 ident: b0060 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory publication-title: Phys. Rep. – volume: 137 start-page: 267 year: 2019 end-page: 287 ident: b0050 article-title: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder publication-title: J. Therm. Anal. Calorim. – volume: 149 start-page: 1040 year: 2020 end-page: 1052 ident: b0230 article-title: Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner publication-title: Renew. Energy – volume: 86 start-page: 1365 year: 2009 end-page: 1375 ident: b0170 article-title: Applications of porous media combustion technology – a review publication-title: Appl. Energy – volume: 134 start-page: 1227 year: 2019 end-page: 1249 ident: b0115 article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors publication-title: Int. J. Heat Mass Transf. – volume: 3 start-page: 11 year: 2017 ident: b0015 article-title: The role of synthetic fuels for a carbon neutral economy publication-title: C – volume: 160 year: 2019 ident: b0140 article-title: Combustion characteristics of blast furnace gas in porous media burner publication-title: Appl. Therm. Eng. – volume: 50 start-page: 608 year: 2011 end-page: 613 ident: b0165 article-title: Stability of lean combustion in mini-scale porous media combustor with heat recuperation publication-title: Chem. Eng. Process. Process Intensif. – volume: 97 start-page: 663 year: 2016 end-page: 687 ident: b0035 article-title: Generation of adverse pressure gradient in the circumferential flashback of a premixed flame publication-title: Flow Turbul. Combust. – volume: 84 start-page: 134 year: 2017 end-page: 143 ident: b0210 article-title: Experimental analysis of natural gas combustion in a porous burner publication-title: Exp. Therm Fluid Sci. – volume: 36 start-page: 5132 year: 2011 end-page: 5139 ident: b0195 article-title: Development of energy efficient porous medium burners on surface and submerged combustion modes publication-title: Energy – volume: 243 start-page: 206 year: 2019 end-page: 232 ident: b0045 article-title: Potentials of porous materials for energy management in heat exchangers – a comprehensive review publication-title: Appl. Energy – year: 2000 ident: b0255 article-title: An Introduction to Combustion: Concepts and Applications – volume: 36 start-page: 4399 year: 2017 end-page: 4408 ident: b0110 article-title: An investigation of internal flame structure in porous media combustion via X-ray Computed Tomography publication-title: Proc. Combust. Inst. – volume: 34 start-page: 667 year: 2008 end-page: 684 ident: b0005 article-title: Porous burners for lean-burn applications publication-title: Prog. Energy Combust. Sci. – volume: 35 start-page: 216 year: 2009 end-page: 230 ident: b0175 article-title: A review of investigations on liquid fuel combustion in porous inert media publication-title: Prog. Energy Combust. Sci. – start-page: 1 year: 2020 end-page: 14 ident: b0245 article-title: A pore-scale investigation of the transient response of forced convection in porous media to inlet ramp inputs publication-title: J. Energy Resour. Technol. – volume: 41 start-page: 5857 year: 2016 end-page: 5864 ident: b0105 article-title: Hydrocarbons conversion to syngas in inert porous media combustion publication-title: Int. J. Hydrogen Energy – volume: 90 start-page: 2287 year: 2009 end-page: 2312 ident: b0080 article-title: Combustion in porous media and its applications – a comprehensive survey publication-title: J. Environ. Manage. – volume: 229 start-page: 736 year: 2018 end-page: 744 ident: b0130 article-title: Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina publication-title: Appl. Energy – volume: 30 start-page: 92 year: 2010 end-page: 95 ident: b0190 article-title: Flame stabilization between two beds of alumina balls in a porous burner publication-title: Appl. Therm. Eng. – volume: 78 start-page: 490 year: 2014 end-page: 500 ident: b0260 article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories publication-title: Energy – volume: 45 start-page: 213 year: 2012 end-page: 219 ident: b0200 article-title: Porous burners for low emission combustion: an experimental investigation publication-title: Energy – volume: 43 start-page: 8506 year: 2018 end-page: 8523 ident: b0020 article-title: Gas-phase transport and entropy generation during transient combustion of single biomass particle in varying oxygen and nitrogen atmospheres publication-title: Int. J. Hydrogen Energy – volume: 109 start-page: 104367 year: 2019 ident: b0055 article-title: Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid publication-title: Int. Commun. Heat Mass Transf. – volume: 153 start-page: 181 year: 2019 end-page: 189 ident: b0220 article-title: Self-aspirating/air-preheating porous medium gas burner publication-title: Appl. Therm. Eng. – reference: D. Ingham, A. Bejan, E. Mamut, I. Pop, Emerging Technologies and Techniques in Porous Media, 2012. – volume: 22 start-page: 121 year: 1996 end-page: 145 ident: b0025 article-title: Combustion of hydrocarbon fuels within porous inert media publication-title: Prog. Energy Combust. Sci. – volume: 15 start-page: 482 year: 2011 end-page: 492 ident: b0095 article-title: Review of syngas production via biomass DFBGs publication-title: Renew. Sustain. Energy Rev. – year: 2019 ident: b0265 article-title: Effects of grains shapes of porous media on combustion onset—a numerical simulation using Lattice Boltzmann method publication-title: Comput. Math. with Appl. – volume: 45 start-page: 213 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2020.116099_b0200 article-title: Porous burners for low emission combustion: an experimental investigation publication-title: Energy doi: 10.1016/j.energy.2011.12.006 – volume: 158 start-page: 1116 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0225 article-title: Combustion of biogas in Porous Radiant Burner: low emission combustion publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.276 – volume: 72 start-page: 195 year: 2014 ident: 10.1016/j.applthermaleng.2020.116099_b0145 article-title: Experimental study on temperature variation in a porous inert media burner for premixed methane air combustion publication-title: Energy doi: 10.1016/j.energy.2014.05.024 – volume: 168 start-page: 114843 year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0065 article-title: MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.114843 – volume: 90 start-page: 2287 issue: 8 year: 2009 ident: 10.1016/j.applthermaleng.2020.116099_b0080 article-title: Combustion in porous media and its applications – a comprehensive survey publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2008.10.009 – volume: 162 start-page: 517 year: 2018 ident: 10.1016/j.applthermaleng.2020.116099_b0215 article-title: Experimental study on pollutant emissions in the novel combined porous-free flame burner publication-title: Energy doi: 10.1016/j.energy.2018.08.005 – volume: 137 start-page: 267 issue: 1 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0050 article-title: Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7945-9 – volume: 36 start-page: 5132 issue: 8 year: 2011 ident: 10.1016/j.applthermaleng.2020.116099_b0195 article-title: Development of energy efficient porous medium burners on surface and submerged combustion modes publication-title: Energy doi: 10.1016/j.energy.2011.06.014 – year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0040 article-title: Abilities of porous materials for energy saving in advanced thermal systems publication-title: J. Therm. Anal. Calorim. – volume: 129 start-page: 596 year: 2018 ident: 10.1016/j.applthermaleng.2020.116099_b0120 article-title: Micro combustion in a porous media for thermophotovoltaic power generation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.10.024 – volume: 26 start-page: 013110 issue: 1 year: 2016 ident: 10.1016/j.applthermaleng.2020.116099_b0030 article-title: Characterizing the signature of flame flashback precursor through recurrence analysis publication-title: Chaos An Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4940154 – year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0265 article-title: Effects of grains shapes of porous media on combustion onset—a numerical simulation using Lattice Boltzmann method publication-title: Comput. Math. with Appl. – volume: 86 start-page: 1365 issue: 9 year: 2009 ident: 10.1016/j.applthermaleng.2020.116099_b0170 article-title: Applications of porous media combustion technology – a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.01.017 – volume: 35 start-page: 216 issue: 2 year: 2009 ident: 10.1016/j.applthermaleng.2020.116099_b0175 article-title: A review of investigations on liquid fuel combustion in porous inert media publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2008.11.001 – volume: 76 start-page: 477 year: 2014 ident: 10.1016/j.applthermaleng.2020.116099_b0205 article-title: Perovskite catalysts enhanced combustion on porous media publication-title: Energy doi: 10.1016/j.energy.2014.08.045 – ident: 10.1016/j.applthermaleng.2020.116099_b0075 – year: 2000 ident: 10.1016/j.applthermaleng.2020.116099_b0255 – volume: 150 start-page: 445 issue: January year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0125 article-title: Experimental and numerical study on the lean premixed filtration combustion of propane/air in porous medium publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.12.155 – volume: 15 start-page: 482 issue: 1 year: 2011 ident: 10.1016/j.applthermaleng.2020.116099_b0095 article-title: Review of syngas production via biomass DFBGs publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.09.032 – volume: 50 start-page: 608 issue: 7 year: 2011 ident: 10.1016/j.applthermaleng.2020.116099_b0165 article-title: Stability of lean combustion in mini-scale porous media combustor with heat recuperation publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2011.03.001 – start-page: 1 year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0245 article-title: A pore-scale investigation of the transient response of forced convection in porous media to inlet ramp inputs publication-title: J. Energy Resour. Technol. – volume: 36 start-page: 4399 issue: 3 year: 2017 ident: 10.1016/j.applthermaleng.2020.116099_b0110 article-title: An investigation of internal flame structure in porous media combustion via X-ray Computed Tomography publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.06.188 – volume: 97 start-page: 663 issue: 2 year: 2016 ident: 10.1016/j.applthermaleng.2020.116099_b0035 article-title: Generation of adverse pressure gradient in the circumferential flashback of a premixed flame publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-015-9695-0 – volume: 123 start-page: 402 year: 2016 ident: 10.1016/j.applthermaleng.2020.116099_b0150 article-title: Experimental and numerical investigations on flame stability of methane/air mixtures in mesoscale combustors filled with fibrous porous media publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.06.058 – volume: 160 issue: November year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0140 article-title: Combustion characteristics of blast furnace gas in porous media burner publication-title: Appl. Therm. Eng. – volume: 229 start-page: 736 issue: July year: 2018 ident: 10.1016/j.applthermaleng.2020.116099_b0130 article-title: Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.08.048 – volume: 180 start-page: 32 year: 2017 ident: 10.1016/j.applthermaleng.2020.116099_b0155 article-title: Effect of catalytically active Ce0.8Gd0.2O1.9 coating on the heterogeneous combustion of methane within MgO stabilized ZrO2 porous ceramics publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.02.019 – volume: 41 start-page: 5857 issue: 14 year: 2016 ident: 10.1016/j.applthermaleng.2020.116099_b0105 article-title: Hydrocarbons conversion to syngas in inert porous media combustion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.02.065 – volume: 790 start-page: 1 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0060 article-title: Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory publication-title: Phys. Rep. doi: 10.1016/j.physrep.2018.11.004 – ident: 10.1016/j.applthermaleng.2020.116099_b0185 – volume: 153 start-page: 181 issue: November 2018 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0220 article-title: Self-aspirating/air-preheating porous medium gas burner publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.02.109 – volume: 45 start-page: 540 year: 2015 ident: 10.1016/j.applthermaleng.2020.116099_b0090 article-title: Review on research achievements of biogas from anaerobic digestion publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.02.032 – volume: 153 start-page: 119657 year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0235 article-title: A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119657 – volume: 149 start-page: 1040 year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0230 article-title: Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner publication-title: Renew. Energy doi: 10.1016/j.renene.2019.10.092 – volume: 34 start-page: 667 issue: 5 year: 2008 ident: 10.1016/j.applthermaleng.2020.116099_b0005 article-title: Porous burners for lean-burn applications publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2008.04.003 – volume: 84 start-page: 134 year: 2017 ident: 10.1016/j.applthermaleng.2020.116099_b0210 article-title: Experimental analysis of natural gas combustion in a porous burner publication-title: Exp. Therm Fluid Sci. doi: 10.1016/j.expthermflusci.2017.01.023 – volume: 28 start-page: 185 issue: 2–3 year: 2004 ident: 10.1016/j.applthermaleng.2020.116099_b0085 article-title: Porous media compact heat exchanger unit – experiment and analysis publication-title: Exp. Therm. Fluid Sci. doi: 10.1016/S0894-1777(03)00038-4 – volume: 116 start-page: 104639 year: 2020 ident: 10.1016/j.applthermaleng.2020.116099_b0240 article-title: On the unsteady forced convection in porous media subject to inlet flow disturbances-A pore-scale analysis publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2020.104639 – volume: 220 start-page: 487 issue: 5 year: 2006 ident: 10.1016/j.applthermaleng.2020.116099_b0180 article-title: Combustion in porous media publication-title: Proc. Inst. Mech. Eng. Part A J. Power Energy doi: 10.1243/09576509JPE169 – volume: 243 start-page: 206 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0045 article-title: Potentials of porous materials for energy management in heat exchangers – a comprehensive review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.200 – volume: 3 start-page: 11 issue: 4 year: 2017 ident: 10.1016/j.applthermaleng.2020.116099_b0015 article-title: The role of synthetic fuels for a carbon neutral economy publication-title: C – volume: 78 start-page: 490 year: 2014 ident: 10.1016/j.applthermaleng.2020.116099_b0260 article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories publication-title: Energy doi: 10.1016/j.energy.2014.10.036 – volume: 134 start-page: 1227 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0115 article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.015 – volume: 143 start-page: 107602 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0160 article-title: On the influences of surface heat release and thermal radiation upon transport in catalytic porous microreactors—a novel porous-solid interface model publication-title: Chem. Eng. Process. – Process Intensif. doi: 10.1016/j.cep.2019.107602 – volume: 22 start-page: 121 issue: 2 year: 1996 ident: 10.1016/j.applthermaleng.2020.116099_b0025 article-title: Combustion of hydrocarbon fuels within porous inert media publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(96)00001-9 – volume: 119 start-page: 497 year: 2017 ident: 10.1016/j.applthermaleng.2020.116099_b0010 article-title: Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation publication-title: Energy doi: 10.1016/j.energy.2016.12.077 – volume: 33 start-page: 1556 issue: 2 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0100 article-title: Combustion characteristics and pollutant emissions in transient oxy-combustion of a single biomass particle: a numerical study publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b03602 – ident: 10.1016/j.applthermaleng.2020.116099_b0070 – ident: 10.1016/j.applthermaleng.2020.116099_b0250 – volume: 109 start-page: 104367 year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0055 article-title: Eccentricity effects of heat source inside a porous annulus on the natural convection heat transfer and entropy generation of Cu-water nanofluid publication-title: Int. Commun. Heat Mass Transf. doi: 10.1016/j.icheatmasstransfer.2019.104367 – volume: 43 start-page: 8506 issue: 17 year: 2018 ident: 10.1016/j.applthermaleng.2020.116099_b0020 article-title: Gas-phase transport and entropy generation during transient combustion of single biomass particle in varying oxygen and nitrogen atmospheres publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.074 – volume: 200 issue: June year: 2019 ident: 10.1016/j.applthermaleng.2020.116099_b0135 article-title: Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications publication-title: Energy Convers. Manag. – volume: 30 start-page: 92 year: 2010 ident: 10.1016/j.applthermaleng.2020.116099_b0190 article-title: Flame stabilization between two beds of alumina balls in a porous burner publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.04.001 |
| SSID | ssj0012874 |
| Score | 2.5101078 |
| Snippet | •Ultra lean flames in porous media respond to oscillations in fuel flow rate.•Flame motion is almost in phase with fuel flow fluctuations.•The amplitude of... The response of ultra-lean flames, stabilised in a porous burner, to the fluctuations imposed on the fuel flow rate is investigated experimentally. The study... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116099 |
| SubjectTerms | Amplitudes Biogas Biogas combustion Carbon dioxide Chemical composition Combustion Digital cameras Flow velocity Forced response Fuel flow Mass flow Methane Porous burner Porous media Programmable controllers Silicon carbide Sine waves Studies Thermocouples Ultra-lean combustion Unsteady combustion |
| Title | Unsteady ultra-lean combustion of methane and biogas in a porous burner – An experimental study |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2020.116099 https://www.proquest.com/docview/2478622180 |
| Volume | 182 |
| WOSCitedRecordID | wos000592641600081&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELZCixA9IH5FS0E-VFyirfbX6xUHFFAqQCEgSFA4WbbX22602YQkrcqNd-BJeCWehPHam00QReHAxYqcrNea-TL-PB7PIHQkdMpuGkknkZ50wiwCOxjzyPGI4KRKmCUqTffifp-ORsn7VutHfRfmoojLkl5eJrP_qmroA2Xrq7P_oO7VoNABn0Hp0ILaod1K8cOyUtzX9nmxnHOn0K52eI_QZbsMOdRVo3lpzg1EPj3lVUwsbwMV1wGxQrs55-06DCLQjsONQgBNSto6fa2lsppMTuAHqkly2Fg4kVdHPx-4UKpxQn_WKaUKXpUWbr_Ixw1YP3JlHLGdIl_RbQBsqc5OuQnIfzs945MJT3X1k4WyOcStC8P3KhdG1PjVVndrPq1Z4iBKHGA3BnjK9NE4cICikU3z7a8ZYO-Py4LxUIyPdVCAFQVI4hjmotcM4poaTZvZuPvv2Mmw12OD7mjwdPbF0YXK9IG-rdpyDe36cZSAId3tvO6O3qyOrnQBgWqXb-d_Ax01QYVXT-AqXvQbQ6hoz-A2umX3K7hjcHYHtVR5F-2tZbG8h3iNONwgDjeIw9MMW8RhQBw2iMN5iTk2iMMGcfjnt--4U-J1rOEKa_fR8KQ7ePnKsZU7HBl6_tLJZEA8kvDQyyRJwigGIitSNxCEZIIHAlYOSqClSUgDl_JISZ1H0I25hB2EksEDtFNOS_UQYZrClhtG8gVPw1RIoWCHTaWbAtN1U8730bNabkzatPa6ukrB6vjFMduUOtNSZ0bq-yhaPT0z6V22fO55rSJmqaqhoAwgt-UIh7VmmbUeC-aHMSU-sG734O9fP0I3mz_SIdpZzs_VY3RdXizzxfyJheQvCI3FWw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsteady+ultra-lean+combustion+of+methane+and+biogas+in+a+porous+burner+%E2%80%93+An+experimental+study&rft.jtitle=Applied+thermal+engineering&rft.au=Habib%2C+Rabeeah&rft.au=Yadollahi%2C+Bijan&rft.au=Saeed%2C+Ali&rft.au=Doranehgard%2C+Mohammad+Hossein&rft.date=2021-01-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=182&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2020.116099&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |